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Card Shuffling

@ How many shuffles are needed to mix a deck of cards?
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Card Shuffling

@ How many shuffles are needed to mix a deck of cards?

@ Depends on how you shuffle...

o Cut repeatedly

o Top to random

e Random to random
]
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Card Shuffling

@ How many shuffles are needed to mix a deck of cards?

@ Depends on how you shuffle...

o Cut repeatedly

o Top to random

e Random to random
]

e Today: riffle shuffle
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Just So We're Clear...
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The GSR Shuffle

@ Gilbert-Shannon-Reeds (GSR) model for riffle shuffles:
@ Cut deck into Bin(N, 1/2) sized piles.
® Riffle the piles together uniformly at random.
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The GSR Shuffle

@ Gilbert-Shannon-Reeds (GSR) model for riffle shuffles:
@ Cut deck into Bin(N, 1/2) sized piles.
® Riffle the piles together uniformly at random.
o Equivalent to @: if current pile sizes are A and B, drop next card from first
pile with probability ﬁAB.
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The GSR Shuffle

Gilbert-Shannon-Reeds (GSR) model for riffle shuffles:

@ Cut deck into Bin(N, 1/2) sized piles.

® Riffle the piles together uniformly at random.
o Equivalent to @: if current pile sizes are A and B, drop next card from first
pile with probability ﬁAB.

[Aldous 83, Bayer-Diaconis 92]: total variation mixing occurs after

3log,(N)
— + 0(1)

tle -

GSR shuffles.

@ Reminder: for probability distributions P, Q on finite set X, total variation
distance is

drv(P,Q) = Z|P x)|.

XEX
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In Shuffling Cards,
7 Is Winning Number

‘7 shuffles suffice’
3chewﬁork@imea January 9, 1990 |4

|

}
It takes just seven ordinary, imperfect |
shuffles to mix a deck of cards thoroughly, ‘_
researchers have found. Fewer are not enough
and more do not significantly improve the mixing.

LIS NN INNC)
‘Cord posttion in deck (35 cards of 52 shown)

The mathematical proof, discovered after studies
of results from elaborate computer calculations
and careful observation of card games, confirms
the intuition of many gamblers, bridge enthusiasts
and casual players that most shuffling is inadequate.

By saying that the deck is completely mixed after
seven shuffles, Dr. Diaconis and Dr. Bayer mean that every
arrangement of the 52 cards is equally likely or that any card
is as likely to be in one place as in another.

The cards do get more and more randomly mixed if a person keeps
on shuffling more than seven times, but seven shuffles is a
transition point, the first time that randomness is close.
Additional shuffles do not appreciably alter things...

(Arrangement by Eyal Lubetzky)
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o Cutoff phenomenon: sharp transition in distance to stationarity at mixing
time tmix = o(tmix). Many examples:
e Transpositions on S, (Diaconis-Shahshahani)
o Glauber dynamics for high-temperature Ising model (Lubetzky-Sly)
e Random walk on Ramanujan graphs (Lubetzky-Peres)

d(t)

/)

mix
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Main Result

Definition

A p-shuffle: remove the top Bin(N, p) cards from the deck and riffle as before.
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Main Result

Definition

A p-shuffle: remove the top Bin(N, p) cards from the deck and riffle as before.

For p € (0,1), the p-shuffle mixes in tmix = (Cp & 0(1)) log N steps.

M. Sellke Cutoff for Asymmetric Riffle Shuffle 7/35



Main Result

Definition

A p-shuffle: remove the top Bin(N, p) cards from the deck and riffle as before.

For p € (0,1), the p-shuffle mixes in tmix = (Cp & 0(1)) log N steps.

o Definition of Cp:
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Main Result

Definition

A p-shuffle: remove the top Bin(N, p) cards from the deck and riffle as before.

For p € (0,1), the p-shuffle mixes in twmix = (C, % 0(1)) log N steps.

o Definition of Cp:
o With g =1 —p, let 6, € [3,4) satisfy

p% +q% = (p* + a°)*.
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Main Result

Definition

A p-shuffle: remove the top Bin(N, p) cards from the deck and riffle as before.

For p € (0,1), the p-shuffle mixes in twmix = (C, % 0(1)) log N steps.

o Definition of Cp:
o With g =1 —p, let 6, € [3,4) satisfy

p% +q% = (p* + a°)*.

o Then set:
c - 346,
P 4log(1/(p? + ?))’
~ 1
G=—
P log(1/ max(p, q))
Cp = max(Cp, Ep)
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Main Result

Definition

A p-shuffle: remove the top Bin(N, p) cards from the deck and riffle as before.

For p € (0,1), the p-shuffle mixes in twmix = (C, % 0(1)) log N steps.

o Definition of Cp:
o With g =1 —p, let 6, € [3,4) satisfy

p% +q% = (p* + a°)*.

e Then set:
c_ 340,
P 4log(1/(p? + 62))’
~ 1
o=,
P log(1/ max(p, q))
Cp = max(Cp, Ep)
@ Similar result for k-partite shuffles given any (p1, p2,- -, p«).
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The Bayer-Diaconis Analysis

o After one riffle shuffle, the deck contains only 2 rising sequences.
°
°
A 2 3 4115 6
“n¥e ey e
;
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The Bayer-Diaconis Analysis

o After one riffle shuffle, the deck contains only 2 rising sequences.
°
°
A 2 3 4115 6
“n¥e ey e
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o After t shuffles, < 2 rising sequences.
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o After one riffle shuffle, the deck contains only 2 rising sequences.
°
°
A 2 3 4115 6
“n¥e ey e
;

o After t shuffles, < 2 rising sequences.

@ A miracle: after t GSR shuffles, the deck distribution is uniformly random
conditioned on the number of rising sequences.
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The Bayer-Diaconis Analysis

o After one riffle shuffle, the deck contains only 2 rising sequences.

. FEEEEEDEERRYE

:
A 2 3 4|5 6
gy ¥ gty

. FEEEEEEEEEEE

o After t shuffles, < 2 rising sequences.

@ A miracle: after t GSR shuffles, the deck distribution is uniformly random
conditioned on the number of rising sequences.

e Remains to analyze a 1 dimensional sufficient statistic.
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The Bayer-Diaconis Analysis

o After one riffle shuffle, the deck contains only 2 rising sequences.

. FEEEEEDEERRYE

:
A 2 3 4|5 6
gy ¥ gty

. FEEEEEEEEEEE

o After t shuffles, < 2 rising sequences.

@ A miracle: after t GSR shuffles, the deck distribution is uniformly random
conditioned on the number of rising sequences.

e Remains to analyze a 1 dimensional sufficient statistic.

o With asymmetry, this miracle breaks. A new proof is needed.
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Other Shuffles

@ Many shuffling models have been studied:
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Other Shuffles

@ Many shuffling models have been studied:

o Top-to-random: cutoff at t;x = N log N [Diaconis-Fill-Pitman 1992].
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Other Shuffles

@ Many shuffling models have been studied:

o Top-to-random: cutoff at t;x = N log N [Diaconis-Fill-Pitman 1992].
o Random-to-random: cutoff at %Nlog N [Subag 2013, Bernstein-Nestoridi 18].
o Cyclic-to-random: tix = ©(N log N) [Pinsky 2015, Morris-Ning-Peres 2014].

o Adjacent transpositions: cutoff at tyix =

3
N1 N wilson 2004, Lacoin 2016].
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Other Shuffles

@ Many shuffling models have been studied:

o Top-to-random: cutoff at t;x = N log N [Diaconis-Fill-Pitman 1992].

