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Let dP(B) be the law of 3-dimensional Brownian motion, with B(0) = (0, 0, 0).



What Am | Talking About Today?

Let dP(B) be the law of 3-dimensional Brownian motion, with B(0) = (0, 0, 0).

Given a coupling strength a and time-horizon T, the Polaron path measure ]@a,T is the
reweighted law on paths B : [0, T] — R3:

T T
dPy, 7(B) = ZlTexp (a//efs V(||B¢ - Bs]) dt ds) dP(B),
o,
00

V(r)=1/r.
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What Am | Talking About Today?

Let dP(B) be the law of 3-dimensional Brownian motion, with B(0) = (0, 0, 0).

Given a coupling strength a and time-horizon T, the Polaron path measure ]@a,T is the
reweighted law on paths B : [0, T] — R3:

~ 1
dPOC,T(B) = 7 -
o,

T T
exp oc//e_'t_s'V(HBt—BsH)dt ds | dp(B),
00

V(r)=1/r.

| will explain a confinement result upper bounding EFe.7 B 12.

Physically, this means we lower bound the effective mass

B 3T
_ P
melx) = BT {\BTP}
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Plan

@ Introduction to the Polaron
@ Royen's Gaussian Correlation inequality

@ Lower bounds on the effective mass
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Where does it come from?

Start from a quantum mechanical Hamiltonian, an operator on L2(R3) ® F(L?(R3)):

:—V2/2+/ akakdk—l—f/ dk+\f/ |k|3kdk

@ Link to Brownian motion comes from Feynman'’s path integral [Feynman 55].
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Where does it come from?

Start from a quantum mechanical Hamiltonian, an operator on L?(R3) ®F(L2(R3)):

=—v§/2+/ akakdk+f/ dk+\ﬁ/ akdk

@ Link to Brownian motion comes from Feynman'’s path integral [Feynman 55].

H commutes with momentum. Each momentum P € R3 has a ground state energy Eq(|P|).
o [Gross 72]: Eq(P) > Eq(0).
o [Polzer 22]: Eq(P) is increasing in P, and strictly so at 0.

o Effective mass was originally defined by:
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Progress on the Effective Mass

Asymptotics of Ey(0) determined by [Donsker-Varadhan 83] using large deviations. Effective
mass has required more time.

o [Landau-Pekar 1948]: predicted
o [Lieb-Seiringer 17]: limg— 00 Megr(@t) = 0.

o [Spohn 87, Dybalski-Spohn 20]: rigorous path integral definition of meg, assuming a
functional CLT for Py 7.

@ [Mukherjee-Varadhan 21, Betz-Polzer 22a]: confirmation of functional CLT.
o [Betz-Polzer 22b]: myg(ar) > ca?/5.
o [Brooks-Seiringer 22 via Polzer 22]: myg(at) < Cio* + O(a*%).
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Progress on the Effective Mass

Asymptotics of Ey(0) determined by [Donsker-Varadhan 83] using large deviations. Effective
mass has required more time.

o [Landau-Pekar 1948]: predicted

o [Lieb-Seiringer 17]: limg— o0 meg(0) = 0.

o [Spohn 87, Dybalski-Spohn 20]: rigorous path integral definition of meg, assuming a
functional CLT for Py 7.

@ [Mukherjee-Varadhan 21, Betz-Polzer 22a]: confirmation of functional CLT.

o [Betz-Polzer 22b]: myg(ar) > ca?/5.

o [Brooks-Seiringer 22 via Polzer 22]: myg(at) < Cio* + O(a*%).

4
As oL — 00, one has mgg{ct) > (L

log )0 -

Proved using ideas from high-dimensional geometry. The bounds now almost match.
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Gaussian Domination for Concave Potentials

Given a centered Gaussian measure WL on a Banach space X, consider the weighting
iy (x) o 0 du(x).

Many measures (e.g. Polaron) take this form.
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Gaussian Domination for Concave Potentials

Given a centered Gaussian measure L on a Banach space X, consider the weighting
iy (x) o eV du(x).
Many measures (e.g. Polaron) take this form.

