The Gaussian Correlation Inequality and the Polaron

Mark Sellke

Rhein-Main Kolloquium
June 23, 2023

What Am I Talking About Today?

Let $d \mathbb{P}(B)$ be the law of 3-dimensional Brownian motion, with $B(0)=(0,0,0)$.

Let $d \mathbb{P}(B)$ be the law of 3-dimensional Brownian motion, with $B(0)=(0,0,0)$.
Given a coupling strength α and time-horizon T, the Polaron path measure $\widehat{\mathbb{P}}_{\alpha, T}$ is the reweighted law on paths $B:[0, T] \rightarrow \mathbb{R}^{3}$:

$$
\begin{aligned}
d \widehat{\mathbb{P}}_{\alpha, T}(\mathrm{~B}) & \equiv \frac{1}{Z_{\alpha, T}} \exp \left(\alpha \int_{0}^{T} \int_{0}^{T} e^{-|t-s|} V\left(\left\|\mathrm{~B}_{t}-\mathrm{B}_{s}\right\|\right) \mathrm{d} t \mathrm{~d} s\right) \mathrm{d} \mathbb{P}(\mathrm{~B}) \\
V(r) & \equiv 1 / r
\end{aligned}
$$

What Am I Talking About Today?

Let $d \mathbb{P}(B)$ be the law of 3-dimensional Brownian motion, with $B(0)=(0,0,0)$.
Given a coupling strength α and time-horizon T, the Polaron path measure $\widehat{\mathbb{P}}_{\alpha, T}$ is the reweighted law on paths $B:[0, T] \rightarrow \mathbb{R}^{3}$:

$$
\begin{aligned}
\mathrm{d} \widehat{\mathbb{P}}_{\alpha, T}(\mathrm{~B}) & \equiv \frac{1}{Z_{\alpha, T}} \exp \left(\alpha \int_{0}^{T} \int_{0}^{T} e^{-|t-s|} V\left(\left\|\mathrm{~B}_{t}-\mathrm{B}_{s}\right\|\right) \mathrm{d} t \mathrm{~d} s\right) \mathrm{d} \mathbb{P}(\mathrm{~B}), \\
V(r) & \equiv 1 / r .
\end{aligned}
$$

I will explain a confinement result upper bounding $\mathbb{E}^{\widehat{\mathbb{P}}_{\alpha, T}}\left\|\mathrm{~B}_{T}\right\|^{2}$.
Physically, this means we lower bound the effective mass

$$
m_{\mathrm{eff}}(\alpha) \equiv \mathbb{E}^{\widehat{\mathbb{P}}_{\alpha, T}}\left[\frac{3 T}{\left\|\mathrm{~B}_{T}\right\|^{2}}\right]
$$

- Introduction to the Polaron
- Royen's Gaussian Correlation inequality
- Lower bounds on the effective mass

Start from a quantum mechanical Hamiltonian, an operator on $L^{2}\left(\mathbb{R}^{3}\right) \otimes \mathcal{F}\left(L^{2}\left(\mathbb{R}^{3}\right)\right)$:

$$
H=-\nabla_{x}^{2} / 2+\int_{\mathbb{R}^{3}} a_{k}^{\dagger} a_{k} \mathrm{~d} k+\sqrt{\alpha} \int_{\mathbb{R}^{3}} \frac{e^{-i k x}}{|k|} a_{k}^{\dagger} \mathrm{d} k+\sqrt{\alpha} \int_{\mathbb{R}^{3}} \frac{e^{i k x}}{|k|} a_{k} \mathrm{~d} k
$$

- Link to Brownian motion comes from Feynman's path integral [Feynman 55].

Start from a quantum mechanical Hamiltonian, an operator on $L^{2}\left(\mathbb{R}^{3}\right) \otimes \mathcal{F}\left(L^{2}\left(\mathbb{R}^{3}\right)\right)$:

$$
H=-\nabla_{x}^{2} / 2+\int_{\mathbb{R}^{3}} a_{k}^{\dagger} a_{k} \mathrm{~d} k+\sqrt{\alpha} \int_{\mathbb{R}^{3}} \frac{e^{-i k x}}{|k|} a_{k}^{\dagger} \mathrm{d} k+\sqrt{\alpha} \int_{\mathbb{R}^{3}} \frac{e^{i k x}}{|k|} a_{k} \mathrm{~d} k .
$$

- Link to Brownian motion comes from Feynman's path integral [Feynman 55].
H commutes with momentum. Each momentum $P \in \mathbb{R}^{3}$ has a ground state energy $E_{\alpha}(|P|)$.
- [Gross 72]: $E_{\alpha}(P) \geq E_{\alpha}(0)$.
- [Polzer 22]: $E_{\alpha}(P)$ is increasing in P, and strictly so at 0 .
- Effective mass was originally defined by:

$$
\frac{1}{2 m_{\mathrm{eff}}(\alpha)}=\lim _{P \rightarrow 0} \frac{E_{\alpha}(P)-E_{\alpha}(0)}{P^{2}}
$$

Progress on the Effective Mass

Asymptotics of $E_{\alpha}(0)$ determined by [Donsker-Varadhan 83] using large deviations. Effective mass has required more time.

