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Card Shuffling

How many shuffles are needed to mix a deck of cards?

Depends on how you shuffle...
Cut repeatedly
Top to random
Random to random
. . .

Today: riffle shuffle
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Just So We’re Clear...
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The GSR Shuffle

Gilbert-Shannon-Reeds (GSR) model for riffle shuffles:
1 Cut deck into Bin(N, 1/2) sized piles.
2 Riffle the piles together uniformly at random.

Equivalent to 2 : if current pile sizes are A and B, drop next card from first
pile with probability A

A+B
.

[Aldous 83, Bayer-Diaconis 92]: total variation mixing occurs after

tmix =
3 log2(N)

2
± O(1)

GSR shuffles.

Reminder: for probability distributions P,Q on finite set X , total variation
distance is

dTV (P,Q) =
1
2

∑
x∈X

|P(x)− Q(x)|.
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(Arrangement by Eyal Lubetzky)
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Cutoff

Cutoff phenomenon: sharp transition in distance to stationarity at mixing
time tmix ± o(tmix). Many examples:

Transpositions on Sn (Diaconis-Shahshahani)
Glauber dynamics for high-temperature Ising model (Lubetzky-Sly)
Random walk on Ramanujan graphs (Lubetzky-Peres)
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Main Result

Definition

A p-shuffle: remove the top Bin(N, p) cards from the deck and riffle as before.

Theorem

For p ∈ (0, 1), the p-shuffle mixes in tmix = (C p ± o(1)) logN steps.

Definition of C p:
With q = 1− p, let θp ∈ [3, 4) satisfy

pθp + qθp = (p2 + q2)2.

Then set:

Cp =
3 + θp

4 log(1/(p2 + q2))
,

C̃p =
1

log(1/max(p, q))
,

Cp = max(Cp , C̃p)

Similar result for k-partite shuffles given any (p1, p2, · · · , pk).
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A Graph of Cp
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The Bayer-Diaconis Analysis

After one riffle shuffle, the deck contains only 2 rising sequences.

After t shuffles, ≤ 2t rising sequences.
A miracle: after t GSR shuffles, the deck distribution is uniformly random
conditioned on the number of rising sequences.

Remains to analyze a 1 dimensional sufficient statistic.

With asymmetry, this miracle breaks. A new proof is needed.
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Other Shuffles

Many shuffling models have been studied:

Top-to-random: cutoff at tmix = N log N [Diaconis-Fill-Pitman 1992].

Random-to-random: cutoff at 3
4N log N [Subag 2013, Bernstein-Nestoridi 18].

Cyclic-to-random: tmix = Θ(N log N) [Pinsky 2015, Morris-Ning-Peres 2014].

Adjacent transpositions: cutoff at tmix = N3 log N
π2 [Wilson 2004, Lacoin 2016].

Thorpe (perfect) riffle shuffle: tmix ≤ O(log3 N)
[Montenegro-Tetali 2006, Morris 2005 & 2006 & 2008].

Markovian riffling: tmix ≤ O(log4 N) [Jonasson-Morris 2015].
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Results on the Asymmetric Riffle Shuffle

[Bidigare-Hanlon-Rockmore 99, Brown-Diaconis 98, Stanley 01]:
Eigenvalues are real, given by power sum symmetric functions.
Connections to hyperplane arrangements.

[Assaf-Diaconis-Soundarajan 2011]: Cutoff with O(1) window in L∞ and
separation distance. These are stricter notions of mixing involving worst
case values of P(x)

Q(x)
.

[Lalley 2000]: Sharp lower bound for p close to {0, 1
2 , 1}.

Identified the key cold spots phenomenon.
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Transforming the Problem

Consider a single riffle shuffle:

To separate the two rising sequences, consider the inverse permutation
(now with card labels).
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Transforming the Problem

Now, forget everything except the pile sizes.