If W is concave:
o EXMW[xxT] < EX™[xx] (covariance shrinks).
@ Ly inherits Poincare/Log-Sobolev inequalities from Wy, [Bakry-Emery 85]:

@ The optimal transport map W — Wy is 1-Lipschitz [Caffarelli 00].
One may say Uy is dominated by p.
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Gaussian Domination for Concave Potentials

Given a centered Gaussian measure L on a Banach space X, consider the weighting
iy (x) o eV du(x).
Many measures (e.g. Polaron) take this form.

If W is concave:
o EXMW[xxT] < EX™[xx] (covariance shrinks).
@ Ly inherits Poincare/Log-Sobolev inequalities from Wy, [Bakry-Emery 85]:
@ The optimal transport map W — Wy is 1-Lipschitz [Caffarelli 00].

One may say Uy is dominated by p.

Moreover, suppose W(x) = Q(x) + VNV(X) where Q, W are concave and Q is quadratic.
@ Then pyy is dominated by dug o eQ(X)du(x), a “more confined” Gaussian than p.
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Non-Convexity of the Coulomb Interaction

Unfortunately this theory does not apply to the Polaron. Recall:

~ 1
dPOﬁ,T(B) = 7

T T
e oc//e_'t_5|V(||Bt—BsH)dt ds | dp(B),
a,
0 0

V(ir)=1/r.

V/(r) is not concave at alll Integration over [0, T] x [0, T] does not save us.
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Non-Convexity of the Coulomb Interaction

Unfortunately this theory does not apply to the Polaron. Recall:

~ 1
dPOﬁ,T(B) = 7 -
Q,

V(ir)=1/r.

T T
exp oc//e_'t_5|V(||Bt—BsH)dt ds | dp(B),
0 0

V/(r) is not concave at alll Integration over [0, T] x [0, T] does not save us.

However the interaction term makes the walk self-attractive. We certainly expect Py T to be
“dominated” by Brownian motion.

Formalizing this requires a more flexible notion of Gaussian domination.
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Symmetric Quasi-Concave Functions

Definition

W : X — R is symmetric quasi-concave if:

o W(x) = W(-x).
o All super-level sets S = {x € X : W(x) > A} are convex.
Examples for X = R:

| \
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Symmetric Quasi-Concave Functions

Definition

W : X — R is symmetric quasi-concave if:
o W(x) = W(-x).
o All super-level sets S = {x € X : W(x) > A} are convex.

More general setup: probability measures
duyy (x) oc V() du(x)

for W : X — R which is symmetric quasi-concave, or a sum/integral of such functions.
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Symmetric Quasi-Concave Functions

Definition

W : X — R is symmetric quasi-concave if:
o W(x) = W(-x).
o All super-level sets S = {x € X : W(x) > A} are convex.

More general setup: probability measures

duyy (x) oc V() du(x)

for W : X — R which is symmetric quasi-concave, or a sum/integral of such functions.

The Polaron measure does take this form:

T T Jt-s| T T
oe
W(B dtds://W B dtds.
[O T] // ”Bt_BSH t,S( [O,T])
00 00

The Gaussian correlation inequality is a perfect tool for such situations.
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Key Tool: Royen's Gaussian Correlation Inequality

Theorem (Royen 2014)

Let w € P(X) be a centered Gaussian measure, and K1, Ko C X' symmetric convex sets (i.e.
Ki ==K;). Then 1y, and 1y, have non-negative correlation under |, i.e.

K(K1 N K2) > W(K1)r(K2).

®o__ |
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Key Tool: Royen's Gaussian Correlation Inequality

Theorem (Royen 2014)

For n € P(X) a centered Gaussian measure and K1, Ko C X symmetric convex sets:

r(K1 N K2) > w(K1)(Kz2).