- [Landau-Pekar 1948]: predicted $m_{\text {eff }}(\alpha) \approx C_{*} \alpha^{4}$.
- [Lieb-Seiringer 17]: $\lim _{\alpha \rightarrow \infty} m_{\text {eff }}(\alpha)=\infty$.
- [Spohn 87, Dybalski-Spohn 20]: rigorous path integral definition of $m_{\text {eff }}$, assuming a functional CLT for $\widehat{\mathbb{P}}_{\alpha, T}$.
- [Mukherjee-Varadhan 21, Betz-Polzer 22a]: confirmation of functional CLT.
- [Betz-Polzer 22b]: $m_{\text {eff }}(\alpha) \geq c \alpha^{2 / 5}$.
- [Brooks-Seiringer 22 via Polzer 22]: $m_{\text {eff }}(\alpha) \leq C_{*} \alpha^{4}+O\left(\alpha^{4-\varepsilon}\right)$.

Progress on the Effective Mass

Asymptotics of $E_{\alpha}(0)$ determined by [Donsker-Varadhan 83] using large deviations. Effective mass has required more time.

- [Landau-Pekar 1948]: predicted $m_{\text {eff }}(\alpha) \approx C_{*} \alpha^{4}$.
- [Lieb-Seiringer 17]: $\lim _{\alpha \rightarrow \infty} m_{\text {eff }}(\alpha)=\infty$.
- [Spohn 87, Dybalski-Spohn 20]: rigorous path integral definition of $m_{\text {eff }}$, assuming a functional CLT for $\widehat{\mathbb{P}}_{\alpha, T}$.
- [Mukherjee-Varadhan 21, Betz-Polzer 22a]: confirmation of functional CLT.
- [Betz-Polzer 22b]: $m_{\text {eff }}(\alpha) \geq c \alpha^{2 / 5}$.
- [Brooks-Seiringer 22 via Polzer 22]: $m_{\text {eff }}(\alpha) \leq C_{*} \alpha^{4}+O\left(\alpha^{4-\varepsilon}\right)$.

Theorem (S 22)

As $\alpha \rightarrow \infty$, one has $m_{\text {eff }}(\alpha) \geq \frac{c \alpha^{4}}{(\log \alpha)^{6}}$.
Proved using ideas from high-dimensional geometry. The bounds now almost match.

Gaussian Domination for Concave Potentials

Given a centered Gaussian measure μ on a Banach space \mathcal{X}, consider the weighting

$$
\mathrm{d} \mu_{W}(x) \propto e^{W(x)} \mathrm{d} \mu(x)
$$

Many measures (e.g. Polaron) take this form.

Gaussian Domination for Concave Potentials

Given a centered Gaussian measure μ on a Banach space \mathcal{X}, consider the weighting

$$
\mathrm{d} \mu_{W}(x) \propto e^{W(x)} \mathrm{d} \mu(x)
$$

Many measures (e.g. Polaron) take this form.

If W is concave:

- $\mathbb{E}^{\mathrm{x} \sim \mu_{W}}\left[\mathrm{xx}^{\top}\right] \preceq \mathbb{E}^{\mathrm{x} \sim \mu}\left[\mathrm{xx}^{\top}\right]$ (covariance shrinks).
- μ_{W} inherits Poincare/Log-Sobolev inequalities from μ_{W} [Bakry-Emery 85]:
- The optimal transport map $\mu \rightarrow \mu_{W}$ is 1-Lipschitz [Caffarelli 00].

One may say μ_{W} is dominated by μ.

Gaussian Domination for Concave Potentials

Given a centered Gaussian measure μ on a Banach space \mathcal{X}, consider the weighting

$$
\mathrm{d} \mu_{W}(x) \propto e^{W(x)} \mathrm{d} \mu(x)
$$

Many measures (e.g. Polaron) take this form.

If W is concave:

- $\mathbb{E}^{\mathrm{x} \sim \mu_{W}}\left[\mathrm{xx}^{\top}\right] \preceq \mathbb{E}^{\mathrm{x} \sim \mu}\left[\mathrm{xx}^{\top}\right]$ (covariance shrinks).
- μ_{W} inherits Poincare/Log-Sobolev inequalities from μ_{W} [Bakry-Emery 85]:
- The optimal transport map $\mu \rightarrow \mu_{W}$ is 1-Lipschitz [Caffarelli 00].

One may say μ_{W} is dominated by μ.
Moreover, suppose $W(x)=Q(x)+\widetilde{W}(x)$, where Q, \widetilde{W} are concave and Q is quadratic.

- Then μ_{W} is dominated by $\mathrm{d} \mu_{Q} \propto e^{Q(x)} \mathrm{d} \mu(x)$, a "more confined" Gaussian than μ.

Unfortunately this theory does not apply to the Polaron. Recall:

$$
\begin{aligned}
d \widehat{\mathbb{P}}_{\alpha, T}(\mathrm{~B}) & \equiv \frac{1}{Z_{\alpha, T}} \exp \left(\alpha \int_{0}^{T} \int_{0}^{T} e^{-|t-s|} V\left(\left\|\mathrm{~B}_{t}-\mathrm{B}_{s}\right\|\right) \mathrm{d} t \mathrm{~d} s\right) \mathrm{d} \mathbb{P}(\mathrm{~B}) \\
V(r) & \equiv 1 / r
\end{aligned}
$$

$V(r)$ is not concave at all! Integration over $[0, T] \times[0, T]$ does not save us.

Unfortunately this theory does not apply to the Polaron. Recall:

$$
\begin{aligned}
d \widehat{\mathbb{P}}_{\alpha, T}(\mathrm{~B}) & \equiv \frac{1}{Z_{\alpha, T}} \exp \left(\alpha \int_{0}^{T} \int_{0}^{T} e^{-|t-s|} V\left(\left\|\mathrm{~B}_{t}-\mathrm{B}_{s}\right\|\right) \mathrm{d} t \mathrm{~d} s\right) \mathrm{d} \mathbb{P}(\mathrm{~B}) \\
V(r) & \equiv 1 / r
\end{aligned}
$$

$V(r)$ is not concave at all! Integration over $[0, T] \times[0, T]$ does not save us.
However the interaction term makes the walk self-attractive. We certainly expect $\widehat{\mathbb{P}}_{\alpha, T}$ to be "dominated" by Brownian motion.