Random-to-random: cutoff at %N log N [Subag 2013, Bernstein-Nestoridi 18].

Cyclic-to-random: ty,ix = ©(N log N) [Pinsky 2015, Morris-Ning-Peres 2014].

o Adjacent transpositions: cutoff at tyix =

3
N1 N wilson 2004, Lacoin 2016].

Thorpe (perfect) riffle shuffle: tyix < O(Iog3 N)
[Montenegro-Tetali 2006, Morris 2005 & 2006 & 2008].
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Other Shuffles

@ Many shuffling models have been studied:

o Top-to-random: cutoff at t;x = N log N [Diaconis-Fill-Pitman 1992].
o Random-to-random: cutoff at %Nlog N [Subag 2013, Bernstein-Nestoridi 18].
o Cyclic-to-random: tix = ©(N log N) [Pinsky 2015, Morris-Ning-Peres 2014].

o Adjacent transpositions: cutoff at tyix =

3
N1 N wilson 2004, Lacoin 2016].

o Thorpe (perfect) riffle shuffle: tyix < O(Iog3 N)
[Montenegro-Tetali 2006, Morris 2005 & 2006 & 2008].

o Markovian riffling: tmix < O(log* N) [Jonasson-Morris 2015].
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Results on the Asymmetric Riffle Shuffle

o [Bidigare-Hanlon-Rockmore 99, Brown-Diaconis 98, Stanley 01]:
Eigenvalues are real, given by power sum symmetric functions.
Connections to hyperplane arrangements.
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Results on the Asymmetric Riffle Shuffle

o [Bidigare-Hanlon-Rockmore 99, Brown-Diaconis 98, Stanley 01]:
Eigenvalues are real, given by power sum symmetric functions.
Connections to hyperplane arrangements.

@ [Assaf-Diaconis-Soundarajan 2011]: Cutoff with O(1) window in L* and
separation distance. These are stricter notions of mixing involving worst

P(x)
case values of )
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Results on the Asymmetric Riffle Shuffle

o [Bidigare-Hanlon-Rockmore 99, Brown-Diaconis 98, Stanley 01]:
Eigenvalues are real, given by power sum symmetric functions.
Connections to hyperplane arrangements.

@ [Assaf-Diaconis-Soundarajan 2011]: Cutoff with O(1) window in L* and
separation distance. These are stricter notions of mixing involving worst
case values of 28

o [Lalley 2000]: Sharp lower bound for p close to {0, 1, 1}.
Identified the key cold spots phenomenon.
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Transforming the Problem

o Consider a single riffle shuffle:

0o o U

0 00
50 oo =0
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Transforming the Problem

o Consider a single riffle shuffle:

10000000070
58 oD oo

0 0 1 0 0 0 1 1 0 1
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Transforming the Problem

o Consider a single riffle shuffle:

10000000070
58 oD oo

@ To separate the two rising sequences, consider the inverse permutation
(now with card labels).
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Transforming the Problem

o Now, forget everything except the pile sizes.

0 0 1 0 0 0 1 1 0 1 ? ? ? ? 9 ? ? ? ? 9
71 E ﬂ ? ? ? ? ? ? ? ? ? ?
1
T°0F W - 0000000000
o 0 0 0 0 0 0 1 1 1 1
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Transforming the Problem

o Now, forget everything except the pile sizes.

o o 1 o o o 1 1 0 1 2 92 92 2 92 92 92 2 9 9
Eﬂ AN T T TR SR S S S I 1

1
ol - 000000 oo0o0ao

0 0 0 0 0 0 1 1 1
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Transforming the Problem

o Now, forget everything except the pile sizes.

o
<
=3
=3
<
~
~
~

ol - 0000000000

0 0 0 0 0 0 1 1 1

@ The conditional law is uniform given the constraints.
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Transforming the Problem

e For t shuffles, 2° card trajectories in {0,1} . Still uniform conditioned on

the split:
<Pl B0 [ PP
= 00 00 00 Ol Ol 01 10 10 11 11
G = *—— e L] *e—o —60 *—— e L] L]
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Transforming the Problem

e For t shuffles, 2° card trajectories in {0,1} . Still uniform conditioned on
the split:

? ? ? ? ? ? ? ? ? ?
MM BB B [

= 00 00 00 01 01 01 10 10 11 11

G

o Conclusion: can generate the inverse of a p** shuffle as 7° below:
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Transforming the Problem

e For t shuffles, 2° card trajectories in {0,1} . Still uniform conditioned on
the split:

? ? ? ? ? ? ? ?
Fl<P<F] <<l [ [1)<[]

= 00 00 00 01 01 01 10 10 11 11

G

o Conclusion: can generate the inverse of a p** shuffle as 7° below:
@ Generate N i.i.d. p-biased strings in {0,1}*. Sort into increasing order:

S=(s1,52,"",sn), s1<s2<---<spy.

S = (000, 010, 010, o011, 101, 101, 101, 110, 110, 111)
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Transforming the Problem

e For t shuffles, 2° card trajectories in {0,1} . Still uniform conditioned on
the split:

? ? ? ? ? ? ? ? ? ?
MM BB B [

= 00 00 00 01 01 01 10 10 11 11

G

o Conclusion: can generate the inverse of a p** shuffle as 7° below:
@ Generate N i.i.d. p-biased strings in {0,1}*. Sort into increasing order:

S=(s1,52,"",sn), s1<s2<---<spy.

® Connect (i,i+ 1) if s; = si+1, forming a graph G = G(S).

S = (000, 010, 010, o011, 101, 101, 101, 110, 110,  111)

G = . .
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Transforming the Problem

e For t shuffles, 2° card trajectories in {0,1} . Still uniform conditioned on

the split:
<Pl B0 [ PP
= 00 00 00 Ol Ol 01 10 10 11 11
G = *—— e L] *e—o —60 *—— e L] L]

o Conclusion: can generate the inverse of a p** shuffle as 7° below:
@ Generate N i.i.d. p-biased strings in {0,1}*. Sort into increasing order:

S=(s1,52,""-,5n), s1<s2<---<sy.

® Connect (i,i+ 1) if s; = si+1, forming a graph G = G(S).
© Choose 7 € Sy uniformly. Sort 7 within G-components, forming 7€ € Sy.

= (000, 010, 010, 011, 101, 101, 101, 110, 110, 111)

T = 3 4 2 8 7 1 5 6 10 9

T N
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Transforming the Problem

e For t shuffles, 2° card trajectories in {0,1} . Still uniform conditioned on
the split:

? ? ? ? ? ? ? ? ? ?
MM BB B [

= 00 00 00 01 01 01 10 10 11 11

G

o Conclusion: can generate the inverse of a p** shuffle as 7° below:
@ Generate N i.i.d. p-biased strings in {0,1}*. Sort into increasing order:

S=(s1,52,"",sn), s1<s2<---<spy.

® Connect (i,i+ 1) if s; = si+1, forming a graph G = G(S).
© Choose 7 € Sy uniformly. Sort 7 within G-components, forming 7€ € Sy.

