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Motivation: Unimodal Probability Distributions

Probability distributions take many forms. Which are simplest?

In 1-dimension, the unimodal distributions form a very nice class.
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Reminders on Log-Concavity

A strict notion of unimodality is log-concavity. dµ(x) = ρ(x)dx is:
Log-concave if log ρ(x) is concave.
M-log-concave if for positive-definite M and all x ∈ RN :

∇2 log ρ(x) ⪯ –M ≺ 0.

M-log-concave distributions are dominated by the corresponding
Gaussian γM = N (0, M–1).

Covariance bound [Brascamp-Lieb]:

Ex∼µ[xx⊤] ⪯ Ex∼γM [xx⊤] = M–1

µ inherits functional inequalities from γM [Bakry-Emery].
Spectral gap, isoperimetry, concentration.
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Unimodality without Concentration

Unfortunately, some unimodal distributions do not behave so nicely.
Consider the two-component Gaussian mixture

1
2
N (0, IN) +

1
2
N (0, 4 IN).

Unimodal, but awful concentration.
Without log-concavity, we lack tools to
reason about such distributions.

This talk will provide one such tool.
Results show confinement, which is weaker than concentration.
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Plan for the Talk

1 Ginzburg–Landau Surfaces and Main Results

2 Confinement from the Gaussian Correlation Inequality

3 The FKG-Gaussian Correlation Inequality

4 Putting it all together
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Discrete Gaussian Free Fields

Warmup: Gaussian free field (GFF) on locally finite graph G = (V , E ):
Fix finite Λ ⊆ V , e.g. [–L, . . . , L]d ⊆ Zd . Set ϕ(v) = 0 for all v /∈ Λ.

GFF is the random function ϕ : V → R with density:

dµG ,Λ,GFF (ϕ) =
1

ZG ,Λ,GFF
exp

(
–

∑
e={v ,v ′}∈E

1
2
|ϕ(v)–ϕ(v ′)|2

) ∏
v∈Λ

dϕ(v)

=
1

ZG ,Λ,GFF
exp

(
–
∑
e∈E

1
2
· |∇ϕ(e)|2

) ∏
v∈Λ

dϕ(v).

Models fluctuations of random interfaces.
Lots of probabilistic interest, notably on Z2 (extreme values, LQG).
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Discrete Gaussian Free Fields

Picture of GFF by Sam Watson. Here Λ = [–L, . . . , L]2 ⊆ Z2.
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Discrete Gaussian Free Fields and Electrical Networks

Well-known link between GFF and electrical networks:
Let Reff (·) be effective resistance on G . Then

EµG ,Λ,GFF [ϕ(v)2] = Reff (v ↔ ∂Λ).

More generally, E[(ϕ(v) – ϕ(w))2] = Reff (v ↔ w).
Reff (v ↔ ∞) < ∞ iff simple random walk on G is transient.

Definition of effective resistance: the energy of f : E (G ) → R is

E(f ) =
∑
e∈E

f (e)2.

Reff (v ↔ w) is the minimum energy of any v → w unit flow.
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Ginzburg–Landau Random Surfaces

More general Ginzburg–Landau surfaces use non-quadratic interactions:

dµG ,Λ,U(ϕ) ≡ 1
ZG ,Λ,U

exp
(

–
∑
e∈E

U(∇ϕ(e))
) ∏

v∈Λ

dϕ(v).

We always assume U : R → R is even, i.e. U(x) = U(–x).

First rigorous study in [Brascamp-Lieb-Lebowitz 1975].
Names: “Ginzburg–Landau”, “∇ϕ”, “anharmonic crystal”.
Dynamics, large deviations, fluctuations, Z-valued analogs,...
[Funaki-Spohn 97, Naddaf-Spencer 97, Deuschel-Giacomin-Ioffe 00,
Sheffield 03, Miller 11, Armstrong-Dario 22, Armstrong-Wu 23...].
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Localization
We will consider the question of localization.

Question
Are fluctuations of ϕ(v0) stochastically bounded on large domains Λ ↑ V ?
If so, we say the model is localized. Otherwise delocalized.

Localization implies existence of infinite volume Gibbs measures.
One can even take this as the definition of localization.

