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What Am I Talking About Today?

Let dP(B) be the law of 3-dimensional Brownian motion, with B(0) = (0, 0, 0).

Given a coupling strength α and time-horizon T , the Polaron path measure P̂α,T is the
reweighted law on paths B : [0, T ] → R3:

dP̂α,T (B) ≡ 1
Zα,T

exp

α

T∫
0

T∫
0

e–|t–s|V (∥Bt – Bs∥) dt ds

 dP(B),

V (r) ≡ 1/r .

I will explain a confinement result upper bounding EP̂α,T ∥BT ∥2.

Physically, this means we lower bound the effective mass

meff(α) ≡ EP̂α,T

[
3T

∥BT ∥2

]
.
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Plan

1 Introduction to the Polaron
2 Royen’s Gaussian Correlation inequality
3 Lower bounds on the effective mass
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Where does it come from?

Start from a quantum mechanical Hamiltonian, an operator on L2(R3) ⊗F(L2(R3)):

H = –∇2
x/2 +

∫
R3

a†kak dk +
√

α

∫
R3

e–ikx

|k |
a†k dk +

√
α

∫
R3

e ikx

|k |
ak dk .

Link to Brownian motion comes from Feynman’s path integral [Feynman 55].

H commutes with momentum. Each momentum P ∈ R3 has a ground state energy Eα(|P |).
[Gross 72]: Eα(P) ≥ Eα(0).
[Polzer 22]: Eα(P) is increasing in P , and strictly so at 0.
Effective mass was originally defined by:

1
2meff(α)

= lim
P→0

Eα(P) – Eα(0)
P2 .
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Progress on the Effective Mass

Asymptotics of Eα(0) determined by [Donsker-Varadhan 83] using large deviations. Effective
mass has required more time.

[Landau-Pekar 1948]: predicted meff(α) ≈ C∗α4.
[Lieb-Seiringer 17]: limα→∞ meff(α) = ∞.
[Spohn 87, Dybalski-Spohn 20]: rigorous path integral definition of meff, assuming a
functional CLT for P̂α,T .
[Mukherjee-Varadhan 21, Betz-Polzer 22a]: confirmation of functional CLT.
[Betz-Polzer 22b]: meff(α) ≥ cα2/5.
[Brooks-Seiringer 22 via Polzer 22]: meff(α) ≤ C∗α4 + O(α4–ε).

Theorem (S 22)

As α → ∞, one has meff(α) ≥ cα
4

(log α)6 .

Proved using ideas from high-dimensional geometry. The bounds now almost match.
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Gaussian Domination for Concave Potentials

Given a centered Gaussian measure µ on a Banach space X , consider the weighting

dµW (x) ∝ eW (x) dµ(x).

Many measures (e.g. Polaron) take this form.

If W is concave:
Ex∼µW [xx⊤] ⪯ Ex∼µ[xx⊤] (covariance shrinks).
µW inherits Poincare/Log-Sobolev inequalities from µW [Bakry-Emery 85]:
The optimal transport map µ → µW is 1-Lipschitz [Caffarelli 00].

One may say µW is dominated by µ.

Moreover, suppose W (x) = Q(x) + W̃ (x), where Q, W̃ are concave and Q is quadratic.
Then µW is dominated by dµQ ∝ eQ(x)dµ(x), a “more confined” Gaussian than µ.
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Non-Convexity of the Coulomb Interaction

Unfortunately this theory does not apply to the Polaron. Recall:

dP̂α,T (B) ≡ 1
Zα,T

exp

α

T∫
0

T∫
0

e–|t–s|V (∥Bt – Bs∥) dt ds

 dP(B),

V (r) ≡ 1/r .

V (r) is not concave at all! Integration over [0, T ] × [0, T ] does not save us.

However the interaction term makes the walk self-attractive. We certainly expect P̂α,T to be
“dominated” by Brownian motion.

Formalizing this requires a more flexible notion of Gaussian domination.
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Symmetric Quasi-Concave Functions

Definition
W : X → R is symmetric quasi-concave if:

W (x) = W (–x).
All super-level sets Sλ = {x ∈ X : W (x) ≥ λ} are convex.