Formalizing this requires a more flexible notion of Gaussian domination.

Symmetric Quasi-Concave Functions

Definition

$W: \mathcal{X} \rightarrow \mathbb{R}$ is symmetric quasi-concave if:

- $W(x)=W(-x)$.
- All super-level sets $S_{\lambda}=\{x \in \mathcal{X}: W(x) \geq \lambda\}$ are convex.

Examples for $\mathcal{X}=\mathbb{R}$:

Symmetric Quasi-Concave Functions

Definition

$W: \mathcal{X} \rightarrow \mathbb{R}$ is symmetric quasi-concave if:

- $W(x)=W(-x)$.
- All super-level sets $S_{\lambda}=\{x \in \mathcal{X}: W(x) \geq \lambda\}$ are convex.

More general setup: probability measures

$$
\mathrm{d} \mu_{W}(x) \propto e^{W(x)} \mathrm{d} \mu(x)
$$

for $W: \mathcal{X} \rightarrow \mathbb{R}$ which is symmetric quasi-concave, or a sum/integral of such functions.

Definition

$W: \mathcal{X} \rightarrow \mathbb{R}$ is symmetric quasi-concave if:

- $W(x)=W(-x)$.
- All super-level sets $S_{\lambda}=\{x \in \mathcal{X}: W(x) \geq \lambda\}$ are convex.

More general setup: probability measures

$$
\mathrm{d} \mu_{W}(x) \propto e^{W(x)} \mathrm{d} \mu(x)
$$

for $W: \mathcal{X} \rightarrow \mathbb{R}$ which is symmetric quasi-concave, or a sum/integral of such functions.
The Polaron measure does take this form:

$$
W\left(\mathrm{~B}_{[0, T]}\right)=\int_{0}^{T} \int_{0}^{T} \frac{\alpha e^{-|t-s|}}{\left\|\mathrm{B}_{t}-\mathrm{B}_{s}\right\|} \mathrm{d} t \mathrm{~d} s=\int_{0}^{T} \int_{0}^{T} W_{t, s}\left(\mathrm{~B}_{[0, T]}\right) \mathrm{d} t \mathrm{~d} s
$$

The Gaussian correlation inequality is a perfect tool for such situations.

Key Tool: Royen's Gaussian Correlation Inequality

Theorem (Royen 2014)
Let $\mu \in \mathcal{P}(\mathcal{X})$ be a centered Gaussian measure, and $K_{1}, K_{2} \subseteq \mathcal{X}$ symmetric convex sets (i.e. $\left.K_{i}=-K_{i}\right)$. Then $1_{K_{1}}$ and $1_{K_{2}}$ have non-negative correlation under μ, i.e.

$$
\mu\left(K_{1} \cap K_{2}\right) \geq \mu\left(K_{1}\right) \mu\left(K_{2}\right) .
$$

Theorem (Royen 2014)

For $\mu \in \mathcal{P}(\mathcal{X})$ a centered Gaussian measure and $K_{1}, K_{2} \subseteq \mathcal{X}$ symmetric convex sets:

$$
\mu\left(K_{1} \cap K_{2}\right) \geq \mu\left(K_{1}\right) \mu\left(K_{2}\right)
$$

History (see 2017 Quanta article):

- Conjectured by [Dunnet-Sobel 55], [Gupta-Eaton-Perlman-Savage-Sobel 72].
- [Khatri 67, Sidak 67, Pitts 77, Schechtman-Schlumprecht-Zinn 98, Hargé 99]: special cases such as $\mathcal{X}=\mathbb{R}^{2}$.
- [Royen 2014]: brilliant solution (while brushing teeth!). Initially escapes attention.
- [Latała-Matlak 2015]: exposition of Royen's proof

Proof idea: for $x, y \stackrel{i . i . d .}{\sim} \mu$, equivalent to

$$
\mathbb{P}\left[x \in K_{1} \wedge x \in K_{2}\right] \geq \mathbb{P}\left[x \in K_{1}, y \in K_{2}\right] .
$$

Royen showed $f(t)=\mathbb{P}\left[x \in K_{1} \wedge \sqrt{1-t} x+\sqrt{t} y \in K_{2}\right]$ is decreasing on $t \in[0,1]$.

Interpreting GCl as Gaussian Domination

GCI: if $K_{1}, K_{2} \subseteq \mathcal{X}$ are symmetric convex, then

$$
\mu\left(K_{1} \cap K_{2}\right) \geq \mu\left(K_{1}\right) \mu\left(K_{2}\right) .
$$

Interpreting GCI as Gaussian Domination

GCI : if $K_{1}, K_{2} \subseteq \mathcal{X}$ are symmetric convex, then

$$
\mu\left(K_{1} \cap K_{2}\right) \geq \mu\left(K_{1}\right) \mu\left(K_{2}\right) .
$$

By induction, if $K_{1}, \ldots, K_{n} \subseteq \mathcal{X}$ are symmetric convex:

$$
\mu\left(K_{1} \cap \cdots \cap K_{n}\right) \geq \mu\left(K_{1} \cap \cdots \cap K_{m}\right) \cdot \mu\left(K_{m+1} \cap \cdots \cap K_{n}\right),
$$