→

All we remember is the split into increasing sequences:

The conditional law is uniform given the constraints.
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Transforming the Problem

For t shuffles, 2t card trajectories in {0, 1}t . Still uniform conditioned on
the split:

Conclusion: can generate the inverse of a p∗t shuffle as πG below:
1 Generate N i.i.d. p-biased strings in {0, 1}t . Sort into increasing order:

S = (s1, s2, · · · , sN), s1 ≤ s2 ≤ · · · ≤ sN .

2 Connect (i , i + 1) if si = si+1, forming a graph G = G(S).
3 Choose π ∈ SN uniformly. Sort π within G -components, forming πG ∈ SN .

Inversion does not affect distance to uniformity. How uniform is πG?
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Easy Lower and Upper Bounds

Mixed after t shuffles ⇐⇒ πG is close to uniform.

Lower bound (tight for p ≥ 0.72):

tmix ≥
logN

log(1/p)
.

If t ≤ (1−ε) log N
log(1/p)

, smallest Nδ strings are typically all zero:

s1 = s2 = · · · = sNδ = 0t .

Then πG (1) < πG (2) < · · · < πG (Nδ). Not a uniform permutation.

Upper bound (never tight):

tmix ≤
2 logN

log (1/(p2 + q2))
.

If t ≥ (2+ε) log N
log(1/(p2+q2))

, the strings (s1, · · · , sN) are typically all distinct.

On this event, G has no edges and πG = π is uniform.
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Cold Spots: Another Obstruction to Mixing

Lalley identified the constant Cp =
3+θp

4 log(1/(p2+q2))
based on cold spots.

Suppose x ∈ {0, 1}`(x) is a prefix with probability � N−1/2.

Strings si , . . . , sj with prefix x form an interval I (x) = {i , · · · , j} ⊆ [N] of
length |I (x)| � N1/2. The location of I (x) is essentially deterministic.

With asymmetry, `(x) can be larger if x ’s digits are very skewed.

For `(x) large, the local edge density of G within I (x) is also large:

P[(i , i + 1) ∈ E(G)] ∝ (p2 + q2)t−`(x).

Then I (x) is a cold spot. Many G -edges =⇒ πG has extra ascents.

Leads to a statistical test for π vs πG :
1 Fix a digit profile (c0, c1): prefix x must contain c0 log N digits 0 and

c1 log N digits 1.
2 Count ascents in the cold spots for all such x .
3 Check if the number of ascents is typical for a uniform permutation.
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A Precise Heuristic from Ascents

For σ ∈ SN , define the ascent set

A(σ) = {i ∈ [N − 1] : σ(i + 1) > σ(i)}.

Set ai = P[(i , i + 1) ∈ E(G)]. With uniform π ∈ SN , expect roughly

P[i ∈ A(π)] = 1/2, P[i ∈ A(πG )] =
1+ ai
2

.

Let’s pretend these events are independent over i .
Then for uniform σ ∈ SN , likelihood ratio is random product

P[πG = σ]

P[π = σ]
=

N−1∏
i=1

(1± ai )
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Behavior of an Independent Random Product

Claim: if
∑

i a
2
i � 1, then with high probability

N−1∏
i=1

(1± ai ) ≈ 1.

While ≈ 1, partial products form a martingale with QV ≈ a2
i .

Claim: if
∑

i a
2
i � 1, then with high probability

N−1∏
i=1

(1± ai )� 1.

Follows from LLN and E[log(1± ai )] ≤ 1− a2i
2 .

Convenient observation: with G ′ an independent copy of G ,∑
i

a2
i = E

[∣∣E(G) ∩ E(G ′)
∣∣] .

Write E(G ,G ′) = E(G) ∩ E(G ′) for the set of shared edges. Expect:

Mixed after t shuffles ⇐⇒ E[|E(G ,G ′)|]� 1.
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The True Picture

When the first moment

E[|E(G ,G ′)|]� Nδ

is large, not mixed.

When (truncated) exponential moment

E
[
ec·|E(G ,G ′)|

]
≤ 1+ O(N−δ)

is small for bounded c, mixed.

Fortunately, these criteria match: |E(G ,G ′)| transitions from � 1 to � 1
almost simultaneously in 1st and exponential moment senses.