= (000, 010, 010, 011, 101, 101, 101, 110, 110, 111)

T = 3 4 2 8 7 1 5 6 10 9

T N

o Inversion does not affect distance to uniformity. How uniform is 7¢?7
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Easy Lower and Upper Bounds

o Mixed after t shuffles < =€ is close to uniform.

S = (000, o010, o010, o011, 101, 101, 101, 110, 1

=

0, 111)
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Easy Lower and Upper Bounds

o Mixed after t shuffles < =€ is close to uniform.

S = (000, o010, 010, 011, 101, 101, 101, 110, 110, 111)

10 9

6
: > T, b
= 3 2 My 1 5 76 10 9

@ Lower bound (tight for p > 0.72):

. log N
= log(1/p)
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Easy Lower and Upper Bounds

o Mixed after t shuffles < =€ is close to uniform.

S = (000, o010, 010, 011, 101, 101, 101, 110, 110, 111)

6 10 9
= 3 2><4 8 1>}<7 ; 1l0 9
@ Lower bound (tight for p > 0.72):

. log N

"7 log(1/p)

o If t < %, smallest N9 strings are typically all zero:

51:52:“':5,\/5 :Ot.

o Then 7¢(1) < 7¢(2) < --- < w®(N%). Not a uniform permutation.

M. Sellke Cutoff for Asymmetric Riffle Shuffle 15 /35



Easy Lower and Upper Bounds

o Mixed after t shuffles < =€ is close to uniform.

S = (000, o010, 010, 011, 101, 101, 101, 110, 110, 111)

10 9

6
: > T, b
= 3 2 My 1 5 76 10 9

@ Lower bound (tight for p > 0.72):
. log N
"7 log(1/p)

w, smallest N9 strings are typically all zero:

° IS Sogrm)

51:52:“':5,\/5 :Ot.

o Then 7¢(1) < 7¢(2) < --- < w®(N%). Not a uniform permutation.
o Upper bound (never tight):

. 2log N
7 log (1/(p% + 92))°
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Easy Lower and Upper Bounds

o Mixed after t shuffles < =€ is close to uniform.

S = (000, o010, 010, 011, 101, 101, 101, 110, 110, 111)

10 9

6
: > T, b
= 3 2 My 1 5 76 10 9

@ Lower bound (tight for p > 0.72):

. log N
= log(1/p)

o If t < %, smallest N9 strings are typically all zero:

51252:“'=SN5 :Ot.
o Then 7¢(1) < 7¢(2) < --- < w®(N%). Not a uniform permutation.
o Upper bound (never tight):

. 2log N
7 log (1/(p% + 92))°

o Ift > (isdlogN _ypo strings (s1,--- ,sn) are typically all distinct.

= log(1/(p?+42))’
e On this event, G has no edges and 76 = 7 is uniform.
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Cold Spots: Another Obstruction to Mixing

o Lalley identified the constant C, = 340 ) based on cold spots.

4log(1/(p?+4q2
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o Lalley identified the constant C, = 340 ) based on cold spots.

4log(1/(p?+4q2

e Suppose x € {0,1}**) is a prefix with probability > N~/2,
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Cold Spots: Another Obstruction to Mixing

o Lalley identified the constant C, = 340 ) based on cold spots.

4log(1/(p?+4q2

o Suppose x € {0,1}**) is a prefix with probability > N~%/2,

@ Strings sj,...,s; with prefix x form an interval /(x) = {i,---,j} C [N] of
length |/(x)| > N*/2. The location of /(x) is essentially deterministic.
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Cold Spots: Another Obstruction to Mixing

3+0, ) based on cold spots.

o Lalley identified the constant C, = Tog/ ()

o Suppose x € {0,1}**) is a prefix with probability > N~%/2,

@ Strings sj,...,s; with prefix x form an interval /(x) = {i,---,j} C [N] of
length |/(x)| > N*/2. The location of /(x) is essentially deterministic.

o With asymmetry, £(x) can be larger if x's digits are very skewed.
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Cold Spots: Another Obstruction to Mixing

o Lalley identified the constant C, = 340 ) based on cold spots.

4log(1/(p?+4q2

—1/2

Suppose x € {0, 1}e(x) is a prefix with probability > N

Strings sj, ..., s; with prefix x form an interval I(x) = {i,---,j} C [N] of
length |/(x)| > N*/2. The location of /(x) is essentially deterministic.

With asymmetry, £(x) can be larger if x's digits are very skewed.

For ¢(x) large, the local edge density of G within /(x) is also large:
PI(7,i +1) € E(G)] (5% + ).

Then I(x) is a cold spot. Many G-edges = 7 has extra ascents.
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Cold Spots: Another Obstruction to Mixing

3+0, ) based on cold spots.

o Lalley identified the constant C, = Tog/ ()

o Suppose x € {0,1}**) is a prefix with probability > N~%/2,

@ Strings sj,...,s; with prefix x form an interval /(x) = {i,---,j} C [N] of
length |/(x)| > N*/2. The location of /(x) is essentially deterministic.

o With asymmetry, £(x) can be larger if x's digits are very skewed.

o For {(x) large, the local edge density of G within /(x) is also large:
PI(7,i +1) € E(G)] (5% + ).

Then I(x) is a cold spot. Many G-edges = 7 has extra ascents.

o Leads to a statistical test for  vs 7 ¢:
@ Fix a digit profile (cp, c1): prefix x must contain ¢ log N digits 0 and
c1 log N digits 1.
® Count ascents in the cold spots for all such x.
© Check if the number of ascents is typical for a uniform permutation.
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A Precise Heuristic from Ascents

e For o € Sy, define the ascent set

Alo)={ie[N-1]:0(i+1) > o(i)}.
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A Precise Heuristic from Ascents

e For o € Sy, define the ascent set

Alo)={ie[N-1]:0(i+1) > o(i)}.

o Set a; =P[(i,i + 1) € E(G)]. With uniform m € Sy, expect roughly

1+ a;

Pli € A(m)] = 1/2, Pli € A(x€)] = =
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A Precise Heuristic from Ascents

e For o € Sy, define the ascent set

Alo)={ie[N-1]:0(i+1) > o(i)}.

o Set a; =P[(i,i + 1) € E(G)]. With uniform m € Sy, expect roughly

1+ a;

Pli € A(m)] = 1/2, Pli € A(x€)] = =

@ Let's pretend these events are independent over .
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A Precise Heuristic from Ascents

e For o € Sy, define the ascent set

Alo)={ie[N-1]:0(i+1) > o(i)}.

o Set a; =P[(i,i + 1) € E(G)]. With uniform m € Sy, expect roughly

Pli € A(m)] = 1/2, P[i € A(x)] = HTQ

@ Let's pretend these events are independent over .

