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Multi-Player (Cooperative) Bandits

Consider m > 1 players with K stochastic bandit arms. Each
time 1 ≤ t ≤ T , each player X chooses an arm iXt ∈ [K ].

Players aim to maximize total reward (full cooperation). But
they cannot communicate once the game starts.

Key challenge: colliding on the same action iXt = iYt at the
same time yields zero reward.

Proposed for wireless radio – learn good signal frequencies while avoiding interference.
[Lai-Jiang-Poor 08, Liu-Zhao 10, Anandkumar-Michael-Tang-Swami 11].
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Partial Formulation

Fix p = (p1, p2, . . . , pK ) ∈ [0, 1]K . Generate TKm independent Bernoulli reward
variables rewX

t (i) for (t, i ,X ) ∈ [T ]× [K ]× [m]:

P
[
rewX

t (i) = 1
]

= pi and P
[
rewX

t (i) = 0
]

= 1− pi .

At time t, each player (PX )X∈[m] picks arm iXt , and receives the reward:

rewt(X ) = rewX
t (iXt ) · 1iXt 6=iYt ∀Y 6=X .

p∗ =
∑m

j=1 p
∗
j , the sum of the best m arms, is the regret benchmark:

RT (p) = E

[
Tp∗ −

( T∑
t=1

m∑
X=1

rewt(X )

)]
.

Key quantities of interest: minimax and instance-dependent regret

RT = sup
p∈[0,1]K

RT (p); RT ,∆ = sup
p∈[0,1]K : p∗m−p∗m+1≥∆

RT (p).

More specification needed! What information is observed about collisions?
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Several Precise Formulations

Fix p = (p1, p2, . . . , pK ) ∈ [0, 1]K . Generate TKm independent Bernoulli reward
variables rewX

t (i) for (t, i ,X ) ∈ [T ]× [K ]× [m]:

P
[
rewX

t (i) = 1
]

= pi and P
[
rewX

t (i) = 0
]

= 1− pi .

At time t, each player (PX )X∈[m] picks arm iXt , and receives the reward:

rewt(X ) = rewX
t (iXt ) · 1iXt 6=iYt ∀Y 6=X .

There are at least four natural feedback models when collisions occur.

1 Strongly detectable: the collision is explicitly announced.
2 Weakly detectable: observe realized reward 0.
3 Undetectable: observe “underlying” reward rewX

t (iXt ).
4 Adversarial: observe a reward chosen by an adaptive adversary.
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Regret for these Models

Strongly detectable: regret Õ(
√
T ), even for non-stochastic. Implicit communication.

(Õ(·) hides poly(K , logT ) factors.) [Lugosi-Mehrabian 18, Bubeck-Li-Peres-S. 19]

Weak detectability: regret Õ(
√
T ) and Õ( log T

∆ ). Subtle implicit communication.
[Lugosi-Mehrabian 18, Huang-Combes-Trinh COLT 22, Pacchiano-Bartlett-Jordan 21]

What happens when communication is truly impossible? This is true already in (and a
motivation for) the undetectable collision model.

Surprisingly, one can design collision-free algorithms attaining Õ(
√
T ) regret (and

using only public shared randomness). These automatically work in all feedback models.

Theorem (Bubeck-Budzinski 20, Bubeck-Budzinski-S. 21)

There exists an efficient, collision-free strategy with Õ(
√
T ) regret. Precisely,

RT = O
(
mK 11/2

√
T logT

)
,

P (there is ever a collision) = O(T−2).
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√
T ) regret. Precisely,

RT = O
(
mK 11/2

√
T logT

)
,

P (there is ever a collision) = O(T−2).

M. Sellke Multi-Player Multi-Armed Bandits 5 / 11



Regret for these Models

Strongly detectable: regret Õ(
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(Õ(·) hides poly(K , logT ) factors.) [Lugosi-Mehrabian 18, Bubeck-Li-Peres-S. 19]

Weak detectability: regret Õ(
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√
T ) regret. Precisely,

RT = O
(
mK 11/2

√
T logT

)
,

P (there is ever a collision) = O(T−2).

M. Sellke Multi-Player Multi-Armed Bandits 5 / 11



Gap Dependent Regret Without Communication

Minimax regret barely changed. Turns out RT ,∆ changes a lot!

Theorem (Liu-S. 22)

The Pareto optimal regret guarantees with no communication are:

RT ,∆ ≤ Õ

(
1

∆i ·∆i+1

)
, ∆ ∈ [∆i ,∆i+1];

1 ≥ ∆1 ≥ · · · ≥ ∆J ≥ T−1/2.

These are achievable with no collisions, hence in all feedback models.

Extreme cases:
∆J = 1: minimax regret RT ≤ Õ(

√
T ).

∆j = 2−j : RT ,∆ ≤ Õ(∆−2).

Corollary: undetectable and adversarial models behave the same (up to poly(K , logT )).

Corollary: if ∆� ∆′, no algorithm achieves RT ,∆ ≤ Õ(1/∆) and RT ,∆′ ≤ Õ(1/∆′).
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Geometric Viewpoint with 2 players and 3 actions

For illustration, work in the plane P = {p1 + p2 + p3 = constant} under full feedback.
Undetectability means Player Y ’s decisions do not influence Player X at all.

Hence the protocol amounts to choosing for each t ∈ [T ] a function

(iXt , iYt ) : P → {1, 2, 3}2.

The estimates p̂X
t , p̂Y

t are within Õ(t−1/2) of each other
(by full feedback).

Difficulty: cannot always play the top 2 arms without
colliding for some p.
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One-Step Regret Lower Bound with 2 players and 3 actions

How to turn this into a lower bound? Consider
√
T points equally spaced on a

constant-size circle, labelled according to the time T strategy.

For any labelling, there is a FAIL incurring Ω(1) regret.
Either:

1 There is a collision, OR
2 The worst two actions are played.

The estimates p̂X
t , p̂Y

t are basically adjacent points
along this circle...

By dyadic pigeonhole, there exists a gap ∆J with Ω̃(T ) FAILs across 1 ≤ t ≤ T .

There are ≈ ∆J

√
T points on the circle with gap ≈ ∆J to absorb the FAILs. Hence

RT ,∆J
&

T

∆J

√
T

=

√
T

∆J
.
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General Lower Bound: Set TJ = ∆−2
J and Iterate
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Collision-Free Algorithms At a Glance
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Summary

Previously: in multi-player stochastic bandits, Õ(
√
T ) regret is possible with no

collisions. Implicit communication enables Õ(1/∆).
This paper: without communication, Pareto optima include Õ(

√
T ) and Õ(1/∆2).

In particular, Õ(1/∆) is only possible at a single scale ∆.
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