Interpreting GCI as Gaussian Domination

GCI : if $K_{1}, K_{2} \subseteq \mathcal{X}$ are symmetric convex, then

$$
\mu\left(K_{1} \cap K_{2}\right) \geq \mu\left(K_{1}\right) \mu\left(K_{2}\right)
$$

By induction, if $K_{1}, \ldots, K_{n} \subseteq \mathcal{X}$ are symmetric convex:

$$
\mu\left(K_{1} \cap \cdots \cap K_{n}\right) \geq \mu\left(K_{1} \cap \cdots \cap K_{m}\right) \cdot \mu\left(K_{m+1} \cap \cdots \cap K_{n}\right),
$$

By Fubini, if $f_{1}, \ldots, f_{n}: \mathcal{X} \rightarrow \mathbb{R}^{+}$are symmetric quasi-concave,

$$
\mathbb{E}^{\mu}\left[f_{1} f_{2} \ldots f_{n}\right] \geq \mathbb{E}^{\mu}\left[f_{1} f_{2} \ldots f_{m}\right] \cdot \mathbb{E}^{\mu}\left[f_{m+1} f_{m+2} \ldots f_{n}\right]
$$

Interpreting GCI as Gaussian Domination

GCI : if $K_{1}, K_{2} \subseteq \mathcal{X}$ are symmetric convex, then

$$
\mu\left(K_{1} \cap K_{2}\right) \geq \mu\left(K_{1}\right) \mu\left(K_{2}\right)
$$

By induction, if $K_{1}, \ldots, K_{n} \subseteq \mathcal{X}$ are symmetric convex:

$$
\mu\left(K_{1} \cap \cdots \cap K_{n}\right) \geq \mu\left(K_{1} \cap \cdots \cap K_{m}\right) \cdot \mu\left(K_{m+1} \cap \cdots \cap K_{n}\right),
$$

By Fubini, if $f_{1}, \ldots, f_{n}: \mathcal{X} \rightarrow \mathbb{R}^{+}$are symmetric quasi-concave,

$$
\mathbb{E}^{\mu}\left[f_{1} f_{2} \ldots f_{n}\right] \geq \mathbb{E}^{\mu}\left[f_{1} f_{2} \ldots f_{m}\right] \cdot \mathbb{E}^{\mu}\left[f_{m+1} f_{m+2} \ldots f_{n}\right]
$$

Let's say $v \preceq \mu$ if $\frac{d v}{d \mu}$ is a limit of products of SQC functions. If μ is centered Gaussian:

$$
v(K)=\mathbb{E}^{\mu}\left[\frac{\mathrm{d} v}{\mathrm{~d} \mu} \cdot 1_{K}\right] \stackrel{\mathrm{GCI}}{\geq} \mathbb{E}^{\mu}\left[\frac{\mathrm{d} v}{\mathrm{~d} \mu}\right] \cdot \mu(K)=\mu(K)
$$

for any symmetric convex set K. This is a type of Gaussian domination.
$v \preceq \mu$ if $\frac{d v}{d \mu}$ is a limit of products of SQC functions. If μ is centered Gaussian:
(1) $v(K) \geq \mu(K)$ for symmetric convex K, by GCI .
(2) By Fubini again, $\mathbb{E}^{\nu}[f] \leq \mathbb{E}^{\mu}[f]$ for symmetric convex f.
(3) In particular, this suffices to show variance shrinkage:

$$
\mathbb{E}^{\nu}\left[\|x\|^{2}\right] \leq \mathbb{E}^{\mu}\left[\|x\|^{2}\right]
$$

(9) Poincare, Log Sobolev inequalities.
$v \preceq \mu$ if $\frac{d v}{d \mu}$ is a limit of products of SQC functions. If μ is centered Gaussian:
(1) $v(K) \geq \mu(K)$ for symmetric convex K, by GCI .
(2) By Fubini again, $\mathbb{E}^{\nu}[f] \leq \mathbb{E}^{\mu}[f]$ for symmetric convex f.
(3) In particular, this suffices to show variance shrinkage:

$$
\mathbb{E}^{\nu}\left[\|x\|^{2}\right] \leq \mathbb{E}^{\mu}\left[\|x\|^{2}\right]
$$

(9) Poincare, Log Sobolev inequalities.

Immediate Polaron consequence: since $\widehat{\mathbb{P}}_{\alpha, T}(\mathrm{~B}) \preceq \mathbb{P}$, we have $m_{\text {eff }}(\alpha) \geq 1$ via:

$$
\mathbb{E}^{\widehat{\mathbb{P}}_{\alpha, T}}\left\|\mathrm{~B}_{T}\right\|^{2} \leq \mathbb{E}^{\mathbb{P}_{\alpha, T}}\left\|\mathrm{~B}_{T}\right\|^{2}=3 T .
$$

Interaction terms do not increase diffusivity! Tightness for functional CLT in [Betz-Polzer 22].
$v \preceq \mu$ if $\frac{d v}{d \mu}$ is a limit of products of SQC functions. If μ is centered Gaussian:
(1) $v(K) \geq \mu(K)$ for symmetric convex K, by GCI .
(2) By Fubini again, $\mathbb{E}^{\nu}[f] \leq \mathbb{E}^{\mu}[f]$ for symmetric convex f.
(3) In particular, this suffices to show variance shrinkage:

$$
\mathbb{E}^{\nu}\left[\|x\|^{2}\right] \leq \mathbb{E}^{\mu}\left[\|x\|^{2}\right]
$$

(9) Poincare, Log Sobolev inequalities.