GFF on Zd localizes iff d ≥ 3.
Equivalent to transience/recurrence since

EµG ,Λ,GFF [ϕ(v)2] = Reff (v ↔ ∂Λ).

On [–L, . . . , L]2 ⊆ Z2, one has E[ϕ(⃗0)2] ≈ log L.

Conjecture of [Brascamp-Lieb-Lebowitz 1975]: localization is
determined by the geometry of G , not the potential U.

Proved delocalization for very general U ∈ C2(R) on Z2.
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Localization of Ginzburg–Landau Random Surfaces

Localization is known for various U (often focused on lattices):
Strongly convex potentials with inf

x∈R
U ′′(x) ≥ c > 0.

µG ,Λ,U is dominated by GFF [Brascamp-Lieb-Lebowitz 75].

U(x) = |x | using infrared bounds [Bricmont-Fontaine-Lebowitz 82].
Mildly non-convex U via renormalization
[Cotar-Deuschel-Muller 09 & 12, ABKM 16 & 19, Hilger 16 & 20].

e–U(x) is a mixture of centered Gaussians (will explain soon)
[Biskup-Kotecky 07, Biskup-Spohn 11, Brydges-Spencer 12, Ye 19,...].
[Magazinov-Peled 22]: convex U with U ′′(x) > 0 for a.e. x .

Still open for Hammock potential U(x) = ∞ · 1|x |>1. This gives a
uniformly random 1-Lipschitz ϕ : V → R.
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Main Result: Localization for Monotone Potentials

We prove localization for monotone potentials.

Definition ((α, ε)-monotonicity)

U is (α, ε)-monotone if it is even, increasing on R+, and
U ′(x) ≥ min

(
εx , 1+α

x

)
for all points of differentiability x ≥ 0.

Theorem (Localization for (α, ε)-monotone U)

Let G be transient, and U be (α, ε)-monotone for α > 2. Then
PµG ,Λ,U [|ϕ(v0)| ≥ t] ≤ O(t–α) uniformly in Λ ⊆ V , for any v0 ∈ V .

Proof will be based on unimodality of µG ,Λ,U .
Ue can depend on edge e, as long as (α, ε) are uniform.

If G is transient and transitive, ϕ(v0) is tight even for α = ε.
≈ minimal condition for

∫
R e–U(x)dx < ∞ so ZG ,Λ,U < ∞.
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Extreme Values of the Field

These bounds are often sharp enough to understand maxv∈Λ |ϕ(v)|.

Theorem (Extreme Values from Polynomial Bounds)

Let U be (α, ε)-monotone with supx≥1 |U(x) – (1 + α) log x | < ∞ and
α > 2. As Λ ⊆ Zd varies for d ≥ 3, the laws of

|Λ|–
1

2dα max
v∈Λ

|ϕ(v)|

are tight in (0,∞), i.e. stochastically bounded away from 0 and ∞.

Lower bound: condition outside a large independent set I ⊆ Λ.
Upper bound: Markov with extra tricks to get 2dα in the exponent.
(Split Zd into 2d transient subgraphs containing the vertex v ...)
Similar condition for stretched exponential tails.

Monotonicity condition: U ′(x) ≥ min
(

εx , εxβ–1
)
, for β ∈ (0, 2].
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General Statement without Graphs

The graph structure is irrelevant in the main result!

Let U be (α, ε)-monotone for α > 2, and ℓ1, . . . , ℓj : Rd → R be linear.

Choose ϕ, ϕ̃ ∈ Rd from densities:

ϕ ∼ exp
( j∑

i=1

–U(ℓi (ϕ))
)
dϕ/Z

ℓ⃗,U ,

ϕ̃ ∼ exp
( j∑

i=1

–ℓi (ϕ̃)2
)
dϕ̃/Z

ℓ⃗,GFF .

Fix any other linear function ℓ∗ : Rd → R. Then ℓ∗(ϕ) is bounded on
the same scale as the centered Gaussian ℓ∗(ϕ̃), with α-power tails.

Recovering GFF/Ginzburg-Landau: set ℓe(ϕ) = ϕ(v) – ϕ(v ′).
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Preview of the Proof

The proof has two core components:

1 Handle the case that U = V takes the form:

e–V (x) =
∫ ∞

0

e–x2/2ξ
2

ξ
√

2π
dρ(ξ).