History (see 2017 Quanta article):
o Conjectured by [Dunnet-Sobel 55], [Gupta-Eaton-Perlman-Savage-Sobel 72].

e [Khatri 67, Sidak 67, Pitts 77, Schechtman-Schlumprecht-Zinn 98, Hargé 99]:
special cases such as X = R2.

e [Royen 2014]: brilliant solution (while brushing teeth!). Initially escapes attention.
o [Latata-Matlak 2015]: exposition of Royen's proof

Proof idea: for x,y i-id W, equivalent to
P[x € K1 Ax € K3] > P[x € K1,y € K3].

Royen showed f(t) = P[x € K; A V1-tx+/ty € Kp] is decreasing on t € [0, 1].
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GCl: if K1, Ko C X are symmetric convex, then

1(K1 N K2) > W(K1)(K2).



GCl: if K1, Ko C X are symmetric convex, then
H(K1 N K2) > W(K1)(K2).
By induction, if K1,..., K, € X are symmetric convex:

WKL N N Kn) = W(Ka O 0 Km) - (Kt 0 - 0 Kn),



Interpreting GCl as Gaussian Domination

GCl: if K1, Ko C X are symmetric convex, then

WK1 N K2) > w(K1)u(K2).

By induction, if K1,..., K, C X are symmetric convex:

M(Klﬂ...ﬁKn)Z“(Klﬂ...me).u(Km+1ﬂ...

By Fubini, if f1,..., fy: X — RT are symmetric quasi-concave,

Eu[flﬁfn] > Eu[flfz...fm] ~Eu[fm+1fm+2...

M. Sellke
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Interpreting GCl as Gaussian Domination

GCl: if K1, Ko C X are symmetric convex, then
WK1 N K2) > w(K1)u(K2).
By induction, if K1,..., K, C X are symmetric convex:
wKiN-NKy) >wKiN--NKm) - W(Kmge1 NN Kp),
By Fubini, if f1,..., fy: X — RT are symmetric quasi-concave,
EMAfh ... ] > EMAfh .. ;] EM g1 fman - - - fal.

Let's say v < W if j—l‘i is a limit of products of SQC functions. If W is centered Gaussian:

dv

GCl dv
> F* | — | -w(K) =p(K
> [ du] w(K) = u(K)
for any symmetric convex set K. This is a type of Gaussian domination.
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First Application to the Polaron

v uif g—:i is a limit of products of SQC functions. If i is centered Gaussian:
O v(K) > w(K) for symmetric convex K, by GCI.
@ By Fubini again, EV[f] < EM[f] for symmetric convex f.
@ |In particular, this suffices to show variance shrinkage:

EV[|xI|*] < EX[Ix)].

© Poincare_LogSobolev
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First Application to the Polaron

v uif g—:i is a limit of products of SQC functions. If i is centered Gaussian:
@ V(K) > u(K) for symmetric convex K, by GCl.
@ By Fubini again, EV[f] < EM[f] for symmetric convex f.

© In particular, this suffices to show variance shrinkage:

EV[JIxII%] < EM{IIx]1%)-
O Poi Log-Sobolev-i tios.
Immediate Polaron consequence: since ]/}\DO(,T(B) =< PP, we have mgg(at) > 1 via:
EFeT|Br|? < EFeT|B7|? = 3T.
Interaction terms do not increase diffusivity! Tightness for functional CLT in [Betz-Polzer 22].
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First Application to the Polaron

v uif g—:i is a limit of products of SQC functions. If i is centered Gaussian:
@ V(K) > u(K) for symmetric convex K, by GCl.
@ By Fubini again, EV[f] < EM[f] for symmetric convex f.

© In particular, this suffices to show variance shrinkage:

2 2
B[] < EX{IIxI7-
O Poi Log-Sobolev-i tios.
Immediate Polaron consequence: since ]/}\DO(,T(B) =< PP, we have mgg(at) > 1 via:
BPaT Bl < BPeT|B |2 = 3T.

Interaction terms do not increase diffusivity! Tightness for functional CLT in [Betz-Polzer 22].