Immediate Polaron consequence: since $\widehat{\mathbb{P}}_{\alpha, T}(\mathrm{~B}) \preceq \mathbb{P}$, we have $m_{\text {eff }}(\alpha) \geq 1$ via:

$$
\mathbb{E}^{\widehat{\mathbb{P}}_{\alpha, T}}\left\|\mathrm{~B}_{T}\right\|^{2} \leq \mathbb{E}^{\mathbb{P}_{\alpha, T}}\left\|\mathrm{~B}_{T}\right\|^{2}=3 T .
$$

Interaction terms do not increase diffusivity! Tightness for functional CLT in [Betz-Polzer 22]. More refined uses of GCI will show interactions strictly decrease diffusivity.

(- Introduction to the Polaron

(2)Royen's Gaussian Correlation inequality

- Lower bounds on the effective mass
- Initial attempt: $\frac{\sqrt{\alpha}}{\log ^{c} T}$
- Improvement: $\frac{\alpha^{2}}{\log ^{c} T}$
- T-independence: $\frac{\alpha^{2}}{\log ^{c} \alpha}$
- Final step: $\frac{\alpha^{4}}{\log ^{c} \alpha}$

Attempt at Improvement

So far, we have only used that $V(r)=\frac{1}{r}$ is symmetric and monotone. However:

- Interaction decays exponentially in time, so only $|t-s| \leq 1$ should be needed.
- If $|t-s| \leq 1$, we have $\mathbb{P}\left[\left\|\mathrm{B}_{t}-\mathrm{B}_{s}\right\| \leq C\right] \geq 0.999$ for Brownian motion.
- V is more monotone on small distances. The function

$$
r \mapsto \frac{1}{|r|}+\frac{r^{2}}{2 C^{3}}
$$

is symmetric and quasi-concave on $r \in[-C, C]$.

Attempt at Improvement

$r \mapsto \frac{1}{|r|}+\frac{r^{2}}{2 C^{3}}$ is symmetric and quasi-concave on $|r| \leq C$.
Fixing t, s with $|t-s| \leq 1$, suppose we magically KNEW $\left\|B_{t}-B_{s}\right\| \leq C$. Then

$$
W_{t, s}=\frac{e^{|t-s|}}{\left\|B_{t}-B_{s}\right\|}+\frac{\left\|B_{t}-B_{s}\right\|^{2}}{2 e C^{3}}
$$

would behave as a symmetric quasi-concave function.

Attempt at Improvement

$r \mapsto \frac{1}{|r|}+\frac{r^{2}}{2 C^{3}}$ is symmetric and quasi-concave on $|r| \leq C$.
Fixing t, s with $|t-s| \leq 1$, suppose we magically KNEW $\left\|B_{t}-B_{s}\right\| \leq C$. Then

$$
W_{t, s}=\frac{e^{|t-s|}}{\left\|B_{t}-B_{s}\right\|}+\frac{\left\|B_{t}-B_{s}\right\|^{2}}{2 e C^{3}}
$$

would behave as a symmetric quasi-concave function.
This would imply an improved Gaussian domination $\widehat{\mathbb{P}}_{\alpha, T} \preceq \widetilde{\mathbb{P}}_{\alpha, T}$, where

$$
\widetilde{\mathbb{P}}_{\alpha, T} \equiv \frac{1}{\widetilde{Z}_{\alpha, T}} \exp \left(\alpha \int_{0}^{T} \int_{0}^{T} \mathbb{1}\{|t-s| \leq 1\} \cdot \frac{-\left\|\mathrm{B}_{t}-\mathrm{B}_{s}\right\|^{2}}{10 C^{3}} \mathrm{~d} t \mathrm{~d} s\right) \mathrm{d} \mathbb{P}(\mathrm{~B})
$$

Note that $\widetilde{\mathbb{P}}_{\alpha, T}$ is still centered Gaussian, but is more confined than Brownian motion.
But we do not know that $\left\|B_{t}-B_{s}\right\| \leq C$. And we need it for many (t, s) simultaneously...

Rigorous Argument Losing $\log (T)$ Factors

The function

$$
r \mapsto\left(\frac{1}{|r|}+\frac{r^{2}}{2 C^{3}}\right) \cdot 1_{|r| \leq C}
$$

is symmetric quasi-concave on all of \mathbb{R}.

Rigorous Argument Losing $\log (T)$ Factors

The function

$$
r \mapsto\left(\frac{1}{|r|}+\frac{r^{2}}{2 C^{3}}\right) \cdot 1_{|r| \leq C}
$$

is symmetric quasi-concave on all of \mathbb{R}.

Define the set of paths on $[0, T]$ with locally C-bounded increments:

$$
K(T, C) \equiv\left\{\mathrm{B}_{[0, T]}: \sup _{|t-s| \leq 1}\left\|\mathrm{~B}_{t}-\mathrm{B}_{s}\right\| \leq C\right\}
$$

$\widetilde{\mathbb{P}}_{\alpha, T}$ thus dominates the truncated Polaron measure: $\left.\widehat{\mathbb{P}}_{\alpha, T}\right|_{K(T, C)} \preceq \widetilde{\mathbb{P}}_{\alpha, T}$.

Rigorous Argument Losing $\log (T)$ Factors

The function

$$
r \mapsto\left(\frac{1}{|r|}+\frac{r^{2}}{2 C^{3}}\right) \cdot 1_{|r| \leq C}
$$

is symmetric quasi-concave on all of \mathbb{R}.