Each potential is a mixture of centered Gaussians.
The overall model will be a mixture of Gaussian processes, e.g. GFFs
with edge weights [Biskup-Kotecky 07].
[Biskup-Spohn 11]: can have phase coexistence ≈ non-concentration.

2 Reduce to this case using the FKG-Gaussian correlation inequality.
Amounts to domination by mixtures of centered Gaussians.

Dominating Gaussian mixtures must have special structure.
Perfectly suited for products of 1-dimensional functions.
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Royen’s Gaussian Correlation Inequality

Theorem (Royen 2014)

Let γ be a centered Gaussian measure on Rd , and K1, K2 ⊆ Rd

symmetric convex sets (i.e. Ki = –Ki ). Then 1K1 and 1K2 have
non-negative correlation under γ, i.e.

γ(K1 ∩ K2) ≥ γ(K1)γ(K2).

M. Sellke 17 / 44



The Gaussian Correlation Inequality (GCI)

Theorem (Royen 2014)

For γ centered Gaussian on Rd , and K1, K2 ⊆ Rd symmetric convex sets:

γ(K1 ∩ K2) ≥ γ(K1)γ(K2).

History (see 2017 Quanta article):
Conjectured by [Dunnet-Sobel 55], [Gupta-Eaton-Perlman-Savage-Sobel 72].
[Khatri 67, Sidak 67, Pitts 77, Schechtman-Schlumprecht-Zinn 98, Hargé 99]:
special cases such as R2.
[Royen 2014]: amazing solution. Initially escapes attention.
[Latała-Matlak 2015]: exposition of Royen’s proof

Proof idea: for x , y i .i .d .∼ γ, equivalent to

P[x ∈ K1 ∧ x ∈ K2] ≥ P[x ∈ K1, y ∈ K2].

Royen showed f (t) = P[x ∈ K1 ∧
√

1 – tx +
√

ty ∈ K2] is decreasing.
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Symmetric Quasi-Concave Functions

Definition

f : RN → R is symmetric quasi-concave (SQC) if:

f (x) = f (–x) for all x ∈ RN .
All super-level sets {x ∈ RN : f (x) ≥ λ} are convex.

M. Sellke 19 / 44



GCI Yields Confinement

GCI: if K1, K2 ⊆ Rd are symmetric convex, then

γ(K1 ∩ K2) ≥ γ(K1)γ(K2).

If K1, . . . , Km+1 ⊆ Rd are symmetric convex:

γ(K1 ∩ · · · ∩ Km+1) ≥ γ(K1 ∩ · · · ∩ Km) · γ(Km+1),

By level sets, if f1, . . . , fm+1 : Rd → R+ are symmetric quasi-concave,

Eγ [f1f2 . . . fm+1] ≥ Eγ [f1f2 . . . fm] · Eγ [fm+1].

(Products of SQC functions need not be SQC, hence the middle step.)
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GCI Yields Confinement

If f1, . . . , fm+1 : Rd → R+ are symmetric quasi-concave,

Eγ [f1f2 . . . fm+1] ≥ Eγ [f1f2 . . . fm] · Eγ [fm+1].

Suppose γ is centered Gaussian and dν

dγ
= f1f2 . . . fm is a product of SQC

functions. Then

ν(K ) = Eγ

[
dν

dγ
· 1K

]
GCI
≥ Eγ

[
dν

dγ

]
· γ(K ) = γ(K )

for symmetric convex K .

This is a form of Gaussian domination. We say ν ⪯con γ.

Definition
ν ⪯con γ if γ(K ) ≤ ν(K ) for all symmetric convex sets K .
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Application: an Easier Case of Localization

Consequence: localization on all transient G if U ′(x) ≥ εx for all x ≥ 0.

Why? Domination by rescaled GFF γε with potential Uε(x) = εx2/2.

The Radon–Nikodym derivative is a product:

dµG ,Λ,U
dγε

∝
∏

e∈E(G)

W (∇ϕ(e)), with W (x) = e–U(x)+Uε(x).

Since U ′ ≥ U ′
ε = εx , by assumption we find that W is SQC!

Conclusion: µG ,Λ,U ⪯con γε. Localization on all transient G .

This method requires that U(x) ≥ Ω(x2). µ must have subgaussian tails
to be dominated by a single Gaussian.
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GCI For Gaussian Mixtures
For heavy-tailed distributions, we cannot hope for Gaussian domination.