(Not quite true for k-partite shuffles.)

M. Sellke Cutoff for Asymmetric Riffle Shuffle 19 / 35



The True Picture

When the first moment

E[|E(G ,G ′)|]� Nδ

is large, not mixed.
When (truncated) exponential moment

E
[
ec·|E(G ,G ′)|

]
≤ 1+ O(N−δ)

is small for bounded c, mixed.

Fortunately, these criteria match: |E(G ,G ′)| transitions from � 1 to � 1
almost simultaneously in 1st and exponential moment senses.

(Not quite true for k-partite shuffles.)

M. Sellke Cutoff for Asymmetric Riffle Shuffle 19 / 35



The True Picture

When the first moment

E[|E(G ,G ′)|]� Nδ

is large, not mixed.
When (truncated) exponential moment

E
[
ec·|E(G ,G ′)|

]
≤ 1+ O(N−δ)

is small for bounded c, mixed.

Fortunately, these criteria match: |E(G ,G ′)| transitions from � 1 to � 1
almost simultaneously in 1st and exponential moment senses.

(Not quite true for k-partite shuffles.)

M. Sellke Cutoff for Asymmetric Riffle Shuffle 19 / 35



Proof Overview

Three main components in the proof:
1 Show mixing if |E(G ,G ′)| has small exponential moments:

E[ec|E(G ,G ′)|] ≤ 1 + N−δ.

(Up to some truncation.)

2 Reduce exponential moment to first moment control

E[|E(G ,G ′)|] ≤ N−δ.

3 Understand first moment =⇒ upper bound tmix.
Main contribution to first moment =⇒ optimal choice of cold spots to lower
bound tmix.
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χ2 Upper Bound on TV Distance

To upper-bound distance from uniformity, use the “χ2 trick”.

Let F(σ) = N! · Pπ∼U(Sn),G∼G [π
G = σ]. TV distance to uniformity is

Eσ∼U(Sn)[|F(σ)− 1|].

As Eσ∼U(Sn)[F(σ)] = 1, Cauchy-Schwarz gives(
Eσ∼U(Sn)|F(σ)− 1|

)2 ≤ Eσ∼U(Sn)[F(σ)
2 − 1]

?
� 1.

Let (π′,G ′) be an independent copy. Then

F(σ)2 = (N!)2 · P[πG = σ, (π′)G
′
= σ]

=⇒ Eσ∼U(Sn)[F(σ)
2] = N! · P[πG = (π′)G

′
].

Define
fG ,G ′ = N! · Pπ,π′∼U(Sn)[π

G = (π′)G
′
|G ,G ′].

fG ,G ′ measures “interaction” between G and G ′. We’ll try to show:

EG ,G ′∼G [|fG ,G ′ − 1|]
?
≈ 0.
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Reducing Upper Bound to Exponential Moment

Suppose G ,G ′ have no shared or adjacent edges.

Then the transformations (·)G and (·)G
′
“don’t interact”. So,

fG ,G ′ = N! · Pπ,π′ [πG = (π′)G
′
|G ,G ′] = 1

as if πG , (π′)G
′
were uniform and independent. Good so far...
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Reducing Upper Bound to Exponential Moment

Now suppose G ,G ′ share a single edge (i , i + 1).

Then (i , i + 1) is always an ascent for πG and (π′)G
′
. Result:

fG ,G ′ = N! · Pπ,π′ [πG = (π′)G
′
] = 2.

Disjoint interactions between G ,G ′ combine multiplicatively.
Assuming “constant diameter” interactions (via truncation):

fG ,G ′ ≤ ec|E(G,G′)|.
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Onto Step 2...

1 Show mixing if |E(G ,G ′)| has small truncated exponential moments:

E[ec|E(G ,G ′)|] ≤ 1+ N−δ.

2 Reduce exponential moments to the first moment bound

E[|E(G ,G ′)|] ≤ N−δ.