Define the set of paths on $[0, T]$ with locally C-bounded increments:

$$
K(T, C) \equiv\left\{\mathrm{B}_{[0, T]}: \sup _{|t-s| \leq 1}\left\|\mathrm{~B}_{t}-\mathrm{B}_{s}\right\| \leq C\right\}
$$

$\widetilde{\mathbb{P}}_{\alpha, T}$ thus dominates the truncated Polaron measure: $\left.\widehat{\mathbb{P}}_{\alpha, T}\right|_{K(T, C)} \preceq \widetilde{\mathbb{P}}_{\alpha, T}$.
Using GCl , one can show the truncation is benign for $C \asymp \sqrt{\log T}$:

$$
\left\|\widehat{\mathbb{P}}_{\alpha, T}-\left.\widehat{\mathbb{P}}_{\alpha, T}\right|_{K(T, C)}\right\|_{T V} \leq \frac{1}{\alpha^{5} T^{5}} .
$$

Where Do We Stand?

We now have a close approximation

$$
\left.\widehat{\mathbb{P}}_{\alpha, T}\right|_{K(T, C)} \approx \widehat{\mathbb{P}}_{\alpha, T}
$$

which is dominated for $C \asymp \sqrt{\log T}$ via:

$$
\left.\widehat{\mathbb{P}}_{\alpha, T}\right|_{K(T, C)} \preceq \widetilde{\mathbb{P}}_{\alpha, T} \propto \exp \left(\alpha \int_{0}^{T} \int_{0}^{T} \mathbb{1}\{|t-s| \leq 1\} \cdot \frac{-\left\|\mathrm{B}_{t}-\mathrm{B}_{s}\right\|^{2}}{10 C^{3}} \mathrm{~d} t \mathrm{~d} s\right) \mathrm{d} \mathbb{P}(\mathrm{~B}) .
$$

We now have a close approximation

$$
\left.\widehat{\mathbb{P}}_{\alpha, T}\right|_{K(T, C)} \approx \widehat{\mathbb{P}}_{\alpha, T}
$$

which is dominated for $C \asymp \sqrt{\log T}$ via:

$$
\left.\widehat{\mathbb{P}}_{\alpha, T}\right|_{K(T, C)} \preceq \widetilde{\mathbb{P}}_{\alpha, T} \propto \exp \left(\alpha \int_{0}^{T} \int_{0}^{T} \mathbb{1}\{|t-s| \leq 1\} \cdot \frac{-\left\|\mathrm{B}_{t}-\mathrm{B}_{s}\right\|^{2}}{10 C^{3}} \mathrm{~d} t \mathrm{~d} s\right) \mathrm{d} \mathbb{P}(\mathrm{~B}) .
$$

Some difficulties:
(1) How much more confined is $\widetilde{\mathbb{P}}_{\alpha, T}$ than Brownian motion??
(2) We were forced to take $C \asymp \sqrt{\log T}$. (Serious)

- The order of limits is $T \gg \alpha \gg 1$, so $\log T$ is fatal.

Extra Gaussian Confinement, on the Back of an Envelope

The behavior of $\widetilde{\mathbb{P}}_{\alpha, T}$ on $t \in[i, i+1]$ is

$$
\exp \left(\int_{i}^{i+1} \int_{i}^{i+1} \frac{-\alpha\left\|\mathrm{B}_{t}-\mathrm{B}_{s}\right\|^{2}}{10 C^{3}} \mathrm{~d} t \mathrm{~d} s\right) \mathrm{dP}(\mathrm{~B}) .
$$

For small ε, this is roughly

$$
\mathbb{P}\left[\int_{i}^{i+1} \int_{i}^{i+1}\left\|B_{t}-B_{s}\right\|^{2} \leq \varepsilon\right] \approx \mathbb{P}\left[\int_{i}^{i+1} \int_{i}^{i+1}\left\|B_{t}\right\|^{2} \leq \varepsilon\right] \approx e^{-\varepsilon^{-1}} .
$$

Indeed, $\mathrm{B}_{[i, i+1]}$ should be small ε^{-1} times for this to hold.

Extra Gaussian Confinement, on the Back of an Envelope

The behavior of $\widetilde{\mathbb{P}}_{\alpha, T}$ on $t \in[i, i+1]$ is

$$
\exp \left(\int_{i}^{i+1} \int_{i}^{i+1} \frac{-\alpha\left\|\mathrm{B}_{t}-\mathrm{B}_{s}\right\|^{2}}{10 C^{3}} \mathrm{~d} t \mathrm{~d} s\right) \mathrm{d} \mathbb{P}(\mathrm{~B}) .
$$

For small ε, this is roughly

$$
\mathbb{P}\left[\int_{i}^{i+1} \int_{i}^{i+1}\left\|B_{t}-B_{s}\right\|^{2} \leq \varepsilon\right] \approx \mathbb{P}\left[\int_{i}^{i+1} \int_{i}^{i+1}\left\|B_{t}\right\|^{2} \leq \varepsilon\right] \approx e^{-\varepsilon^{-1}} .
$$

Indeed, $\mathrm{B}_{[i, i+1]}$ should be small ε^{-1} times for this to hold.
The contribution from value ε is roughly $\exp \left(-\frac{\alpha \varepsilon}{C^{3}}-\frac{1}{\varepsilon}\right)$. Maximized at $\varepsilon \asymp \sqrt{C^{3} / \alpha}$.
Rigorous proof: diagonalize in a Fourier basis. In fact with high probability,

$$
\sup _{t, s \in[i, i+1]}\left\|\mathrm{B}_{t}-\mathrm{B}_{s}\right\| \lesssim \sqrt[4]{C^{3} / \alpha}
$$