@ Then for uniform o € Sy, likelihood ratio is random product
P[r® = o] _ -

P =o] - [Ja+a)

i=1
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Behavior of an Independent Random Product

o Claim: if Y, a7 < 1, then with high probability

N—-1

[[a+ta)~1.

i=1
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Behavior of an Independent Random Product

o Claim: if Y, a7 < 1, then with high probability

N—1
[[a+ta)~1.

i=1

o While = 1, partial products form a martingale with QV = 31.2.
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Behavior of an Independent Random Product

o Claim: if Y, a7 < 1, then with high probability
N—1
[[a+ta)~1.
i=1
o While = 1, partial products form a martingale with QV = 31.2.

o Claim: if _,a? > 1, then with high probability

N—1
[[a+a) <1
i=1
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Behavior of an Independent Random Product

o Claim: if Y, a7 < 1, then with high probability

N—-1

[[a+ta)~1.

i=1

o While = 1, partial products form a martingale with QV = 31.2.

o Claim: if _,a? > 1, then with high probability

N—1
[[a+a) <1

i=1

2
o Follows from LLN and E[log(1 +2;)] <1 — %
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Behavior of an Independent Random Product

o Claim: if Y, a7 < 1, then with high probability
N—1
[[a+ta)~1.
i=1
o While = 1, partial products form a martingale with QV = 31.2.
o Claim: if _,a? > 1, then with high probability
N—1
[[a+a) <1
i=1

2
e Follows from LLN and E[log(1 + a;)] <1 — %’
o Convenient observation: with G’ an independent copy of G,

Za, =E[|E(G)nE(G")]].
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Behavior of an Independent Random Product

o Claim: if Y, a7 < 1, then with high probability

N—-1

[[a+ta)~1.
i=1
o While = 1, partial products form a martingale with QV = 31.2.
o Claim: if _,a? > 1, then with high probability

N—1

[[a+a) <1

i=1

2
o Follows from LLN and E[log(1 +2;)] <1 — %
o Convenient observation: with G’ an independent copy of G,

Za, =E[|E(G)nE(G")]].

o Write E(G,G’) = E(G) N E(G’) for the set of shared edges. Expect:
Mixed after t shuffles <= E[|E(G,G")|] < 1.
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The True Picture

@ When the first moment
E[|E(G,G)|] > N°

is large, not mixed.
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The True Picture

@ When the first moment
E[|E(G,G)|] > N°

is large, not mixed.

@ When (truncated) exponential moment
E |:ec<\E(G,G’)|:| <14 O(N—6)

is small for bounded ¢, mixed.
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The True Picture

@ When the first moment
E[|E(G,G)|] > N°

is large, not mixed.

@ When (truncated) exponential moment
E |:ec4\E(G,G’)|:| <14 O(N—6)
is small for bounded ¢, mixed.

o Fortunately, these criteria match: |E(G, G')] transitions from > 1 to < 1
almost simultaneously in 1st and exponential moment senses.

o (Not quite true for k-partite shuffles.)
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Proof Overview

@ Three main components in the proof:
@ Show mixing if |E(G, G’)| has small exponential moments:

E[eclE(G-€N] <14 N0,

(Up to some truncation.)
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Proof Overview

@ Three main components in the proof:
@ Show mixing if |E(G, G’)| has small exponential moments:

E[eclE(G-€N] <14 N0,

(Up to some truncation.)

® Reduce exponential moment to first moment control

E[IE(G, 6" < N~°.
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Proof Overview

@ Three main components in the proof:
@ Show mixing if |E(G, G’)| has small exponential moments:

E[eclE(G-€N] <14 N0,

(Up to some truncation.)

® Reduce exponential moment to first moment control

E[IE(G, 6" < N~°.

© Understand first moment = upper bound ty,ix.
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Proof Overview

@ Three main components in the proof:
@ Show mixing if |E(G, G’)| has small exponential moments:

]E[ec|E(G,G/)|] S 14 N75.
(Up to some truncation.)

® Reduce exponential moment to first moment control

E[IE(G, 6" < N~°.

© Understand first moment = upper bound ty,ix.

@ Main contribution to first moment = optimal choice of cold spots to lower
bound tmix.

M. Sellke Cutoff for Asymmetric Riffle Shuffle 20/35



x2 Upper Bound on TV Distance

o To upper-bound distance from uniformity, use the “x? trick”.
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x2 Upper Bound on TV Distance

o To upper-bound distance from uniformity, use the “x? trick”.
o Let F(o) = N!' - P,oy(s,).6~g[m® = o]. TV distance to uniformity is

EqusnllF(e) = 1]].
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x2 Upper Bound on TV Distance

o To upper-bound distance from uniformity, use the “x? trick”.
o Let F(o) = N!' - P,oy(s,).6~g[m® = o]. TV distance to uniformity is

EqusnllF(e) = 1]].

o As E, .y, [F(o)] = 1, Cauchy-Schwarz gives

?
(EUNU(Sn)‘F(U) - 1‘)2 < EO'NU(S,,)[F(U)Z -1« 1L
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x2 Upper Bound on TV Distance

To upper-bound distance from uniformity, use the “x? trick”.

Let F(o) = N! - P Lys,),6~g[m¢ = o]. TV distance to uniformity is
EqusnllF(e) = 1]].

As E,ys,)[F(o)] = 1, Cauchy-Schwarz gives

?
(EUNU(Sn)‘F(U) - 1‘)2 < EO'NU(S,,)[F(U)Z -1« 1L

@ Let (7', G’) be an independent copy. Then
F(o)? = (N')? - P[xC = o, (7)€ = 0]
= Eonuys)[F(0)’] = N1 P[r° = ()],
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x2 Upper Bound on TV Distance

To upper-bound distance from uniformity, use the “x? trick”.

Let F(o) = N! - P Lys,),6~g[m¢ = o]. TV distance to uniformity is
EqusnllF(e) = 1]].

As E,ys,)[F(o)] = 1, Cauchy-Schwarz gives

?
(EUNU(Sn)‘F(U) - 1‘)2 < EO'NU(S,,)[F(U)Z -1« 1L

@ Let (7', G’) be an independent copy. Then
F(o)? = (N')? - P[xC = o, (7)€ = 0]
= Eonuys)[F(0)’] = N1 P[r° = ()],

Define

fo,6r = N!-Pr v ouisy [7° = (7)€ ]G, G'].

fc.cr measures “interaction” between G and G’. We'll try to show:

?
E¢.¢'~gllfs,e — 1] = 0.
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Reducing Upper Bound to Exponential Moment

@ Suppose G, G’ have no shared or adjacent edges.

G = . e— o . . . . o —eo ]
s = 9 10}>< 4 7 6 3 8 2 1 5
¢ = 9 4 10 7 6 3 8 1 2 5
el = . . . . o—0o—o . . .
i = 10 3 1 9 2 8 6 5 7 4

' \L x
()¢ = 10 3 1 9 2 6 8 5 7 4
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Reducing Upper Bound to Exponential Moment

@ Suppose G, G’ have no shared or adjacent edges.

G = o e~ o o o o o e—0 o
7r = 9 10 4 7 6 3 8 2 1 5
it = 9 4><10 7 6 3 8 1><2 5
G = o . e o eo—9e—9o o o o
7r' = 10 3 1 9 8 6 5 7 4

(¢ = 10 3 1 9

@ Then the transformations (-)¢ and (~)G/ “don’t interact”. So,
fo.r = NI -Pr o [n€ = ()]G, Gl = 1

as if 7€, (w’)G/ were uniform and independent. Good so far...
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Reducing Upper Bound to Exponential Moment

@ Now suppose G, G’ share a single edge (i,i + 1).

G = ° e — o ° ° . . e —oeo °
T = 9 10>< 4 7 6 3 8 2 1 5
7€ = 9 4 0w 7 6 3 8 1 2 5
el = ° e —o ° e—o—o . . .
I = 10 3 1 9 2 8 6 5 7 4

, el I X
(#)¢ = 10 1 3 9 2 6 8 5 7 4
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Reducing Upper Bound to Exponential Moment

@ Now suppose G, G’ share a single edge (i,i + 1).