Examples for X = R:
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Key Tool: Royen’s Gaussian Correlation Inequality

Theorem (Royen 2014)

Let µ ∈ P(X ) be a centered Gaussian measure, and K1, K2 ⊆ X symmetric convex sets (i.e.
Ki = –Ki ). Then 1K1 and 1K2 have non-negative correlation under µ, i.e.

µ(K1 ∩ K2) ≥ µ(K1)µ(K2).
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Key Tool: Royen’s Gaussian Correlation Inequality

Theorem (Royen 2014)

For µ ∈ P(X ) a centered Gaussian measure and K1, K2 ⊆ X symmetric convex sets:

µ(K1 ∩ K2) ≥ µ(K1)µ(K2).

History (see 2017 Quanta article):
Conjectured by [Dunnet-Sobel 55], [Gupta-Eaton-Perlman-Savage-Sobel 72].
[Khatri 67, Sidak 67, Pitts 77, Schechtman-Schlumprecht-Zinn 98, Hargé 99]:
special cases such as X = R2.
[Royen 2014]: brilliant solution (while brushing teeth!). Initially escapes attention.
[Latała-Matlak 2015]: exposition of Royen’s proof

Proof idea: for x , y i .i .d .∼ µ, equivalent to

P[x ∈ K1 ∧ x ∈ K2] ≥ P[x ∈ K1, y ∈ K2].

Royen showed f (t) = P[x ∈ K1 ∧
√

1 – tx +
√

ty ∈ K2] is decreasing on t ∈ [0, 1].
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Interpreting GCI as Gaussian Domination

GCI: if K1, K2 ⊆ X are symmetric convex, then

µ(K1 ∩ K2) ≥ µ(K1)µ(K2).

By induction, if K1, . . . , Kn ⊆ X are symmetric convex:

µ(K1 ∩ · · · ∩ Kn) ≥ µ(K1 ∩ · · · ∩ Km) · µ(Km+1 ∩ · · · ∩ Kn),

By Fubini, if f1, . . . , fn : X → R+ are symmetric quasi-concave,

Eµ[f1f2 . . . fn] ≥ Eµ[f1f2 . . . fm] · Eµ[fm+1fm+2 . . . fn].

Let’s say ν ⪯ µ if dν

dµ
is a limit of products of SQC functions. If µ is centered Gaussian:

ν(K ) = Eµ

[
dν

dµ
· 1K

]
GCI
≥ Eµ

[
dν

dµ

]
· µ(K ) = µ(K )

for any symmetric convex set K . This is a type of Gaussian domination.
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First Application to the Polaron

ν ⪯ µ if dν

dµ
is a limit of products of SQC functions. If µ is centered Gaussian:

1 ν(K ) ≥ µ(K ) for symmetric convex K , by GCI.
2 By Fubini again, Eν[f ] ≤ Eµ[f ] for symmetric convex f .
3 In particular, this suffices to show variance shrinkage:

Eν[∥x∥2] ≤ Eµ[∥x∥2].

4 Poincare, Log-Sobolev inequalities.

Immediate Polaron consequence: since P̂α,T (B) ⪯ P, we have meff(α) ≥ 1 via:

EP̂α,T ∥BT ∥2 ≤ EPα,T ∥BT ∥2 = 3T .

Interaction terms do not increase diffusivity! Tightness for functional CLT in [Betz-Polzer 22].

More refined uses of GCI will show interactions strictly decrease diffusivity.
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Plan

1 Introduction to the Polaron
2 Royen’s Gaussian Correlation inequality
3 Lower bounds on the effective mass

Initial attempt:
√

α

logC T

Improvement: α2

logC T

T -independence: α2

logC
α

Final step: α4

logC
α
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Attempt at Improvement
So far, we have only used that V (r) = 1

r is symmetric and monotone. However:
Interaction decays exponentially in time, so only |t – s| ≤ 1 should be needed.
If |t – s| ≤ 1, we have P[∥Bt – Bs∥ ≤ C ] ≥ 0.999 for Brownian motion.
V is more monotone on small distances. The function

r 7→ 1
|r |

+
r2

2C3

is symmetric and quasi-concave on r ∈ [–C , C ].

M. Sellke 15 / 27



Attempt at Improvement

r 7→ 1
|r | + r2

2C3 is symmetric and quasi-concave on |r | ≤ C .