More refined uses of GCI will show interactions strictly decrease diffusivity.
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® Introduction to the Polaron

® Royen's Gaussian Correlation inequality

@ Lower bounds on the effective mass

o Initial attempt: @/C_G—T

Improvement: —=—

o2
log~ T

2
o T-independence: —%—
P log™ a
a4
Iogcoc

o Final step:



Attempt at Improvement

So far, we have only used that V(r) = % is symmetric and monotone. However:

@ Interaction decays exponentially in time, so only |t —s| < 1 should be needed.
o If [t—s| <1, we have P[||Bt - Bs|| < C] > 0.999 for Brownian motion.
e V is more monotone on small distances. The function

2

r
’_>7 -
"t ac

is symmetric and quasi-concave on r € [-C, C].

A
Q
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Attempt at Improvement

r— ﬁ + {ﬁ is symmetric and quasi-concave on |r| < C.
Fixing t, s with |t —s| < 1, suppose we magically KNEW ||B; — Bs|| < C. Then

elt=s| 1B = Bs||?
Wts =
> ||Be = Bs|| 2eC3

would behave as a symmetric quasi-concave function.
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Attempt at Improvement

r— ﬁ + ;ﬁ is symmetric and quasi-concave on |r| < C.
Fixing t, s with |t —s| < 1, suppose we magically KNEW ||B; — Bs|| < C. Then

elt=sl |Bt - Bs||?
| Bt — Bsl| 2eC3

Wt,s =
would behave as a symmetric quasi-concave function.

This would imply an improved Gaussian domination I/ES(X'T = I?’a'T, where

IP)OL,T =

[ B~ B
- t— Dbs
00

Note that I?PJ’OCVT is still centered Gaussian, but is more confined than Brownian motion.

But we do not know that ||B; — Bs|| < C. And we need it for many (t, s) simultaneously...
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The function

1 z| < C
r— m+ﬁ .1|"|§C

is symmetric quasi-concave on all of R.




Rigorous Argument Losing log(T) Factors

The function

1 r? |$| <C
"\ Facs) e

is symmetric quasi-concave on all of R.

Define the set of paths on [0, T] with locally C-bounded increments:

K(T,C) = {B[O,T] : |tSU|P<1||Bt—Bs|| < C}
—s|<

]I~DOL,7- thus dominates the truncated Polaron measure: ]/I\Doc,T‘K(T 0) =Py T
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Rigorous Argument Losing log(T) Factors

The function

1 r? |$| <C
"\ Facs) e

is symmetric quasi-concave on all of R.

Define the set of paths on [0, T] with locally C-bounded increments:

K(T,C) = {B[O,T] : |tSU|P<1||Bt—Bs|| < C}
—s|<

]I~DOL,7- thus dominates the truncated Polaron measure: ]/I\Doc,T‘K(T 0) =Py T

Using GCI, one can show the truncation is benign for C =< /log T:

~ ~ 1
o= Farlaro)ly < 557

M. Sellke 17 /27



Where Do We Stand?

We now have a close approximation
IP)oc,T|K(T,C) ~ Po,1

which is dominated for C < /log T via:

TT
B = ~||B¢ - Bs]|?
IP’oc,ﬂ;((T,c) 2 Po, 7 o< exp (OC//]l{t—s <1} HltOC35H dt ds) dP(B).
00
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Where Do We Stand?

We now have a close approximation

IP)(JL,T|K(7',C) ~ Po,1

which is dominated for C < /log T via:

T T ’
Py, 7| <P o [ [151e-s| <13 IBe=Bsl
oTIKk(T,C) = Lo, T XEXP 51> 10C3
00

dt ds | dP(B).
Some difficulties:
© How much more confined is TIBOC’T than Brownian motion??

@ We were forced to take C < y/log T. (Serious)
e The order of limitsis T > a > 1, so log T is fatal.
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Extra Gaussian Confinement, on the Back of an Envelope

The behavior of ﬁa'-,— ontel[i,i+1]is

(/ /‘“”'fécfs” dt ds) dP(B).