Iterative Improvement

With high probability:

$$
\sup _{t, s \in[i, i+1]}\left\|\mathrm{B}_{t}-\mathrm{B}_{s}\right\| \lesssim \sqrt[4]{C^{3} / \alpha}
$$

Recall from before:

$$
V(r)=\frac{1}{r} \text { is more monotone on small distances. }
$$

Previously, we used quasi-concavity of

$$
r \mapsto \frac{1}{|r|}+\frac{r^{2}}{2 C^{3}}, \quad|r| \leq R_{0} \equiv C
$$

Iterative Improvement: Stronger Confinement Near the Origin

Previously, we used quasi-concavity of

$$
r \mapsto \frac{1}{|r|}+\frac{r^{2}}{2 C^{3}}, \quad|r| \leq R_{0} \equiv C
$$

With our new knowledge, we can use quasi-concavity of

$$
r \mapsto \frac{1}{|r|}+\widetilde{O}\left(\alpha^{3 / 4}\right) r^{2}, \quad|r| \leq R_{1} \equiv \widetilde{O}\left(\alpha^{-1 / 4}\right)
$$

Iterative Improvement: Stronger Confinement Near the Origin

Previously, we used quasi-concavity of

$$
r \mapsto \frac{1}{|r|}+\frac{r^{2}}{2 C^{3}}, \quad|r| \leq R_{0} \equiv C
$$

$$
|x| \leq R_{1}=\sqrt[4]{\frac{C^{3}}{\alpha}}
$$

$$
|x| \leq R_{0}=C
$$

With our new knowledge, we can use quasi-concavity of

$$
r \mapsto \frac{1}{|r|}+\widetilde{O}\left(\alpha^{3 / 4}\right) r^{2}, \quad|r| \leq R_{1} \equiv \widetilde{O}\left(\alpha^{-1 / 4}\right)
$$

Iterating, $\sup _{t, s \in[i, i+1]}\left\|\mathrm{B}_{t}-\mathrm{B}_{s}\right\|$ is bounded by $R_{0} \geq R_{1} \geq \ldots$ with

$$
R_{k+1} \approx \sqrt[4]{R_{k}^{3} / \alpha}
$$

This stabilizes at the much better $R_{*}=\widetilde{O}\left(\alpha^{-1}\right)$. I.e. $\left\|B_{i+1}-B_{i}\right\|^{2} \leq \widetilde{O}\left(\alpha^{-2}\right)$.

The order of limits is $T \gg \alpha \gg 1$, so the $\log T$ factors are a serious problem.
To avoid this, the argument should apply on most, but not all intervals $[i, i+1]$.
Intuitively, we can take $C \asymp \sqrt{\log (\alpha)}$. The $O\left(T / \alpha^{10}\right)$ "bad" intervals should contribute total variance $O\left(T / \alpha^{10}\right)$, which is fine.

The order of limits is $T \gg \alpha \gg 1$, so the $\log T$ factors are a serious problem.
To avoid this, the argument should apply on most, but not all intervals $[i, i+1]$.
Intuitively, we can take $C \asymp \sqrt{\log (\alpha)}$. The $O\left(T / \alpha^{10}\right)$ "bad" intervals should contribute total variance $O\left(T / \alpha^{10}\right)$, which is fine.

But to use the Gaussian correlation inequality, we to control the full path measure all at once. We cannot decompose

$$
[0, T]=\bigcup_{i=0}^{T-1}[i, i+1]
$$

and recombine path behaviors arbitrarily. This is a serious problem!

Let $\mu^{\times 2}(2 A)=\mu(A)$ be the dilation of μ by a factor of 2 .

Lemma

Let $\mu \in \mathcal{P}(\mathcal{X})$ be a centered Gaussian measure, and K a symmetric convex set with $\mu(K) \geq 1-\delta$. Then there exists a decomposition of μ into $\mu_{g o o d}, \mu_{b a d}$ with:
(1) $\mu=(1-\delta) \mu_{g o o d}+\delta \mu_{b a d}$.
(2) $\mu_{\text {good }} \preceq \mu$.
(3) $\mu_{\text {good }}$ is supported inside $10 K$.
(9) $\mu_{b a d} \preceq \mu^{\times 2}$.

From $\log T$ to $\log \alpha$ Dependence: Decomposition of Gaussian Measures

Let $\mu^{\times 2}(2 A)=\mu(A)$ be the dilation of μ by a factor of 2 .

Lemma

Let $\mu \in \mathcal{P}(\mathcal{X})$ be a centered Gaussian measure, and K a symmetric convex set with $\mu(K) \geq 1-\delta$. Then there exists a decomposition of μ into $\mu_{g o o d}, \mu_{b a d}$ with:
(1) $\mu=(1-\delta) \mu_{g o o d}+\delta \mu_{b a d}$.
(2) $\mu_{\text {good }} \preceq \mu$.
(3) $\mu_{\text {good }}$ is supported inside $10 K$.
(9) $\mu_{b a d} \preceq \mu^{\times 2}$.

Application with $\delta \leq \alpha^{-10}$ and Brownian motion $\mu_{i}=\mathbb{P}([i, i+1])$:

- $K=K([i, i+1], 10 \sqrt{\log \alpha})=\left\{\mathrm{B}_{[i, i+1]}: \sup _{i \leq s, t \leq i+1}\left\|\mathrm{~B}_{t}-\mathrm{B}_{s}\right\| \leq 10 \sqrt{\log \alpha}\right\}$.
- The main argument applies to $\mu_{\text {good }}$, via (3).
- The k-th level of recursion requires $\mu_{\text {good }_{k}}$ to be defined.
- Nothing terrible on the rare bad intervals, by 4.