G = ° e — o ° ° . . e —oeo °
T = 9 10>< 4 7 6 3 8 2 1 5
7€ = 9 4 0w 7 6 3 8 1 2 5
el = ° e —o ° e—o—o . . .
I = 10 3 1 9 2 8 6 5 7 4

, el I X
(#)¢ = 10 1 3 2 6 8 5 7 4

o Then (i, i+ 1) is always an ascent for 7€ and (7')¢ . Result:

foor =Nl P, [n€ = (x)] =2
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Reducing Upper Bound to Exponential Moment

@ Now suppose G, G’ share a single edge (i,i + 1).

G = ° e— o ° . . . o—eo .
T = 9 10>< 4 7 6 3 8 2 1 5
7€ = 9 4 0w 7 6 3 8 1 2 5
el = ° o— o ° o— o — o ° ° °
I = 10 3 1 9 2 8 6 5 7 4

, el I X
(#)¢ = 10 1 3 2 6 8 5 7 4

o Then (i, i+ 1) is always an ascent for 7€ and (7')¢ . Result:

foor =N P, [x¢ = ()] =2

@ Disjoint interactions between G, G’ combine multiplicatively.

@ Assuming “constant diameter” interactions (via truncation):

feo < ec|E(G,G’)\.
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Onto Step 2...

® Show mixing if |[E(G, G')| has small truncated exponential moments:

E[eSEE] <1+ N,

® Reduce exponential moments to the first moment bound

E[E(G.G")] < N~

©® Understand first moment —> upper bound tyix.

e Main contribution to first moment = optimal choice of cold spots to
lower bound tp,ix-
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Hazard Rate Method to Bound Exponential Moments

@ Suppose random variable X € Z>¢ has hazard rate uniformly close to 1:

supP[ X > j+ 11X >j]<e.

j=0
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Hazard Rate Method to Bound Exponential Moments

@ Suppose random variable X € Z>¢ has hazard rate uniformly close to 1:

supP[ X > j+ 11X >j]<e.

j=0

o Then E[e?X] = 1+ O(ce) follows for ¢ <« 71,
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Hazard Rate Method to Bound Exponential Moments

@ Suppose random variable X € Z>¢ has hazard rate uniformly close to 1:

supP[ X > j+ 11X >j]<e.

j=0

o Then E[e?X] = 1+ O(ce) follows for ¢ <« 71,
@ Try taking X = |E(G, G")|. Explore (s1,s1),(s2,52), - - (s, sy) in order.
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Hazard Rate Method to Bound Exponential Moments

@ Suppose random variable X € Z>¢ has hazard rate uniformly close to 1:

supP[ X > j+ 11X >j]<e.

j=0

o Then E[e?X] = 1+ O(ce) follows for ¢ <« 71,
@ Try taking X = |E(G, G")|. Explore (s1,s1),(s2,52), - - (s, sy) in order.
@ Hope: at any time, E(G, G') is unlikely to have more edges.
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Hazard Rate Method to Bound Exponential Moments

@ Suppose random variable X € Z>¢ has hazard rate uniformly close to 1:

supP[ X > j+ 11X >j]<e.
j=0
o Then E[e?X] = 1+ O(ce) follows for ¢ <« 71,
@ Try taking X = |E(G, G")|. Explore (s1,s1),(s2,52), - - (s, sy) in order.
@ Hope: at any time, E(G, G') is unlikely to have more edges.

S = (000, 010, 77?7, 7?7, ??T, 7T, PT?L P77, 777, 777)
G = . . . . . . . . . .
S’ = (001, 001, 77?7, 7?7, ??T, 7T, VT, P77, 777, 777)
G = . . . . . . . . . .
EG,G) = . . . . . . . . . .
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Hazard Rate Method to Bound Exponential Moments

@ Suppose random variable X € Z>¢ has hazard rate uniformly close to 1:

supP[ X > j+ 11X >j]<e.
j=0
o Then E[e?X] = 1+ O(ce) follows for ¢ <« 71,
@ Try taking X = |E(G, G")|. Explore (s1,s1),(s2,52), - - (s, sy) in order.
@ Hope: at any time, E(G, G') is unlikely to have more edges.

S = (000, 010, 010, 7?7, ???, PP, ?PT, 7?7, 777, 777)
G = . . . . . . . . . .
S’ = (001, 001, 001, 7?7, ??T, YT, ?PT, 7?7, 777, 777)
G = . . . . . . . . . .
EG,G) = . . . . . . . . . .
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Hazard Rate Method to Bound Exponential Moments

@ Suppose random variable X € Z>¢ has hazard rate uniformly close to 1:

supP[ X > j+ 11X >j]<e.
j=0
o Then E[e?X] = 1+ O(ce) follows for ¢ <« 71,
@ Try taking X = |E(G, G")|. Explore (s1,s1),(s2,52), - - (s, sy) in order.
@ Hope: at any time, E(G, G') is unlikely to have more edges.

S = (000, 010, 010, 011, 7?7, P77, ??7, 7?7, 777, 777)
G = . . . . . . . . . .
S’ = (001, 001, 001, o011, 7?7, P77, 7?7, 7?7, 777, 777)
G = . . . . . . . . . .
EG,G) = . . . . . . . . . .
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Hazard Rate Method to Bound Exponential Moments

@ Suppose random variable X € Z>¢ has hazard rate uniformly close to 1:

supP[ X > j+ 11X >j]<e.
j=0
o Then E[e?X] = 1+ O(ce) follows for ¢ <« 71,
@ Try taking X = |E(G, G")|. Explore (s1,s1),(s2,52), - - (s, sy) in order.
@ Hope: at any time, E(G, G') is unlikely to have more edges.

S = (000, 010, 010, 011, 101, 7?7, 7?7, 777, 777, 777)
G = . . . . . . . . . .
S’ = (001, 001, 001, 011, o011, ???7, 7?7, 7?7, 777, 777)
G = . . . . . . . . . .
EG,G) = . . . . . . . . . .
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Hazard Rate Method to Bound Exponential Moments

@ Suppose random variable X € Z>¢ has hazard rate uniformly close to 1:

supP[ X > j+ 11X >j]<e.
j=0
o Then E[e?X] = 1+ O(ce) follows for ¢ <« 71,
@ Try taking X = |E(G, G")|. Explore (s1,s1),(s2,52), - - (s, sy) in order.
@ Hope: at any time, E(G, G') is unlikely to have more edges.

S = (000, 010, 010, 011, 101, 101, 7?7, 777, 777, 777)
G = . . . . . . . . . .
S’ = (001, 001, 001, 011, o011, 010, 7?7, 7?7, 777, 777)
G = . . . . . . . . . .
EG,G) = . . . . . . . . . .
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Hazard Rate Method to Bound Exponential Moments

@ Suppose random variable X € Z>¢ has hazard rate uniformly close to 1:

supP[ X > j+ 11X >j]<e.
j=0
o Then E[e?X] = 1+ O(ce) follows for ¢ <« 71,
@ Try taking X = |E(G, G")|. Explore (s1,s1),(s2,52), - - (s, sy) in order.
@ Hope: at any time, E(G, G') is unlikely to have more edges.

S = (000, o010, 010, 011, 101, 101, 101, 7?7, 7?7, 777)
G = . . . . . . . . . .
S’ = (001, o001, 001, 011, 011, 010, 010, 7?7, 7?7, 777)
G = . . . . . . . . . .
EG,G) = . . . . . . . . . .

