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Introduction

Let f : ℝd → ℝ be a random field.

Example (Bargmann-Fock random field).

Let (𝛾𝛼 )𝛼∈ℕd be a family of i.i.d. Gaussian variates. Then,

𝜑 : ℝd → ℝ, 𝜑 (x) = e−∥x ∥2/2
∑︁
𝛼∈ℕd

𝛾𝛼√
𝛼!

x𝛼

is a smooth Gaussian random field, known as the Bargmann-Fock random field.

Let B = B(0, R) ⊂ ℝd be the closed ball of radius R and center 0. The variate of interest is

X = X (f , R) = #{x ∈ B | ∇f (x) = 0},

the number of critical points of f contained in B.



Moment Conjecture

So far, the exact distribution of X is out of reach, and much research is instead focused on
understanding its moments.

Conjecture.

Assume that the covariance function of the Gaussian random field f : ℝd → ℝ, as well as all
of its derivatives, are square-integrable. Then, for all p,

lim
R→∞

𝔼

[(
X − 𝔼[X ]√︁

𝕍 [X ]

)p]
= 𝔼[𝛾p], 𝛾 ∼ 𝒩(0, 1).

In the special case d = 1:
Conditions for finite moments have been precisely established by Cuzick (1975) as well
as Armentano et al. (2020).

Results on moment asymptotics include Nazarov and Sodin (2015) and Gass (2023).



Differentials and Jets

For a multi-index 𝛼 = (𝛼1, . . . , 𝛼d) ∈ ℕd , define the differential operator

𝜕𝛼 : C |𝛼 | (ℝd) → C |𝛼 | (ℝd), 𝜕𝛼 f (x) = 𝜕𝛼1

𝜕x𝛼1
1

· · · 𝜕𝛼d

𝜕x𝛼d
d

f (x1, . . . , xd), |𝛼 | = 𝛼1 + · · · + 𝛼d .

Then, (𝜕𝛼 f (x)) |𝛼 | ≤p is the p-jet of f at x. It is a vector of length

p∑︁
i=0

(
d + i − 1

i

)
.

Example (The case d = 2 and p = 2).

The 2-jet of f : ℝ2 → ℝ at (x1, x2) is(
f (x1, x2),

𝜕

𝜕x1
f (x1, x2),

𝜕

𝜕x2
f (x1, x2),

𝜕2

𝜕x21
f (x1, x2),

𝜕

𝜕x1

𝜕

𝜕x2
f (x1, x2),

𝜕2

𝜕x22
f (x1, x2)

)
.



Main Result

Theorem (Gass and Stecconi, 2023).

Let f : ℝd → ℝ be a Cp+1 Gaussian random field, and assume that

det Cov((𝜕𝛼 f (x)) |𝛼 | ≤p) > 0

for all x ∈ B, i.e. that the p-jets of f are nondegenerate. Then, 𝔼[Xp] < ∞.

It follows from Azais and Wschebor (2009) that the Bargmann-Fock random field 𝜑 : ℝd → ℝ

from before has nondegenerate p-jets for all p, so the moments of X (𝜑, R) are all finite.

Previously, Beliaev, McAuley, and Muirhead (2022) established the special case p = 3 using a
technical divided difference method, and no results were known for moments of order p ≥ 4
in dimension d ≥ 2.



Proof Reductions

By the compactness of B, it suffices to establish the result when B is an arbitrarily small
compact neighborhood of x, for all x. In other words, the statement is local.

The result is true for any Gaussian random polynomial g : ℝd → ℝ by Bezout’s theorem
(Bochnak, Coste, and Roy, 2013).

There is a universal constant Cp > 0 such that

𝔼[Xp] ≤ Cp (1 + 𝔼[X [p]]),

where X [p] = X (X − 1) · · · (X − p + 1) is the p-factorial power of X . Therefore, it suffices
to prove that 𝔼[X [p]] is finite.



Kac-Rice Formula

Let Δ = {x = (x1, . . . , xp) ∈ (ℝd)p | ∃i ≠ j s.t. xi = xj} denote the fat diagonal (in (ℝd)p). The
following version of the Kac-Rice formula can be found in Azais and Wschebor (2009).

Theorem (Kac-Rice formula).

Let f : ℝd → ℝ be a C2 Gaussian random field such that (∇f (xi))1≤i≤p is nondegenerate for
all x = (x1, . . . , xp) ∈ Bp − Δ, say with density𝜓f ,x . Then,

𝔼[X [p]] =
∫
Bp−Δ

𝜌f (x) dx,

where 𝜌f (x) is

𝔼

[ p∏
k=1

|det∇2f (xk) |
����� ∇f (x1) = · · · = ∇f (xp) = 0

]
𝜓f ,x (0) .



Density Decomposition

Gathering the proof reductions from before, it suffices to prove the following.