The lemma gives identical decompositions of Brownian motion on each $[i, i+1]$:

$$
\mathbb{P}([i, i+1])=\left(1-\alpha^{-10}\right) \mu_{\mathrm{good}_{i}}+\alpha^{-10} \mu_{\mathrm{bad}_{i}}
$$

The lemma gives identical decompositions of Brownian motion on each $[i, i+1]$:

$$
\mathbb{P}([i, i+1])=\left(1-\alpha^{-10}\right) \mu_{\mathrm{good}_{i}}+\alpha^{-10} \mu_{\mathrm{bad}_{i}}
$$

Then we can represent the full Wiener measure as a product:

$$
\begin{aligned}
\mathbb{P}([0, T]) & =\sum_{\gamma \in\{\text { good,bad }\}^{T}} w(\gamma) \prod_{i=0}^{T-1} \mu_{\gamma_{i}} \\
w(\gamma) & =\left(1-\alpha^{-10}\right)^{\mid \gamma^{-1}(\text { good }) \mid} \alpha^{-10\left|\gamma^{-1}(\mathrm{bad})\right|} .
\end{aligned}
$$

The lemma gives identical decompositions of Brownian motion on each $[i, i+1]$:

$$
\mathbb{P}([i, i+1])=\left(1-\alpha^{-10}\right) \mu_{\mathrm{good}_{i}}+\alpha^{-10} \mu_{\mathrm{bad}_{i}}
$$

Then we can represent the full Wiener measure as a product:

$$
\begin{aligned}
\mathbb{P}([0, T]) & =\sum_{\gamma \in\{\text { good,bad }\}^{T}} w(\gamma) \prod_{i=0}^{T-1} \mu_{\gamma_{i}} \\
w(\gamma) & =\left(1-\alpha^{-10}\right)^{\mid \gamma^{-1}(\text { good }) \mid} \alpha^{-10\left|\gamma^{-1}(\mathrm{bad})\right|}
\end{aligned}
$$

Introducing the Polaron interactions gives a modified decomposition:

$$
\widehat{\mathbb{P}}_{\alpha, T}=\sum_{\gamma \in\{\text { good,bad }\}^{T}} \widehat{w}(\gamma) \widehat{\mathrm{P}} \gamma .
$$

Using GCl , the new weight $\widehat{w}(\gamma)$ still concentrates on γ with mostly good components.

So far, we got $\left\|B_{i+1}-B_{i}\right\|^{2} \leq \widetilde{O}\left(\alpha^{-2}\right)$. This gives $m_{\text {eff }}(\alpha) \gtrsim \alpha^{2}$, but we want α^{4}.
This bound is optimal for short-time fluctuations. We must think long term.

So far, we got $\left\|B_{i+1}-B_{i}\right\|^{2} \leq \widetilde{O}\left(\alpha^{-2}\right)$. This gives $m_{\text {eff }}(\alpha) \gtrsim \alpha^{2}$, but we want α^{4}.
This bound is optimal for short-time fluctuations. We must think long term.
Heuristically, $\widehat{\mathbb{P}}_{\alpha, T}$ behaves roughly like Ornstein-Uhlenbeck on short time-scales:

$$
\mathrm{d} U_{t} \approx-\alpha U_{t}+\mathrm{d} B_{t} .
$$

Single-time fluctuations $\left\|\mathrm{B}_{i+1}-\mathrm{B}_{i}\right\|^{2} \asymp \alpha^{-2}$ are dominated by "noise".

Single-time fluctuations $\left\|B_{i+1}-B_{i}\right\|^{2} \asymp \alpha^{-2}$ are dominated by "noise".
Interval averages $\bar{B}_{[i, i+1]}=\int_{i}^{i+1} \mathrm{~B}_{t} \mathrm{~d} t$ oscillate less: $\left\|\bar{B}_{[i, i+1]}-\bar{B}_{[i+1, i+2]}\right\|^{2} \asymp \alpha^{-4}$.

- The same holds for $\widehat{\mathbb{P}}_{\alpha, T}$ by another use of GCl .

Conclusion

The Polaron path measure $\widehat{\mathbb{P}}_{\alpha, T}$ is a deformation of Brownian motion in \mathbb{R}^{3} :

$$
\mathrm{d} \widehat{\mathbb{P}}_{\alpha, T}(\mathrm{~B}) \equiv \frac{1}{Z_{\alpha, T}} \exp \left(\alpha \int_{0}^{T} \int_{0}^{T} \frac{e^{-|t-s|}}{\left\|\mathrm{B}_{t}-\mathrm{B}_{s}\right\|} \mathrm{d} t \mathrm{~d} s\right) d \mathbb{P}(\mathrm{~B}) .
$$

Main result (valid in \mathbb{R}^{d} for any $d \geq 3$):

$$
\lim _{T \rightarrow \infty} \mathbb{E}^{\widehat{\mathbb{P}}_{\alpha, T}}\left[\frac{\left\|\mathrm{~B}_{T}\right\|^{2}}{T}\right] \leq \frac{(\log \alpha)^{6}}{c \alpha^{4}}
$$

Equivalently, a lower bound on the Polaron's effective mass: $m_{\text {eff }}(\alpha) \geq \frac{c \alpha^{4}}{(\log \alpha)^{6}}$.
Together with [Brooks-Seiringer 22], this nearly resolves the prediction of [Landau-Pekar 1948] that $m_{\text {eff }}(\alpha) \approx C_{*} \alpha^{4}$.

This technique should have applications to other path measures, as we have been discussing with Volker, Steffen and Tobias.