For small €, this is roughly

i+1i41 i+1i+1
_ 2 - 2 €t
P B~ Bl <e| ~ P IBel? <e| ~e
i i

i

Indeed, B; ;1) should be small ¢! times for this to hold.
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Extra Gaussian Confinement, on the Back of an Envelope

The behavior of ﬁx'-,— ontel[i,i+1]is

—0°||Bt Bs||®
t// B2 gt ds | ar(a).

For small €, this is roughly
i+1i+1 i+1i+1
-1
//ﬂ%-aﬁgezpt//ﬂ&WSSQJS
i i

Indeed, B; ;1) should be small ¢! times for this to hold.

The contribution from value € is roughly exp (—% - %) Maximized at € =< /C3/0.

Rigorous proof: diagonalize in a Fourier basis. In fact with high probability,

sup  ||B:—Bs|| < v/ C3/a.

t,s€[i,i+1]
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Iterative Improvement

With high probability:

sup  ||B:—Bs|| < v/ C3/a.

t,s€[i,i+1]

Recall from before:

1. .
V(r) = = is more monotone on small distances.
r
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Previously, we used quasi-concavity of C3
|| < Ry = \ o

1 2
Py o lrl <Ry =C.

31




lterative Improvement: Stronger Confinement Near the Origin

Previously, we used quasi-concavity of

1 r2

=t o,
Tt acs

‘r|§RoEC.

4/C3
o] < Ry =/ —
(8%

With our new knowledge, we can use quasi-concavity of

ris % + 032, |r| < Ry = 0”4

M. Sellke
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lterative Improvement: Stronger Confinement Near the Origin

Previously, we used quasi-concavity of 1C'3
M y x| < Ry = 1/ 7
1 r2 «
rr—>—+ﬁ, |r| < Ry = C.
Irl |z| < Ry=C

With our new knowledge, we can use quasi-concavity of

ris % + 032, |r| < Ry = 0”4

Iterating, SUP¢ se[i,i+1] ||Bt — Bs|| is bounded by Ry > Ry > ... with

This stabilizes at the much better R, = O(a™%). le. |Bis1-Bil* < O(a2).
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From log T to log o Dependence

The order of limitsis T > a > 1, so the log T factors are a serious problem.
To avoid this, the argument should apply on most, but not all intervals [i, i + 1].

Intuitively, we can take C =< \/log(a). The O(T/a!0) "bad” intervals should contribute total
variance O( T /a10), which is fine.
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From log T to log o Dependence

The order of limitsis T > a > 1, so the log T factors are a serious problem.
To avoid this, the argument should apply on most, but not all intervals [i, i + 1].

Intuitively, we can take C =< \/log(a). The O(T/a!0) "bad” intervals should contribute total
variance O( T /a10), which is fine.

But to use the Gaussian correlation inequality, we to control the full path measure all at once.
We cannot decompose

T-1
0,71 = Jli.i+1]
i=0

and recombine path behaviors arbitrarily. This is a serious problem!
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From log T to log o Dependence: Decomposition of Gaussian Measures

Let u*?(2A) = W(A) be the dilation of w by a factor of 2.

Let u € P(X) be a centered Gaussian measure, and K a symmetric convex set with
W(K) > 1-38. Then there exists a decomposition of W into Wgood, Wbad With:

Q u= (1 - 5) Ugood + auba,d-
9 Hgood = M.
© Wgooq is supported inside 10K.

Q Woad = HXQ-
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From log T to log o Dependence: Decomposition of Gaussian Measures

Let u*?(2A) = W(A) be the dilation of w by a factor of 2.

Let u € P(X) be a centered Gaussian measure, and K a symmetric convex set with
W(K) > 1-38. Then there exists a decomposition of W into Wgood, Wbad With:

Q u= (1 - 5) Ugood + auba,d-
9 Hgood = M.
© Wgooq is supported inside 10K.