Lemma.
For sufficiently small R and all x ∈ Bp − Δ,

𝜌f (x) = Q(x)𝜎f (x),

where Q is universal (meaning it does not depend on f ) and 𝜎f is bounded above and below
by positive constants.

Once this is established,

𝜌f ≤
sup𝜎f
inf 𝜎g

𝜌g ∈ L1

for any nondegenerate Gaussian random polynomial g : ℝd → ℝ.



Main Obstruction

The main obstruction is that it is difficult to understand the behavior of 𝜌f near Δ. Namely,

𝜌f (x) ∝
𝔼
[∏p

k=1 |det∇
2f (xk) |

�� ∇f (x1) = · · · = ∇f (xp) = 0
]√︁

det Cov(∇f (x1), . . . ,∇f (xp))
,

and the challenge is understanding the near-diagonal degeneracy of the vectors

(∇f (x1), . . . ,∇f (xp),∇2f (xk)), 1 ≤ k ≤ p.

When d = 1, this can be tackled with a divided differences trick as well as Hermite-Lagrange
interpolation (Gass, 2023; Armentano et al., 2020; Ancona and Letendre, 2021).

Yet, in higher dimensions, there is no well-poised interpolation, meaning no unique polynomial
of degree p − 1 interpolating a function at p unique points (Davis, 1975). The key insight from
Gass and Stecconi (2023) is that divided differences is secretly a Gram-Schmidt process.



Gram-Schmidt Process

Example (Gram-Schmidt process for d = 1).

Let 𝛿x be the evaluation map at x. For x = (x1, . . . , xp) ∈ ℝp − Δ,

𝛿x =
©«
𝛿x1
...

𝛿xp

ª®®¬ = A(x)
©«

𝛿x1
∥𝛿x1 ∥
...

𝛿xp−ProjSpan(𝛿x1 ,...,𝛿xp−1 )(𝛿xp )
∥𝛿xp−ProjSpan(𝛿x1 ,...,𝛿xp−1 )(𝛿xp ) ∥

ª®®®®®¬
.

Evaluating at a function f yields

𝛿xf =
©«
f (x1)
...

f (xp)

ª®®¬ = A(x)
©«

f [x1]
...

f [x1, . . . , xp]

ª®®¬ .



Higher Dimensions

Example (Gram-Schmidt process for general d).

For x = (x1, . . . , xp) ∈ (ℝd)p − Δ,

𝛿x∇f =
©«
∇f (x1)

...

∇f (xp)

ª®®¬ = Q0(x)Nf (x),

where:

Q0(x) is a universal square matrix of size dp.

Nf (x) is a vector of dp orthonormal linear forms depending on f .

Then, by properties of the determinant,√︃
det Cov(∇f (x1), . . . ,∇f (xp)) = |detQ0(x) |

√︃
det Cov(Nf (x)) .



Decomposition Achieved

Moreover, one can show that for suitable Hf ,k and universal Qk (1 ≤ k ≤ p),

𝔼

[ p∏
k=1

|det∇2f (xk) |
����� 𝛿x∇f = 0

]
=

( p∏
k=1

Qk (x)
)
𝔼

[ p∏
k=1

|Hf ,k (x) |
����� Nf (x) = 0

]
.

Therefore,

𝜌f (x) ∝
∏p

k=1 Qk (x)
|detQ0(x) |︸         ︷︷         ︸

Q (x )

𝔼
[∏p

k=1 |Hf ,k (x) |
�� Nf (x) = 0

]√︁
det Cov(Nf (x))︸                                  ︷︷                                  ︸

𝜎f (x )

,

and the desired decomposition of the Kac-Rice density is achieved.

Remark.
The existence of an adequate scalar product for evaluation maps was implicitly assumed in
the analysis thus far. This can be justified with the introduction of Kergin interpolation.



Kergin Interpolation

Let ℝp [X1, . . . ,Xd] be the space of real polynomials of degree at most p in X1, . . . ,Xd .

Theorem (Kergin, 1980).

For x = (x0, x1, . . . , xp) ∈ (ℝd)p+1, there is a projector

Πx : Cp (ℝd) → ℝp [X1, . . . ,Xd]

such that if the multiplicity of xk in x is n, then 𝜕𝛼 (Πxf ) (xk) = 𝜕𝛼 f (xk) for all |𝛼 | < n.

Thus, 𝛿x∇ can be viewed as a family of linear forms on a finite-dimensional vector space and
there exists a scalar product (and corresponding norm ∥·∥) on this space.

Meanwhile, the boundedness of 𝜎f follows from the nondegeneracy of the p-jets of f plus a
technical argument using the Bolzano-Weierstrass theorem.



Alternative Approach

This result was also proven (independently, around the same time, and using an alternative
approach) by Ancona and Letendre (2023). Some aspects of their proof are given below.