3 Understand first moment =⇒ upper bound tmix.
Main contribution to first moment =⇒ optimal choice of cold spots to
lower bound tmix.
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Hazard Rate Method to Bound Exponential Moments

Suppose random variable X ∈ Z≥0 has hazard rate uniformly close to 1:

sup
j≥0

P[X ≥ j + 1|X ≥ j ] ≤ ε.

Then E[ecX ] = 1 + O(cε) follows for c � ε−1.

Try taking X = |E(G ,G ′)|. Explore (s1, s
′
1), (s2, s

′
2), · · · (sN , s ′N) in order.

Hope: at any time, E(G ,G ′) is unlikely to have more edges.
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Hazard Rate Method to Bound Exponential Moments

Suppose random variable X ∈ Z≥0 has hazard rate uniformly close to 1:

sup
j≥0

P[X ≥ j + 1|X ≥ j ] ≤ ε.

Then E[ecX ] = 1 + O(cε) follows for c � ε−1.

Try taking X = |E(G ,G ′)|. Explore (s1, s
′
1), (s2, s

′
2), · · · (sN , s ′N) in order.

Hope: at any time, E(G ,G ′) is unlikely to have more edges.

Uh oh! If sj = s ′j = 111 · · · 1, future edges are guaranteed to be in
E(G ,G ′). The exploration “ran out of space”.
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Forward-Backward Covering of E (G ,G ′)

Fix: explore both forward and backward. Stop exploration early.
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Forward-Backward Covering of E (G ,G ′)

Fix: explore both forward and backward. Stop exploration early.

Stop forward exploration when prefix 11 appears. Backward, stop on 00.
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Fix: explore both forward and backward. Stop exploration early.

Stop forward exploration when prefix 11 appears. Backward, stop on 00.
Use hazard rate method on |Efor (G ,G

′)| and |Eback(G ,G
′)| separately.

M. Sellke Cutoff for Asymmetric Riffle Shuffle 26 / 35



Forward-Backward Covering of E (G ,G ′)

Fix: explore both forward and backward. Stop exploration early.

Stop forward exploration when prefix 11 appears. Backward, stop on 00.
Use hazard rate method on |Efor (G ,G

′)| and |Eback(G ,G
′)| separately.

Can ensure E(G ,G ′) = Efor (G ,G
′) ∪ Eback(G ,G

′) by truncation. Then

ec|E(G ,G ′)| ≤
(
e2c|Efor (G ,G ′)| + e2c|Eback (G ,G ′)|)/2 ≈ 1.
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Conditional Behavior of Forward Exploration

Want to control unrevealed edges in Efor (G ,G
′) under conditioning.

Given si , relevant strings lie in “lexicographic subinterval” of {0, 1}t
between si and 11.
Partition this subinterval into O(logN)� Nδ prefix blocks Bx .

The conditional problem reduces to smaller versions of the original
problem within each block Bx , with t − `(x) unassigned digits.

By early stopping, the conditional law for the number of strings landing in
some Bx can never blow up much.
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The Constants Enter in Step 3...

1 Show mixing if |E(G ,G ′)| has small truncated exponential moments:

E[ec|E(G ,G ′)|] ≤ 1+ N−δ.

2 Reduce exponential moment estimate to first moment control

E[|E(G ,G ′)|] ≤ N−δ.

3 Understand first moment =⇒ upper bound tmix.

Main contribution to first moment =⇒ optimal choice of cold spots to
lower bound tmix.
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Controlling the First Moment

How to understand E[|E(G ,G ′)|]? With ai = P[(i , i + 1) ∈ E(G)],

E[|E(G ,G ′)|] =
N−1∑
i=1

a2
i .

Need to understand the values ai .

Partition {0, 1}t into certain prefix blocks {Bx : x ∈ L}.
Partition [N] into discrete intervals I (x) of strings with prefix x .

Arrange that E[|I (x)|] ≈ N
1
2 +δ for each x ∈ L.

Key is local homogeneity: edge probability ai acts constant on each I (x).
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Fluctuations of I (x)

Typically, |I (x)| ≈ N
1
2 +δ. Boundary fluctuations have smaller scale N

1
2 .