Fixing t, s with |t – s| ≤ 1, suppose we magically KNEW ∥Bt – Bs∥ ≤ C . Then

Wt,s =
e|t–s|

∥Bt – Bs∥
+

∥Bt – Bs∥2

2eC3

would behave as a symmetric quasi-concave function.

This would imply an improved Gaussian domination P̂α,T ⪯ P̃α,T , where

P̃α,T ≡ 1

Z̃α,T
exp

α

T∫
0

T∫
0

1{|t – s| ≤ 1} · –∥Bt – Bs∥2

10C3 dt ds

 dP(B).

Note that P̃α,T is still centered Gaussian, but is more confined than Brownian motion.

But we do not know that ∥Bt – Bs∥ ≤ C . And we need it for many (t, s) simultaneously...
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Rigorous Argument Losing log(T ) Factors

The function

r 7→
(

1
|r |

+
r2

2C3

)
· 1|r |≤C

is symmetric quasi-concave on all of R.

Define the set of paths on [0, T ] with locally C -bounded increments:

K (T , C ) ≡ {B[0,T ] : sup
|t–s|≤1

∥Bt – Bs∥ ≤ C}.

P̃α,T thus dominates the truncated Polaron measure: P̂α,T
∣∣
K(T ,C) ⪯ P̃α,T .

Using GCI, one can show the truncation is benign for C ≍
√

log T :∥∥∥P̂α,T – P̂α,T
∣∣
K(T ,C)

∥∥∥
TV

≤ 1
α5T 5 .
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Where Do We Stand?

We now have a close approximation

P̂α,T
∣∣
K(T ,C) ≈ P̂α,T

which is dominated for C ≍
√

log T via:

P̂α,T
∣∣
K(T ,C) ⪯ P̃α,T ∝ exp

α

T∫
0

T∫
0

1{|t – s| ≤ 1} · –∥Bt – Bs∥2

10C3 dt ds

 dP(B).

Some difficulties:
1 How much more confined is P̃α,T than Brownian motion??
2 We were forced to take C ≍

√
log T . (Serious)

The order of limits is T ≫ α ≫ 1, so log T is fatal.
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The order of limits is T ≫ α ≫ 1, so log T is fatal.
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Extra Gaussian Confinement, on the Back of an Envelope
The behavior of P̃α,T on t ∈ [i , i + 1] is

exp

 i+1∫
i

i+1∫
i

–α∥Bt – Bs∥2

10C3 dt ds

 dP(B).

For small ε, this is roughly

P

 i+1∫
i

i+1∫
i

∥Bt – Bs∥2 ≤ ε

 ≈ P

 i+1∫
i

i+1∫
i

∥Bt∥2 ≤ ε

 ≈ e–ε
–1

.

Indeed, B[i ,i+1] should be small ε–1 times for this to hold.

The contribution from value ε is roughly exp
(
– αε

C3 – 1
ε

)
. Maximized at ε ≍

√
C3/α.

Rigorous proof: diagonalize in a Fourier basis. In fact with high probability,

sup
t,s∈[i ,i+1]

∥Bt – Bs∥ ≲ 4
√

C3/α.
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Iterative Improvement
With high probability:

sup
t,s∈[i ,i+1]

∥Bt – Bs∥ ≲ 4
√

C3/α.

Recall from before:

V (r) =
1
r

is more monotone on small distances.
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Iterative Improvement: Stronger Confinement Near the Origin

Previously, we used quasi-concavity of

r 7→ 1
|r |

+
r2

2C3 , |r | ≤ R0 ≡ C .

With our new knowledge, we can use quasi-concavity of

r 7→ 1
|r |

+ Õ(α3/4)r2, |r | ≤ R1 ≡ Õ(α–1/4).

Iterating, supt,s∈[i ,i+1] ∥Bt – Bs∥ is bounded by R0 ≥ R1 ≥ . . . with

Rk+1 ≈ 4
√

R3
k/α.

This stabilizes at the much better R∗ = Õ(α–1). I.e. ∥Bi+1 – Bi∥2 ≤ Õ(α–2).
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From log T to log α Dependence

The order of limits is T ≫ α ≫ 1, so the log T factors are a serious problem.

To avoid this, the argument should apply on most, but not all intervals [i , i + 1].