Does GCI extend to mixtures of centered Gaussians? If so, we could use
them as the dominating measures and have more flexibility.

No, µ(K1 ∩ K2) ≥ µ(K1)µ(K2) is a non-linear condition in µ.
Counterexample for two gaussians in R2:
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GCI For Gaussian Mixtures

If the Gaussians have comparable covariance, GCI extends!!

Theorem

Let Σ1 ⪰PSD Σ2 ⪰PSD 0 be symmetric matrices. Let dγ1(x) ∝ e–⟨x ,Σ1x⟩

and dγ2(x) ∝ e–⟨x ,Σ2x⟩. Then GCI holds for µ = pγ1 + (1 – p)γ2:

µ(K ∩ K ′) ≥ µ(K )µ(K ′)

for any symmetric convex sets K , K ′ and 0 ≤ p ≤ 1.

M. Sellke 25 / 44



GCI For Gaussian Mixtures

Theorem

Let Σ1 ⪰PSD Σ2 ⪰PSD 0 and dγ1(x) ∝ e–⟨x ,Σ1x⟩ and dγ2(x) ∝ e–⟨x ,Σ2x⟩.
Then µ(K ∩ K ′) ≥ µ(K )µ(K ′) for µ = pγ1 + (1 – p)γ2.

Let dµ̃(x) ∝ 1Kdµ(x). We will show µ̃(K ′) ≥ µ(K ′).
µ̃ = qγ̃1 + (1 – q)γ̃2, where dγ̃i (x) ∝ 1Kdγi (x) for i ∈ {1, 2}.
Can show γ1(K ) ≥ γ2(K ) (by GCI or otherwise). Thus q ≥ p:

q(1 – p)
p(1 – q)

=
γ1(K )
γ2(K )

≥ 1.

Similarly γ1(K ′) ≥ γ2(K ′). Finish by combining.

µ̃(K ′) = qγ̃1(K ′) + (1 – q)γ̃2(K ′)
GCI
≥ qγ1(K ′) + (1 – q)γ2(K ′)

Rearr
≥ pγ1(K ′) + (1 – p)γ2(K ′) = µ(K ′).
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GCI For Totally Ordered Gaussian Mixtures

We can generalize further! Suppose:
1 µ = p1γ1 + · · · + pjγj , with totally ordered inverse covariances

Σ1 ⪰PSD Σ2 ⪰PSD · · · ⪰PSD Σj .
2 dµ̃(x) ∝ 1Kdµ(x) for symmetric convex K .

An analogous proof shows µ̃(K ′) ≥ µ(K ′) for any symmetric convex K ′:
µ̃ = q1γ̃1 + · · · + qj γ̃j .
We similarly get:

q1
p1

≥ q2
p2

≥ · · · ≥
qj
pj

,

γ1(K ′) ≥ γ2(K ′) ≥ · · · ≥ γj (K
′).

We need these two functions on {1, 2, . . . , j} to be positively correlated
with respect to the probability measure P[i ] = pi .

This is the rearrangement inequality, a special case of FKG.
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Log-Supermodular Gaussian Mixtures (LSGM)

Example (2 × 2 Lattice)

Let p1,1p2,2 ≥ p1,2p2,1. Suppose dγi ,j (x) ∝ e–⟨x ,Σi ,jx⟩ with:

Σ1,1 ⪰PSD Σ1,2, Σ2,1 ⪰PSD Σ2,2 ⪰PSD 0.

Then µ = p1,1γ1,1 + p1,2γ1,2 + p2,1γ2,1 + p2,2γ2,2 is an LSGM.

Definition (Log-Supermodular Gaussian Mixture)

An LSGM on Rn is a Gaussian mixture Γν,Σ =
∫

γξ dν(ξ). such that:

dν(x) = f (x)dx is log-supermodular on Rk
+:

f (ξ)f (ξ′) ≤ f (ξ ∧ ξ
′)f (ξ ∨ ξ

′), ∀ ξ, ξ
′ ∈ Rk

+.

dγξ(x) ∝ e–⟨x ,Σ(ξ)x⟩, for some Σ : Rk
+ → Sn

+.
Σ is order-reversing from ⪯coord to ⪯PSD.
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The FKG-Gaussian Correlation Inequality

Theorem (FKG-GCI)

For any LSGM Γν,Σ and symmetric convex K1, K2:
Γν,Σ(K1 ∩ K2) ≥ Γν,Σ(K1)Γν,Σ(K2).