Hence I (x) are almost deterministic. IID samples look like:

Leads to sum-over-blocks estimate

E[|E(G ,G ′)|] . E
∑
x∈L

|E(GBx ,G
′
Bx
)|.

Conversely: boundary fluctuation size N
1
2 is almost |I (x)| ≈ N

1
2 +δ.

These fluctuations act as convolutions to locally homogenize ai .
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Maximizing Over Digit Profiles

Result: can explicitly compute E[|E(GBx ,G
′
Bx
)|] ≈ Nex .

Moreover, ex depends only on the digit profile of x .
Digit profile (c0, c1) means x contains c0 log N digits 0 and c1 log N digits 1.

Total number of digit profiles is small: just log(N)2 � No(1).

Remains to find the digit profile with largest contribution:
1 Count prefixes x with digit profile (c0, c1).

2 Multiply by E(GBx ,G
′
Bx

) ≈ Nex for total contribution from (c0, c1).

3 Find the profile (c0, c1) with maximal contribution Nα∗ .

Maximum exponent α∗ occurs at

(c∗0 , c
∗
1 ) ∼

(
pθp

pθp + qθp
,

qθp

pθp + qθp

)
.

where pθp + qθp = (p2 + q2)2. Leads to the threshold Cp =
3+θp

4 log(1/(p2+q2))
.
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where pθp + qθp = (p2 + q2)2. Leads to the threshold Cp =
3+θp

4 log(1/(p2+q2))
.
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Finishing the Upper Bound

The derivation so far didn’t suggest any phase transition...

Last issue: the discussion above assumed N
1
2 fluctuations of order

statistics. This is wrong near the edge for prefixes 000 · · · or 111 · · · .
Reason: Var(Bin(N, r)) = Nr(1− r)� N if r ≈ 0 or r ≈ 1.

The other extremes x = 000 · · · 0 and x = 111 · · · 1 yield another threshold
C̃p = 1

log(1/max(p,1−p))
. “Closeness to the edge” has a linear effect on the

exponent, so only extremes matter.

Combining shows the desired upper bound:

tmix ≤ (C p + ε) logN, C p = max(Cp, C̃p).
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Lower Bound: Returning to Cold Spots

1 Show mixing if |E(G ,G ′)| has small truncated exponential moments:

E[ec|E(G ,G ′)|] ≤ 1+ N−δ.

2 Reduce exponential moment estimate to first moment control

E[|E(G ,G ′)|] ≤ N−δ.

3 Understand first moment =⇒ upper bound tmix.

Main contribution to first moment =⇒ optimal choice of cold spots
to lower bound tmix.
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Lower-Bounding the Mixing Time

Here we want to distinguish the distribution of πG from uniform.

Cold spots idea of [Lalley 2000]: construct non-random set H ⊆ [N]
typically containing all strings with “optimal” prefix digit profile (c∗0 , c

∗
1 ).

These strings contribute � |H|
1
2 +δ G -edges, all inside H.

Each G -edge contributes ∼ 1 ascent to πG .

For uniform permutations, [#ascents in H] has O(|H|1/2) fluctuations.
Therefore, [#ascents in H] distinguishes π vs πG .

Some work is needed to control the number of G -edges within H. [Lalley
2000] found 1st and 2nd moments, which only suffices for p ≈ 1/2.

For general p, truncate again – restrict also the suffix digit distribution.
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Recap

Main result: for p ∈ (0, 1), p-biased riffle shuffle exhibits cutoff at

tmix = (C p ± o(1)) log(N).

Asymmetry breaks classical [Bayer-Diaconis 92] rising sequence analysis.

First step: consider transformed problem involving strings (s1, . . . , sN),
associated “shuffle graphs” G , and transformed permutations π → πG .

Key quantity: edge intersection |E(G ,G ′)| of independent copies G ,G ′.
Show mixing by bounding the exponential moment.

Main obstruction to mixing: cold spots with many G -edges =⇒ many
ascents in the inverse shuffle permutation πG .
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