The space (ℝd)p − Δ can be completed to a compact space Cp [ℝd] so that if f : ℝd → ℝ

is a Gaussian random field satisfying the theorem assumptions, then

F : (ℝd)p − Δ → (ℝd)p, F (x1, . . . , xp) = (∇f (x1), . . . ,∇f (xp))

can be extended to a Gaussian random field

F× : Cp [ℝd] → (ℝd)p

having the same zeros as F .

This compactification is obtained by a sequence of blow-ups using Hironaka’s theorem
on the resolution of singularities.



Result for Zeros

For a random field f : ℝd → ℝd now, let

Z = Z (f , R) = #{x ∈ B | f (x) = 0}

be the number of zeros of f contained in B.

Theorem (Gass and Stecconi, 2023).

Let f : ℝd → ℝd be a Cp Gaussian random field, and assume that

det Cov((𝜕𝛼 f (x)) |𝛼 | ≤p−1) > 0

for all x ∈ B. Then, 𝔼[Zp] < ∞.

Note this does not imply the previous theorem because second derivative symmetry prevents
the vector (𝜕𝛼∇f (x)) |𝛼 | ≤p−1 from being nondegenerate.



More Extensions

Gass and Stecconi (2023) and Ancona and Letendre (2023) also exhibit analogous results on
the finiteness of moments of Z (resp. X ) when:

f is a holomorphic Gaussian random field on ℂd .

f is a Cp (resp. Cp+1) Gaussian random field on a smooth Riemannian manifold.

f is a holomorphic Gaussian random field on a complex Riemannian manifold.

This suggests that deeper underlying ideas are at play. To bring these themes to the fore, Gass
and Stecconi (2023) introduce p-interpolating spaces and prove a general result that contains
all the results seen so far as special cases.

Let 𝛿x : C0(ℝd,ℝd) → (ℝd)p be the evaluation map 𝛿xf = (f (x1), . . . , f (xp)) from above. This
can be viewed as dp linear forms on C0(ℝd,ℝd).

Let 𝒥x : C1(ℝd,ℝd) → ℝ be the map 𝒥xf = det∇f (x). This can be viewed as a polynomial of
degree d on C1(ℝd,ℝd).



Interpolating Space

Definition (p-interpolating space).

A finite-dimensional subspace V ⊂ C1(ℝd,ℝd) is called a p-interpolating space if for all points
y = (y1, . . . , yp) ∈ (ℝd)p − Δ:

A There is a subspace V0 ⊂ V such that 𝛿y (V0) = (ℝd)p.
B The polynomials (𝒥yk )1≤k≤p are nonzero on Ker(𝛿y) ∩ V .

C For every closed ball B ⊂ ℝd , there is a constant CB and a subset NB ⊂ V such that for
all g ∈ V − NB,

#{x ∈ B | g(x) = 0} ≤ CB.

Let g be a nondegenerate Gaussian vector with values in V .

A ensures that one can write the Kac-Rice formula for g.

B ensures that the Kac-Rice density for g never vanishes.

C endows g with the behavior of a Gaussian random polynomial.



Adaptedness and Strength

Definition (Adapted p-interpolating space).

The space V is a p-interpolating space adapted to a subspaceW ⊂ Cp (ℝd,ℝd) if:
𝟙 V is a p-interpolating space.

𝟚 For all x = (x1, . . . , xp) ∈ (ℝd)p, there is a continuous linear map𝒦
k
x : W → V such that

𝒦
0
x (W ) = V0 and for all f ∈ W ,

𝛿xf = 𝛿x𝒦
k
x f and 𝒥xk f = 𝒥xk𝒦

k
x f .

𝟛 For all f ∈ W , the map x ↦→ 𝒦
k
x f is continuous.

Call the family𝒦 = (𝒦k
x )x∈ (ℝd )p,1≤k≤p a p-interpolator betweenW and V .

Call𝒦 a strong p-interpolator if the𝒦k
x are all surjective.

Call V a strong p-interpolating space if there is a strong p-interpolator between V and itself.



General Result

Theorem (Gass and Stecconi, 2023).

Let f : ℝd → ℝd be a Cp Gaussian random field and W the support of the Gaussian measure
on Cp (ℝd,ℝd) associated to f . Let V be a strong p-interpolating space adapted toW . Then,
the Kac-Rice formula for f holds, and there exists a Cp function

Q = QV : (ℝd)p − Δ → ℝ+

depending only on V and satisfying the following properties:

For any closed ball B ⊂ ℝd , Q is integrable on Bp − Δ.

There is a positive constant Cf > 0 such that 𝜌f ≤ CfQ.

If the p-interpolator between W and V is strong, then there is a positive constant cf > 0
such that cfQ ≤ 𝜌f .

In particular, 𝔼[Z [p]] < ∞ for every closed ball B ⊂ ℝd .



Thank You
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