Proof: One now needs increasing functions to be positively correlated
w.r.t. the log-supermodular ν. This is the statement of FKG. □

Corollary (Domination by LSGM Gaussian Mixtures)

For any LSGM Γν,Σ, suppose for symmetric quasi-concave f1, . . . , fm:

dΓ̃(x) = f1(x)f2(x) . . . fm(x) dΓν,Σ(x).

Then Γ̃ ⪯con Γν,Σ, i.e. Γ̃(K ) ≥ Γν,Σ(K ) for all symmetric convex K.

Proof: Exactly the same level sets argument as from ordinary GCI. □

For Ginzburg-Landau, it remains to express µG ,Λ,U as Γ̃ above.
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Aside: Avoiding the Full Power of GCI
Although GCI is quite elegant, the proof is miraculous and took decades
to find. For the purposes of this talk, it can be bypassed.

“Slab GCI” (Sidak 68): let K , K ′ be symmetric convex sets with

K = {v : |⟨v , x⟩| ≤ C}

a symmetric slab. Then for centered Gaussian γ,

γ(K ∩ K ′) ≥ γ(K )γ(K ′).

Proof idea: γ|K is strongly log-concave, so its projection onto x is too. □

Instead of ⪯con, one may consider the weaker relation

ν ⪯slab µ

if ν(K ) ≥ µ(K ) for all symmetric slabs K . Then slab GCI yields a
slab-FKG-GCI inequality. This will recover all our localization results,
since they concern 1-dimensional projections of ϕ.
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Plan for the Talk

1 Ginzburg–Landau Surfaces and Main Results

2 Confinement from the Gaussian Correlation Inequality

3 The FKG-Gaussian Correlation Inequality

4 Putting it all together
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Log-Supermodular Gaussian Mixtures from Ginzburg-Landau

Dominating LSGMs will be µG ,Λ,V where V takes the form:

e–V (x) =
∫ ∞

0

e–x2/2ξ
2

ξ
√

2π
dρ(ξ).

The Gibbs measure is a mixture of GFFs with random resistances ξe .

dµ
G ,⃗ξ,GFF

(ϕ) =
1

ZG ,GFF
exp

(
–
∑
e∈E

1
2ξe2 · |∇ϕ(e)|2

) ∏
v∈V

dϕ(v).

Encoding: inverse covariance Σ(⃗ξ) given by〈
ϕ, Σ(⃗ξ)ϕ

〉
=

∑
e∈E(G)

(ϕ(v) – ϕ(v ′))2/ξe
2.

Clearly Σ is order-reversing from ⪯coord to ⪯PSD .
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Log-Supermodular Gaussian Mixtures from Ginzburg-Landau

Potential e–V (x) =
∫∞
0

e–x2/2ξ
2

ξ
√

2π
dρ(ξ). Encoding: inverse covariance

〈
ϕ, Σ(⃗ξ)ϕ

〉
=

∑
e∈E(G)

(ϕ(v) – ϕ(v ′))2/ξe
2.

The Ginzburg-Landau measure is a mixture of these GFFs:

µG ,Λ,V =
∫

µ
G ,⃗ξ,GFF

dν(⃗ξ).

Mixing measure dν(⃗ξ) is not a product. It gains a factor det(Σ(ξ))–1/2.
Elementary fact: if A, B , C ⪰PSD 0, then

det(A) det(A + B + C ) ≤ det(A + B) det(A + C ).

This yields log-supermodularity, since Σ(⃗ξ) =
∑
e∈E

F (ξe) is additive.
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Dominating Monotone Potentials by Gaussian Mixtures

If U ′(x) ≥ V ′(x) on R+, the Radon–Nikodym derivative

dµG ,Λ,U
dµG ,Λ,V

∝
∏
e∈E

e–U(∇ϕ(e))+V (∇ϕ(e))

is a product of symmetric quasi-concave functions.

By FKG-GCI,

µG ,Λ,U ⪯con µG ,Λ,V .