M. Sellke Cutoff for Asymmetric Riffle Shuffle 25 /35



Hazard Rate Method to Bound Exponential Moments

@ Suppose random variable X € Z>¢ has hazard rate uniformly close to 1:

supP[ X > j+ 11X >j]<e.
j=0
o Then E[e?X] = 1+ O(ce) follows for ¢ <« 71,
@ Try taking X = |E(G, G")|. Explore (s1,s1),(s2,52), - - (s, sy) in order.
@ Hope: at any time, E(G, G') is unlikely to have more edges.

S = (000, 010, 010, 011, 101, 101, 101, 110, 7?7, ?77)
G = . . . . . . . . . .
S’ = (001, 001, 001, 011, 011, 010, 010, 100, 7?7,  ?77)
G = . . . . . . . . . .
EG,G) = . . . . . . . . . .

M. Sellke Cutoff for Asymmetric Riffle Shuffle 25 /35



Hazard Rate Method to Bound Exponential Moments

@ Suppose random variable X € Z>¢ has hazard rate uniformly close to 1:

supP[ X > j+ 11X >j]<e.
j=0
o Then E[e?X] = 1+ O(ce) follows for ¢ <« 71,
@ Try taking X = |E(G, G")|. Explore (s1,s1),(s2,52), - - (s, sy) in order.
@ Hope: at any time, E(G, G') is unlikely to have more edges.

S = (000, 010, 010, 011, 101, 101, 101, 110, 111, ??77)
G = . . . . . . . . . .
S’ = (001, 001, 001, 011, 011, 010, 010, 100, 111, ??77)
G = . . . . . . . . . .
EG,G) = . . . . . . . . . .
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Hazard Rate Method to Bound Exponential Moments

@ Suppose random variable X € Z>¢ has hazard rate uniformly close to 1:

supP[ X > j+ 11X >j]<e.
j=0
o Then E[e?X] = 1+ O(ce) follows for ¢ <« 71,
@ Try taking X = |E(G, G")|. Explore (s1,s1),(s2,52), - - (s, sy) in order.
@ Hope: at any time, E(G, G') is unlikely to have more edges.

s = (000, 010, 010, o011, 101, 101, 101, 110, 111, 111)
G = . . . . . . . . . .
S’ = (001, 001, 001, 011, 011, 010, 010, 100, 111, 111)
G = . . . . . . . . . .
EG,G) = . . . . . . . . «—
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Hazard Rate Method to Bound Exponential Moments

@ Suppose random variable X € Z>o has hazard rate uniformly close to 1:

SupPIX > j+ 11X > ] < =.
j=0
o Then E[eCX] =1+ O(ce) follows for ¢ < e~ 1.
e Try taking X = |E(G, G")|. Explore (s1,51),(s2,52), - (sn,sy) in order.

@ Hope: at any time, E(G, G’) is unlikely to have more edges.

S = (000, 010, o010, 011, 101, 101, 101, 110, 111,  111)
G = . . . . . . . . . .
s’ = (001, 001, 001, 011, 011, 010, 010, 100, 111, 111)
el = . . . . . . . . . .
E@G,G) = . . . . . . . . . .

o Uhoh! If 55 =5/ =111---1, future edges are guaranteed to be in
E(G, G'). The exploration “ran out of space”.
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Forward-Backward Covering of E(G, G')

@ Fix: explore both forward and backward. Stop exploration early.

E(G,G")

(000,
.
(001,

L]

010,

.
001,
L]

010, o011, 101, 101, 101, 110, 111, 111)
L] . . . . . L] .
001, 011, 011, 010, 010, 100, 111, 111)
. . . . . . . .
. . . . . . «—o
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Forward-Backward Covering of E(G, G')

@ Fix: explore both forward and backward. Stop exploration early.

o
E(G,G)

Etor(G,G)

(000, 010, 010, 011,

(001, 001, 001, 011,

. . . .

. . . )

. . . .
M. Sellke

101, 101, 101, 110, 111,

011, 010, 010, 100, 111,
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Forward-Backward Covering of E(G, G')

@ Fix: explore both forward and backward. Stop exploration early.

o
E(G, @)
Efor(G,G)

Epack(G, G")

(000,
.

(001,

010,
.

001,

010, 011, 101, 101, 101, 110, 111, 111)
. . . . . . . .
001, 011, 011, 010, 010, 100, 111, 111)
L] L] . L] . L] L] L]
. . . . . L] . L]
. . . . .
. . L] . L] L] L]
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Forward-Backward Covering of E(G, G')

o Fix: explore both forward and backward. Stop exploration early.

o
E(G,G)
Ejor(G,G")

Epack(G, G")

101, 101, 101, 110, 111, 111)
. . . . . .
011, 010, 010, 100, 111, 111)
L] L] L] L] L] L]

. L] . L] L] L]

. L] .
. L] . L] L] L]

o Stop forward exploration when prefix 11 appears. Backward, stop on 00.

M. Sellke
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Forward-Backward Covering of E(G, G')

@ Fix: explore both forward and backward. Stop exploration early.

s = (000, 010, 010, 011, 101, 101, 101, 110, 111, 111)
G = . . . . . . . . . .
s = (001, 001, 001, o011, 011, 010, 010, 100, 111, 111)
el = . . . . D) . . . . .
E(G,G) = . . . . . . . . . .
(G G) = e . . . . . .
Epack(G,G') = . . . . . . .

@ Stop forward exploration when prefix 11 appears. Backward, stop on 00.
@ Use hazard rate method on |Ex (G, G')| and |Epack (G, G')| separately.
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Forward-Backward Covering of E(G, G')

o Fix: explore both forward and backward. Stop exploration early.

E(G,G")
Eor(G,G)

Epack(G, G")

(000, 010,
. .
(001, o001,
. .

. .

. .

010, 011, 101, 101,

001, 011, 011, 010,

110,

100,

11, 111)

11, 111)

@ Stop forward exploration when prefix 11 appears. Backward, stop on 00.

@ Use hazard rate method on |Ex, (G, G')| and |Epack (G, G')

separately.

e Can ensure E(G, G") = Etr(G, G') U Epack (G, G”) by truncation. Then

CCIEG.GN] <

(e21Ber (6N | g2elEmat( 6. /g o

M. Sellke

Cutoff for Asymmetric Riffle Shuffle

26 /35




Conditional Behavior of Forward Exploration

@ Want to control unrevealed edges in Er, (G, G’) under conditioning.
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Conditional Behavior of Forward Exploration

@ Want to control unrevealed edges in Er, (G, G’) under conditioning.

e Given s;, relevant strings lie in “lexicographic subinterval” of {0, 1}
between s; and 11.
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Conditional Behavior of Forward Exploration

@ Want to control unrevealed edges in Er, (G, G’) under conditioning.

e Given s;, relevant strings lie in “lexicographic subinterval” of {0, 1}
between s; and 11.

o Partition this subinterval into O(log N) < N° prefix blocks B,.
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Conditional Behavior of Forward Exploration

@ Want to control unrevealed edges in Er, (G, G’) under conditioning.

e Given s;, relevant strings lie in “lexicographic subinterval” of {0, 1}
between s; and 11.

o Partition this subinterval into O(log N) < N° prefix blocks B,.

s =010 Boot

@ The conditional problem reduces to smaller versions of the original
problem within each block By, with t — ¢(x) unassigned digits.
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Conditional Behavior of Forward Exploration

@ Want to control unrevealed edges in Er, (G, G’) under conditioning.

e Given s;, relevant strings lie in “lexicographic subinterval” of {0, 1}
between s; and 11.

o Partition this subinterval into O(log N) < N° prefix blocks B,.

s =010 Boot

@ The conditional problem reduces to smaller versions of the original
problem within each block By, with t — ¢(x) unassigned digits.

o By early stopping, the conditional law for the number of strings landing in
some B, can never blow up much.