Q Woad = MXQ-

Application with & < o™10 and Brownian motion p; = P([i, i + 1]):
o K =K([i,i+1],10y/loga) = {Bj it1] : supi<s t<i+1 Bt = Bs[ < 10/loga}.

@ The main argument applies to [good, Via ©.
o The k-th level of recursion requires Kgooq, to be defined.

@ Nothing terrible on the rare bad intervals, by @.
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From log T to log o Dependence: Decomposition of Gaussian Measures

The lemma gives identical decompositions of Brownian motion on each [/, i + 1]:

P([i, i +1]) = (1~ &%) ugooq; + 0 Optpaq;.
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From log T to log o Dependence: Decomposition of Gaussian Measures

The lemma gives identical decompositions of Brownian motion on each [/, i + 1]:
P([i, i +1]) = (1~ Oc_lo)ugood,- + Oc_loubad,--
Then we can represent the full Wiener measure as a product:

T-1
PO, TH= > w []m.
i=0

vE€{good,bad}T
W) = (1— 0-10)1™ (800 o101 (bad)]
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From log T to log o Dependence: Decomposition of Gaussian Measures

The lemma gives identical decompositions of Brownian motion on each [/, i + 1]:
P([i, i +1]) = (1~ Oc_lo)ugood,- + Oc_loubad,--
Then we can represent the full Wiener measure as a product:

T-1
PO, TH= > w []m.
i=0

vE€{good,bad}T
W) = (1— 0-10)1™ (800 o101 (bad)]

Introducing the Polaron interactions gives a modified decomposition:

Por= . w(yPy
ve{good,bad} "

Using GCl, the new weight w(7y) still concentrates on y with mostly good components.
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2 4

From o“ to o™, in One Picture

So far, we got ||Bj11 - Bi||> < O(0o2). This gives mgg() > o2, but we want o

This bound is optimal for short-time fluctuations. We must think long term.
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2 4

From o“ to o™, in One Picture

So far, we got ||Bj11 - Bi||> < O(0o2). This gives mgg() > o2, but we want o
This bound is optimal for short-time fluctuations. We must think long term.

Heuristically, @Q’T behaves roughly like Ornstein—Uhlenbeck on short time-scales:

dUt ~ —OLUt + dBt.

Ornstein-Uhlenbeck Process

—— OU Process
—— Averages

0.010 4

0.005 A

0.000 -

Value

—0.005 A

—0.010 1

—0.015 4

Time
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From o2 to o, in One Picture

Ornstein-Uhlenbeck Process

—— OU Process
—— Averages

0.010 4

0.005

0.000

Value

—0.005 4

—0.010 1

—0.015 1

Time

Single-time fluctuations ||B;4; — B;||> < o2 are dominated by “noise”.
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2 4

From o“ to o™, in One Picture

Ornstein-Uhlenbeck Process

—— OU Process
—— Averages

0.010 4

0.005 A

0.000 -

Value

—0.005 4

—0.010 1

—0.015 4

Time
Single-time fluctuations ||B; 41 — B;|? = o2 are dominated by “noise”.

_ i+1 - _
Interval averages B[; i 1] = | By dt oscillate less: 1Byii+1] ~ Bli+1 ,-Jr2]||2 = o
i

@ The same holds for I@a,T by another use of GCI.
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Conclusion

The Polaron path measure Py, 1 is a deformation of Brownian motion in R3:

T T —|t—s|
ex o dt ds | dPP(B).
P 0/0/|Bt—ss|| (B)

Main result (valid in R9 for any d > 3):

o Par [IBTI2] _ (loga)f
T—o0 T -~ cat

d]/f\Doc,T(B) =

4
Equivalently, a lower bound on the Polaron’s effective mass: mgg () > ﬁ.
Together with [Brooks-Seiringer 22], this nearly resolves the prediction of [Landau-Pekar
1948] that meg(a) ~ Coo*

This technique should have applications to other path measures, as we have been discussing
with Volker, Steffen and Tobias.
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