Further, µG ,Λ,V is dominated by the “naive product” LSGM:

µG ,Λ,V ⪯con

∫
µ

G ,⃗ξ,GFF

∏
e∈E

dρ(ξe).

Indeed the presence of G\{e} only makes ξe smaller, so one gets
stochastic domination of ξ⃗ by

∏
e∈E ρ(ξe). This reduces localization

to studying GFFs with IID edge resistances.
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Dominating Monotone Potentials by Gaussian Mixtures

Each monotonicity condition on U corresponds to an explicit V = V (ρ).

Lemma
There exist potentials V (ρ) in centered Gaussian mixture form such that:

1 V ′(x) ≤ min
(

εx , 1+ε
x

)
, ∀x ≥ 0.

2 V ′(x) ≤ min
(
εx , 1+α

x
)

and ρ([t,∞)) ≤ O(t–α), ∀t ≥ 0.

3 V ′(x) ≤ min
(
εx , εxβ–1) and ρ([t,∞)) ≤ e–Ω(tβ), ∀t ≥ 0.

In each case, U ′ ≥ V ′ if U is correspondingly monotone.

Proof Idea: Explicit construction. Match tail of ρ to the decay rate.
1 ρ([t,∞)) ≍ t–ε.
2 ρ([t,∞)) ≍ t–α.

3 ρ([t,∞)) ≍ e–tβ

. □
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Proof of Main Localization Result

Theorem
Fix α > 2 and transient G. Let U be (α, ε)-monotone. Then

PµG ,Λ,U [|ϕ(v)| ≥ t] ≤ O(t–α)

holds uniformly in Λ for any transient G.

We’ll compare to GFF with IID ξe ∼ ρ, with ρ([t,∞)) ≤ O(t–α).

Proof: The variance of ϕ(v) after ξ⃗-weighting is a weighted effective
resistance R(ξ)

eff (v ↔ ∞). So we must bound the tail of R(ξ)
eff (v ↔ ∞).

Consider the energy-minimizing unit flow v → ∞ in the unweighted G .
Its weighted energy is random and upper bounds R(ξ)

eff (v ↔ ∞). This is∑
e aeξ2

e , where
∑

e ae = Reff (v ↔ ∞) < ∞. Now use e.g. Jensen. □
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Tightness from ε-Monotonicity

Theorem
Suppose U is (ε, ε)-monotone, and p-bond percolation on G has transient
infinite cluster for p ∈ [1 – δ, 1]. Then Law(ϕ(v)) is tight as Λ ↑ ∞.

(The condition holds for all transient transitive G by [Hutchcroft 23].)

Compare to GFF with IID edge resistances ξe , now with no tail bounds.

Proof: take ξe ∼ ρ independent. Consider edges with ξe ≤ M, where

ρ([0, M]) ≥ 1 – δ.

By definition, these edges form a transient infinite cluster C.

Let w ∈ C be the closest point to v . Then both R(ξ)
eff (v ↔ w) and

R(ξ)
eff (w ↔ ∂Λ) are tight. Hence R(ξ)

eff (v ↔ ∂Λ) is also tight. □
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A Remark on Monotonicity
We used that if U ′(x) ≥ V ′(x) for all x ≥ 0, then

µG ,Λ,U ⪯con µG ,Λ,V .

This holds edge-by-edge. Hence if βe ≥ 1 for each e ∈ E (G ), then

µG ,Λ,βeV ⪯con µG ,Λ,V .

I.e. for Gaussian-mixture potentials V , “stiffening the springs” improves
confinement. [BLL75] gives a counterexample for

V (x) = x2 + εx4.
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Plan for the Talk

1 Ginzburg–Landau Surfaces and Main Results

2 Confinement from the Gaussian Correlation Inequality

3 The FKG-Gaussian Correlation Inequality

4 Putting it all together

5 Another Application: the Fröhlich Polaron
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The Fröhlich Polaron

Let dQ(B) be the law of 3-dimensional Brownian motion.

Given coupling strength α ≫ 1 and time-horizon T ≫ α, the Polaron
path measure Q̂α,T is the reweighted law on paths B : [0, T ] → R3:

dQ̂α,T (B) ≡ 1
Zα,T

exp

α

T∫
0

T∫
0

e–|t–s|

∥Bt – Bs∥
dt ds

 dQ(B).