M. Sellke Cutoff for Asymmetric Riffle Shuffle 27 /35



The Constants Enter in Step 3...

® Show mixing if |[E(G, G')| has small truncated exponential moments:

E[eSEC] <1+ N,

® Reduce exponential moment estimate to first moment control

E[|E(G,G")|] < N~°.

©® Understand first moment — upper bound tyix.
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The Constants Enter in Step 3...

® Show mixing if |[E(G, G')| has small truncated exponential moments:

E[eSEC] <1+ N,

® Reduce exponential moment estimate to first moment control

E[|E(G,G")|] < N~°.

©® Understand first moment — upper bound tyix.

e Main contribution to first moment = optimal choice of cold spots to
lower bound tjx.
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Controlling the First Moment

e How to understand E[|E(G, G')|]? With a; = P[(i,i + 1) € E(G)],

B[IE(6, )l = 3 &

Need to understand the values a;.
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Controlling the First Moment

e How to understand E[|E(G, G')|]? With a; = P[(i,i + 1) € E(G)],

B[IE(6, )l = 3 &

Need to understand the values a;.
e Partition {0,1}" into certain prefix blocks {Bx : x € L}.

e Partition [N] into discrete intervals /(x) of strings with prefix x.

S

G

(000, 010, 010, 011,
L] L] L] L]
1
Y
1(0)
M. Sellke

101, 101, 101, 110, 110, 111)
. . . . . .
L ) L )
T T
1(10) 1(11)
_
Typical length N:”“;
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Controlling the First Moment

e How to understand E[|E(G, G')|]? With a; = P[(i,i + 1) € E(G)],
N-1
E[|E(G,G)] =) a.
i=1
Need to understand the values a;.

e Partition {0,1}" into certain prefix blocks {Bx : x € L}.

e Partition [N] into discrete intervals /(x) of strings with prefix x.

S = (000, 010, 010, 011, 101, 101, 101, 110, 110,  111)
G = L] L] L] L] L] L] L] L] L] L]
L ) 1 . ) L . )
Y
1(0) 1(10) 111)
\_l_l

1
Typical length Nz+e

o Arrange that E[|/(x)|] = N2%3 for each x € L.
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Controlling the First Moment

e How to understand E[|E(G, G')|]? With a; = P[(i,i + 1) € E(G)],
N-1
E[|E(G,G)] =) a.
i=1
Need to understand the values a;.

e Partition {0,1}" into certain prefix blocks {Bx : x € L}.

e Partition [N] into discrete intervals /(x) of strings with prefix x.

S = (000, 010, 010, 011, 101, 101, 101, 110, 110,  111)
G = L] L] L] L] L] L] L] L] L] L]
L ) 1 . ) L . )
Y
1(0) 1(10) 111)
\_l_l

1
Typical length Nz+e

o Arrange that E[|/(x)|] = N2%3 for each x € L.
o Key is local homogeneity: edge probability a; acts constant on each /(x).
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Fluctuations of /(x)

o Typically, |/(x)| ~ Nt Boundary fluctuations have smaller scale Nz
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Fluctuations of /(x)

o Typically, |/(x)| ~ Nt Boundary fluctuations have smaller scale N3,

@ Hence /(x) are almost deterministic. IID samples look like:

And «»

—
-«
———
«»
————

I(x1) I(xz) 1(x3) 1(xq)
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Fluctuations of /(x)

o Typically, |/(x)| ~ Nt Boundary fluctuations have smaller scale N3,

@ Hence /(x) are almost deterministic. IID samples look like:

And «»

—
-«
———
«»
————

1(x;) 1(x3) I(x3) 1(x4)
@ Leads to sum-over-blocks estimate

E[|IE(G,G")] SE_|E(Ga., Ga,)|-

xeL
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Fluctuations of /(x)

o Typically, |/(x)| ~ Nt Boundary fluctuations have smaller scale N3,

@ Hence /(x) are almost deterministic. IID samples look like:

And «»

—
-«
———
«»
————

I(x1) I(xz) 1(x3) 1(xq)

@ Leads to sum-over-blocks estimate

E[|IE(G,G")] SE_|E(Ga., Ga,)|-

xeL

N 1. 1
o Conversely: boundary fluctuation size N2 is almost |/(x)| ~ Nz"°.

@ These fluctuations act as convolutions to locally homogenize a;.
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Maximizing Over Digit Profiles

o Result: can explicitly compute E[|E(Gs,, Gg,)|] ~ N*.
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Maximizing Over Digit Profiles

o Result: can explicitly compute E[|E(Gs,, Gg,)|] ~ N*.

@ Moreover, e« depends only on the digit profile of x.
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Maximizing Over Digit Profiles

o Result: can explicitly compute E[|E(Gs,, Gg,)|] ~ N*.
@ Moreover, e« depends only on the digit profile of x.
o Digit profile (cp, c1) means x contains ¢g log N digits 0 and ¢ log N digits 1.

o Total number of digit profiles is small: just log(N)? < N°(),
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Maximizing Over Digit Profiles

Result: can explicitly compute E[|E(Gg,, G, )|] = N*.
@ Moreover, e« depends only on the digit profile of x.
o Digit profile (cp, c1) means x contains ¢g log N digits 0 and ¢ log N digits 1.

o Total number of digit profiles is small: just log(N)? < N°(),

@ Remains to find the digit profile with largest contribution:
@ Count prefixes x with digit profile (co, c1).
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Maximizing Over Digit Profiles

Result: can explicitly compute E[|E(Gg,, G, )|] = N*.
@ Moreover, e« depends only on the digit profile of x.
o Digit profile (cp, c1) means x contains ¢g log N digits 0 and ¢ log N digits 1.

o Total number of digit profiles is small: just log(N)? < N°(),

@ Remains to find the digit profile with largest contribution:
@ Count prefixes x with digit profile (co, c1).

@® Multiply by E(Gg,, Gg ) ~ N* for total contribution from (co, c1).
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Maximizing Over Digit Profiles

Result: can explicitly compute E[|E(Gg,, G, )|] = N*.
@ Moreover, e« depends only on the digit profile of x.
o Digit profile (cp, c1) means x contains ¢g log N digits 0 and ¢ log N digits 1.

o Total number of digit profiles is small: just log(N)? < N°(),

@ Remains to find the digit profile with largest contribution:
@ Count prefixes x with digit profile (co, c1).

@® Multiply by E(Gg,, Gg ) ~ N* for total contribution from (co, c1).

© Find the profile (co, c1) with maximal contribution N%*.
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Maximizing Over Digit Profiles

o Result: can explicitly compute E[|E(Gs,, Gg,)|] ~ N*.
@ Moreover, e« depends only on the digit profile of x.
o Digit profile (cp, c1) means x contains ¢g log N digits 0 and ¢ log N digits 1.

o Total number of digit profiles is small: just log(N)? < N°(),
@ Remains to find the digit profile with largest contribution:
@ Count prefixes x with digit profile (co, c1).
@® Multiply by E(Gg,, Gg ) ~ N* for total contribution from (co, c1).