Intuitively, we can take C ≍
√

log(α). The O(T/α10) “bad” intervals should contribute total
variance O(T/α10), which is fine.

But to use the Gaussian correlation inequality, we to control the full path measure all at once.
We cannot decompose

[0, T ] =
T–1⋃
i=0

[i , i + 1]

and recombine path behaviors arbitrarily. This is a serious problem!
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From log T to log α Dependence: Decomposition of Gaussian Measures

Let µ×2(2A) = µ(A) be the dilation of µ by a factor of 2.

Lemma
Let µ ∈ P(X ) be a centered Gaussian measure, and K a symmetric convex set with
µ(K ) ≥ 1 – δ. Then there exists a decomposition of µ into µgood, µbad with:

1 µ = (1 – δ) µgood + δ µbad.
2 µgood ⪯ µ.

3 µgood is supported inside 10K.

4 µbad ⪯ µ×2.

Application with δ ≤ α–10 and Brownian motion µi = P([i , i + 1]):
K = K ([i , i + 1], 10

√
log α) =

{
B[i ,i+1] : supi≤s,t≤i+1 ∥Bt – Bs∥ ≤ 10

√
log α

}
.

The main argument applies to µgood, via 3 .
The k-th level of recursion requires µgoodk to be defined.

Nothing terrible on the rare bad intervals, by 4 .
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From log T to log α Dependence: Decomposition of Gaussian Measures

The lemma gives identical decompositions of Brownian motion on each [i , i + 1]:

P([i , i + 1]) = (1 – α
–10)µgoodi + α

–10
µbadi .

Then we can represent the full Wiener measure as a product:

P([0, T ]) =
∑

γ∈{good,bad}T

w(γ)
T–1∏
i=0

µγi ,

w(γ) = (1 – α
–10)|γ

–1(good)|
α

–10|γ–1(bad)|.

Introducing the Polaron interactions gives a modified decomposition:

P̂α,T =
∑

γ∈{good,bad}T

ŵ(γ)P̂γ .

Using GCI, the new weight ŵ(γ) still concentrates on γ with mostly good components.

M. Sellke 24 / 27



From log T to log α Dependence: Decomposition of Gaussian Measures

The lemma gives identical decompositions of Brownian motion on each [i , i + 1]:

P([i , i + 1]) = (1 – α
–10)µgoodi + α

–10
µbadi .

Then we can represent the full Wiener measure as a product:

P([0, T ]) =
∑

γ∈{good,bad}T

w(γ)
T–1∏
i=0

µγi ,

w(γ) = (1 – α
–10)|γ

–1(good)|
α

–10|γ–1(bad)|.

Introducing the Polaron interactions gives a modified decomposition:

P̂α,T =
∑

γ∈{good,bad}T
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From α2 to α4, in One Picture
So far, we got ∥Bi+1 – Bi∥2 ≤ Õ(α–2). This gives meff(α) ≳ α2, but we want α4.

This bound is optimal for short-time fluctuations. We must think long term.

Heuristically, P̂α,T behaves roughly like Ornstein–Uhlenbeck on short time-scales:

dUt ≈ –αUt + dBt .
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From α2 to α4, in One Picture

Single-time fluctuations ∥Bi+1 – Bi∥2 ≍ α–2 are dominated by “noise”.

Interval averages B [i ,i+1] =
i+1∫
i

Bt dt oscillate less: ∥B [i ,i+1] – B [i+1,i+2]∥2 ≍ α–4.

The same holds for P̂α,T by another use of GCI.
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Conclusion

The Polaron path measure P̂α,T is a deformation of Brownian motion in R3:

dP̂α,T (B) ≡ 1
Zα,T

exp

α

T∫
0

T∫
0

e–|t–s|

∥Bt – Bs∥
dt ds

 dP(B).

Main result (valid in Rd for any d ≥ 3):

lim
T→∞

EP̂α,T

[
∥BT ∥2

T

]
≤ (log α)6

cα4 .

Equivalently, a lower bound on the Polaron’s effective mass: meff(α) ≥ cα
4

(log α)6 .

Together with [Brooks-Seiringer 22], this nearly resolves the prediction of [Landau-Pekar
1948] that meff(α) ≈ C∗α4.

This technique should have applications to other path measures, as we have been discussing
with Volker, Steffen and Tobias.
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