Obtained by Feynman’s path integral applied to a quantum operator
(modeling an electron in crystal). The “effective mass” is

meff (α) = lim
T→∞

3T

EQ̂α,T ∥BT ∥2

?
≈ C∗α

4.

[Fröhlich 37, Landau-Pekar 48, Feynman 55, Lieb 77, Donsker-Varadhan 83, Spohn 87, Lieb-Thomas 97, Lieb-

Seiringer 17, Mukherjee-Varadhan 18 & 20, Dybalski-Spohn 20, Betz-Polzer 21 & 22, Brooks-Seiringer 22, S 22 ]
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The Fröhlich Polaron

dQ̂α,T (B) ≡ 1
Zα,T

exp

α

T∫
0

T∫
0

e–|t–s|

∥Bt – Bs∥
dt ds

 dQ(B).

Wiener measure Q is Gaussian. B[0,T ] 7→ e–|t–s|

∥Bt–Bs∥ is SQC for any (s, t).

In fact, the Coulomb interaction is a mixture of centered Gaussians:

1
x

=
√

2/π

∫ ∞

0
e–u2x2/2du.

Hence Q̂α,T is an (infinite dimensional) LSGM and obeys GCI.

Now the mixture comes inside the exponent. The resulting Gaussian
mixture representation of Q̂α,T is indexed by a deformed Poisson process
on weighted time-intervals ([s, t]; u).
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The Fröhlich Polaron

Theorem (Mukherjee-Varadhan 20)

The Polaron path measure Q̂α,T has a mixture-of-Gaussian representation

Q̂α,T (B[0,T ]) =
∫

Qξ(B[0,T ]) Θ̂α,T (dξ).

Here ξ = {([si , ti ], ui )}n
i=1 is a point process of weighted intervals, and

dQξ(B[0,T ]) ∝ e–
∑n

i=1 u2
i ∥B(ti )–B(si )∥2

dQ(B[0,T ]).

Ergodic limit (Θ̂α,T , Q̂α,T ) → (Θ̂α,∞, Q̂α,∞) as T → ∞.

Functional CLT for Q̂α,∞ [Mukherjee-Varadhan 20, Betz-Polzer 21].
Rigorizes path integral connection [Spohn 87, Dybalski-Spohn 20].

Applied to show meff (α) ≳ α2/5 [Betz-Polzer 22].

[S 22,Brooks-Seiringer 22]: α
4

C log(α)6 ≤ meff (α) ≤ C∗α4 + α4–ε.
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The Fröhlich Polaron

dQ̂α,T (B) ≡ 1
Zα,T

exp
(

α

T∫
0

T∫
0

e–|t–s|

∥Bt–Bs∥ dt ds
)
dQ(B).

Theorem (Bazaes-Mukherjee-S-Varadhan 24; predicted in Landau-Pekar 1948)

If T 0.1 ≥ α ≫ 1, then EQ̂α,T ∥BT ∥2 ≤ O(Tα–4). I.e. meff (α) ≥ Ω(α4).

Here FKG-GCI is “technical glue” for monotonicity and local-to-global
arguments. Some direct consequences:

α 7→ meff (α) is strictly increasing.

EQ̂α,T1+T2∥BT1+T2∥
2 ≤ EQ̂α,T1∥BT1∥

2 + EQ̂α,T2∥BT2∥
2.

Universality: can replace 1/x by “more attractive” potentials.

Idea: find many “interval chains” [s1, t1], [s2, t2], . . . with tk ≈ sk+1.
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Conclusion

The FKG-Gaussian correlation inequality is a general tool to prove
confinement of high-dimensional unimodal probability distributions.

Yields domination by certain mixtures of centered Gaussians.
Well suited for products of symmetric unimodal densities.
Sharp bounds for Ginzburg–Landau and Polaron models:

dµG ,Λ,U(ϕ) ≡ 1
ZG ,Λ,U

exp
(

–
∑

e∈E(G)

U
(
|∇ϕ(e)|

)) ∏
v∈Λ

dϕ(v),

dQ̂α,T (B) ≡ 1
Zα,T

exp

α

T∫
0

T∫
0

e–|t–s|

∥Bt – Bs∥
dt ds

 dQ(B).

Anything similar without origin-symmetry? E.g. non-zero tilts.
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