© Find the profile (co, c1) with maximal contribution N%*.
@ Maximum exponent . occurs at

(cs,cf)~( P

0, q%
P + g% pf + qe,,> :

346,

where p% + g% = (p? + g°)?. Leads to the threshold C, = TR (AT
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Finishing the Upper Bound

@ The derivation so far didn't suggest any phase transition...
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Finishing the Upper Bound

@ The derivation so far didn't suggest any phase transition...

o Last issue: the discussion above assumed N2 fluctuations of order
statistics. This is wrong near the edge for prefixes 000--- or 111---.

e Reason: Var(Bin(N,r))=Nr(1—r) < Nifrx~0orr=1.
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Finishing the Upper Bound

@ The derivation so far didn't suggest any phase transition...

o Last issue: the discussion above assumed N2 fluctuations of order
statistics. This is wrong near the edge for prefixes 000--- or 111---.

e Reason: Var(Bin(N,r))=Nr(1—r) < Nifrx~0orr=1.

@ The other extremes x = 000---0 and x = 111--- 1 yield another threshold

G = m. “Closeness to the edge” has a linear effect on the

exponent, so only extremes matter.
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Finishing the Upper Bound

@ The derivation so far didn't suggest any phase transition...

o Last issue: the discussion above assumed N2 fluctuations of order
statistics. This is wrong near the edge for prefixes 000--- or 111---.

e Reason: Var(Bin(N,r))=Nr(1—r) < Nifrx~0orr=1.

@ The other extremes x = 000---0 and x = 111--- 1 yield another threshold

G = m. “Closeness to the edge” has a linear effect on the

exponent, so only extremes matter.

@ Combining shows the desired upper bound:

tmix < (Cp +¢)log N, Cp = max(G,, 5,3).
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Lower Bound: Returning to Cold Spots

® Show mixing if |[E(G, G')| has small truncated exponential moments:

E[eSEE <1+ N,

® Reduce exponential moment estimate to first moment control

E[E(G, G < N™°.

© Understand first moment = upper bound tpix.

e Main contribution to first moment = optimal choice of cold spots
to lower bound t,iy.
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Lower-Bounding the Mixing Time

o Here we want to distinguish the distribution of 7¢ from uniform.
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Lower-Bounding the Mixing Time

o Here we want to distinguish the distribution of 7¢ from uniform.

e Cold spots idea of [Lalley 2000]: construct non-random set H C [N]
typically containing all strings with “optimal” prefix digit profile (cg, ¢1).
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Lower-Bounding the Mixing Time

o Here we want to distinguish the distribution of 7¢ from uniform.

Cold spots idea of [Lalley 2000]: construct non-random set H C [N/]
typically containing all strings with “optimal” prefix digit profile (cg, ¢1).

These strings contribute > |H|%+5 G-edges, all inside H.

Each G-edge contributes ~ 1 ascent to 7°.
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Lower-Bounding the Mixing Time

o Here we want to distinguish the distribution of 7¢ from uniform.

Cold spots idea of [Lalley 2000]: construct non-random set H C [N/]
typically containing all strings with “optimal” prefix digit profile (cg, ¢1).

These strings contribute > |H|%+5 G-edges, all inside H.

Each G-edge contributes ~ 1 ascent to 7°.

e For uniform permutations, [#ascents in H] has O(|H|*/?) fluctuations.
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Lower-Bounding the Mixing Time

o Here we want to distinguish the distribution of 7¢ from uniform.

Cold spots idea of [Lalley 2000]: construct non-random set H C [N/]
typically containing all strings with “optimal” prefix digit profile (cg, ¢1).

These strings contribute > |H|%+5 G-edges, all inside H.

Each G-edge contributes ~ 1 ascent to 7°.

e For uniform permutations, [#ascents in H] has O(|H|*/?) fluctuations.

Therefore, [#ascents in H] distinguishes 7 vs 7€,
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Lower-Bounding the Mixing Time

o Here we want to distinguish the distribution of 7¢ from uniform.

e Cold spots idea of [Lalley 2000]: construct non-random set H C [N]
typically containing all strings with “optimal” prefix digit profile (cg, ¢1).
@ These strings contribute > |H|%+5 G-edges, all inside H.

o Each G-edge contributes ~ 1 ascent to 7°.

e For uniform permutations, [#ascents in H] has O(|H|*/?) fluctuations.

o Therefore, [#ascents in H] distinguishes 7 vs €.

@ Some work is needed to control the number of G-edges within H. [Lalley
2000] found 1st and 2nd moments, which only suffices for p ~ 1/2.
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Lower-Bounding the Mixing Time

o Here we want to distinguish the distribution of 7¢ from uniform.

e Cold spots idea of [Lalley 2000]: construct non-random set H C [N]
typically containing all strings with “optimal” prefix digit profile (cg, ¢1).

@ These strings contribute > |H|%+5 G-edges, all inside H.

o Each G-edge contributes ~ 1 ascent to 7°.

e For uniform permutations, [#ascents in H] has O(|H|*/?) fluctuations.

o Therefore, [#ascents in H] distinguishes 7 vs €.
@ Some work is needed to control the number of G-edges within H. [Lalley

2000] found 1st and 2nd moments, which only suffices for p ~ 1/2.

o For general p, truncate again — restrict also the suffix digit distribution.
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@ Main result: for p € (0,1), p-biased riffle shuffle exhibits cutoff at

tmix = (Cp £ 0(1)) log(N).
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@ Main result: for p € (0,1), p-biased riffle shuffle exhibits cutoff at

tmix = (Cp £ 0(1)) log(N).

@ Asymmetry breaks classical [Bayer-Diaconis 92] rising sequence analysis.
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@ Main result: for p € (0,1), p-biased riffle shuffle exhibits cutoff at

tmix = (Cp £ 0(1)) log(N).

@ Asymmetry breaks classical [Bayer-Diaconis 92] rising sequence analysis.

o First step: consider transformed problem involving strings (si, ..., sn),
associated “shuffle graphs”’ G, and transformed permutations = — 7°.
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@ Main result: for p € (0,1), p-biased riffle shuffle exhibits cutoff at

tmix = (Cp £ 0(1)) log(N).

@ Asymmetry breaks classical [Bayer-Diaconis 92] rising sequence analysis.

o First step: consider transformed problem involving strings (si, ..., sn),
associated “shuffle graphs”’ G, and transformed permutations = — 7°.

o Key quantity: edge intersection |E(G, G')| of independent copies G, G’.
Show mixing by bounding the exponential moment.
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@ Main result: for p € (0,1), p-biased riffle shuffle exhibits cutoff at

tmix = (Cp £ 0(1)) log(N).

@ Asymmetry breaks classical [Bayer-Diaconis 92] rising sequence analysis.

o First step: consider transformed problem involving strings (si, ..., sn),
associated “shuffle graphs”’ G, and transformed permutations = — 7°.

o Key quantity: edge intersection |E(G, G')| of independent copies G, G’.
Show mixing by bounding the exponential moment.

@ Main obstruction to mixing: cold spots with many G-edges — many
ascents in the inverse shuffle permutation 7.
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