
Convex Geometry

Mark Sellke

1 Definitions

Definition 1. A set S ⊆ Rn is convex if a, b ∈ S implies λa+ (1− λ)b ∈ S for all λ ∈ [0, 1].

Definition 2. A set K ⊆ Rn is compact if it is closed and bounded.

Definition 3. A convex combination of points (xi) is a linear combination
∑N

i=1 αixi where the αi

are non-negative and add to 1.

Definition 4. The convex hull of a set S is the smallest convex set containing S, or equivalently
the set of convex combinations of points in S.

Definition 5. A convex body in Rn is a compact, convex set which is not contained in a lower-
dimensional affine subspace.

Definition 6. Given a convex body K ⊆ Rn, a point k ∈ K is an extreme point of K if there is
no line segment contained in K which contains p on the inside.

Definition 7. A polytope is a finite intersection of closed half-spaces; these are common examples
of convex bodies.

2 Fundamentals of Convex Sets

1. (Radon’s Theorem) Let A be a set of at least n + 2 points in Rn. Show that A can be
partitioned into sets A = A1 ∪A2 with intersecting convex hulls.

2. (Caratheodory’s Theorem) If X ⊆ Rn and y is in the convex hull of X, show that y is a
convex combination of some n+ 1 points in X.

3. (Helly’s Theorem) Let C1, ..., Cm be convex sets in Rn with m ≥ n + 1. Suppose that every
n + 1 sets have non-empty intersection. Show that all m sets have non-empty intersection.
Show that this holds for an infinite family C1, ... if the Ci are assumed compact, but not
otherwise.

4. (Hahn-Banach Theorem) Given two non-intersecting convex bodies A,B ⊆ Rd, show that
there is a hyperplane H which separates them.

5. (Krein-Milman Theorem) Let P be a convex body. Show that P is the convex hull of its set
of extreme points.
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3 Linear Duality, based on Terry Tao’s blog

The Farkas lemma is tricky but pretty fundamental. We should probably talk about it.

1. (Farkas Lemma) Let P1, ..., Pk : Rn → R be affine functions

Pi(x1, ..., xn) = ci +

n∑
j=1

ai,jxj .

Show that exactly one of the following holds:

(a) There exists x ∈ Rn with Pi(x) ≥ 0 for all i.

(b) There exist non-negative reals q1, ..., qn such that for all x we have

n∑
i=1

qiPi(x) = −1.

This means that given some linear system of inequality constraints Pi(x) ≥ 0, either they are
solvable, or there is some linear obstruction to solvability.

2. (Optional) If you’ve seen them, formulate strong duality and max-flow/min-cut in terms of
the Farkas lemma.

3. (Hahn-Banach Theorem again; use the Farkas lemma this time!) Given two non-intersecting
convex bodies A,B ⊆ Rd, show that there is a hyperplane H which separates them.

4 Problems

1. Show that a compact set K in Rd has a unique smallest closed ball B containing it. Show
that B is minimal iff the convex hull of K ∩ ∂B contains the center of B.

2. Let K ⊆ Rn be compact. Show that the convex hull of K is also compact.

3. Consider the convex set of n × n doubly stochastic matrices, in which all entries are in [0, 1]
and every row/column sums to exactly 1. Show that this set is convex and find the set of
extreme points.

4. (Famous, heard from Max Schindler) Bob places m points in Rn. Alice picks another point
in Rn and Bob will pick a half-space containing that point. Alice wants to maximize the
number of points in that half-space while Bob wants to minimize it. How many points can
Alice guarantee?

5. (Based on confusion from the first time I taught this) Suppose that in the definition of the
convex hull for a bounded set S, we allow infinite convex combinations

∑∞
i=1 αixi as long as

we still have αi ≥ 0 and
∑

i αi = 1. Show that this is equivalent to the usual definition which
only allows finite sums.
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6. (John’s Theorem) Show that if K ⊆ Rn is a convex body, then for some affine map T we have
B1(0) ⊆ T (K) ⊆ Bn(0), where Br(0) is the ball of radius r around 0. Also show that if K is
symmetric then we can replace Bn by B√n. Show this is tight.

7. (https://math.stackexchange.com/q/52833) Let K ⊆ Rn be a convex body. Show that
there is an “approximate center” point k ⊆ K such that for any line segment [u, v] ⊆ K

connecting boundary points u, v and containing k, we have |u−k||u−v| ≤
n

n+1 . Show this is tight.

8. (Jung’s Theorem) Show that a set S ⊆ Rd of diameter 1 is contained in a ball of radius
√

d
2d+2

and show this is tight.

9. (Happy Ending Problem; different flavor from the rest if you want to do normal combinatorics)
Show that for every n there exists N such that for any N distinct points in the plane with
no 3 collinear, some n are in convex position.

10. (Kirszbraun Extension Theorem) Suppose A ⊆ Rn and f : A→ Rm satisfies

|f(x)− f(y)| ≤ |x− y|

for all x, y ∈ A. Show that f extends to F : Rn → Rm with the same condition:

|F (x)− F (y)| ≤ |x− y|

but now for all x, y ∈ Rn.

11. (Matching Polytope; learned from Jenny Iglesias) The motivation for this problem is to define
fractional matchings. Consider a finite graph G with an even number of vertices and consider
weight functions f : E(G)→ [0, 1] on the edge set such that the total weight of any vertex’s
neighbors is 1. Suppose additionally that for any odd-size set A of vertices, the edges between
A and Ac have total weight at least 1. Show that the space of such functions f is a convex
set, and is in fact the convex hull of the set of matchings of G. Also, find an example showing
that this is false without the final condition on the weight of edges between A,Ac.

12. (Analysis Problem, apparently from Math 55) Let (xi) be a sequence of vectors in Rn. Suppose
the series

∑∞
i=1 xi is conditionally convergent, meaning that the limit of the partial sums exists

in Rn but
∞∑
i=1

|xi| =∞.

Assume further that for any orthogonal projection map P onto a line ` through the origin we
have ∑

i

|P (xi)| =∞.

Then show that for any y ∈ Rn there is a rearrangement of the series
∑∞

i=1 xi which converges
to y. Show that the last assumption about projections is necessary. (The case n = 1 is called
the Riemann Rearrangement Theorem and is pretty famous. It’s also easier, so probably do
it before doing higher n if you haven’t seen it before.)
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13. (Alternate Solution to December TST 2017) The Krein-Milman theorem is true in infinite
dimensions with “convex body” meaning “compact, convex set”1. Consider a function

f : R2 → [0, 1]

satisfying

f(x, y) =
f(x− 1, y) + f(x, y − 1)

2
.

Assuming that the word “compact” won’t cause problems (which it won’t), use the Krein-
Milman theorem to show that f must be constant.

1However the definition of compact not quite “closed and bounded” in infinite dimensions.
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