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Plan for this Talk

1 Background on High-Dimensional Sampling
Sequential sampling
Stochastic localization
Connection to diffusion models
Goal for today: the Sherrington–Kirkpatrick model

2 Main Results
Algorithm: approximate message passing and more
Stability of the algorithm; hardness from chaos.
p-spin generalizations; another source of chaos.

M. Sellke Diffusion Sampling for Spin Glasses 3 / 36



Sampling

Goal: generate
x∗ ∼ µ(dx) given µ ∈ P(Rn).

For µ high-dimensional and NOT log-concave.
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Sampling

In this talk, focus on Ising models:

µA,β(x) =
1

Z (β)
eβ⟨x,Ax⟩/2, x ∈ {–1, +1}n.

Glauber dynamics
Repeatedly choose i ∈ [n] and resample xi given other coordinates.
Mixes rapidly if βA is small. In general, mixing can be very slow.
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Sequential Sampling

Given a distribution µ ∈ P ({–1, +1}n), suppose we have a conditional
expectation oracle to evaluate

mt = Ex∼µ[x | (x1 = x∗1 , . . . , xt = x∗t )], t ∈ {0, 1, . . . , n – 1}.

Then we can directly sample x, one coordinate at a time. Namely,

Pt [xt+1 = 1 | x1, . . . , xt ] =
mt

t+1 + 1
2

.

This is the foundation for equivalence between counting and sampling.
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Sequential Sampling

Directly implementing sequential sampling may be too much to hope for.

Requires a strong oracle, especially for continuous variables.
Maybe estimating mt is no easier than sampling.
Unclear how to choose a good order for the coordinates.

The high-level idea is to reveal x∗ gradually. This is fundamentally
different from a Markov chain!

And, information can be gradually revealed in other ways.
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Sampling via Stochastic Localization

Given µ ∈ P(Rn), consider a Brownian motion with unknown drift:

yt = tx∗ + Bt ∼ N (tx∗, tIn).

x∗ ∼ µ is independent of Brownian motion Bt and only yt is observed.

Our sampling algorithm takes the following form:
1 Simulate yt for a long time t ∈ [0, T ] without knowing x∗.
2 Read off

x∗ ≈ yT
T

.

Equivalently, increments y(k+1)δ – ykδ are IID noisy observations of x∗.

This process has been popularized in high-dimensional convex geometry
[Eldan 13, Lee-Vempala 17, Chen 21, Klartag-Lehec 22, Jambulapati-Lee-Vempala 22].
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Simulating yt

Our goal is to sample a random path

yt = tx∗ + Bt ∼ N (tx∗, tIn)

from its distribution averaged over the unknown x∗.

This law on paths is actually Markovian. The instantaneous drift is the
current conditional expectation of the unknown drift:

dyt = mtdt + dWt ;
mt = E[x∗ | Ft ] = E[x∗ | yt ]

for Wt a (separate) Brownian motion.

Markov property: yt is a sufficient statistic for y[0,t].
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Parallels with Pólya’s Urn

Pólya’s urn gives an indirect way to sample p ∼ Unif ([0, 1]). Stochastic
localization sampling is a continuous-time parallel.

Goal Pólya’s Urn Stoch. Loc.

Want to sample p ∼ Unif ([0, 1]) x∗ ∼ µ ∈ P(Rn)

Observation process a1, a2, . . .
IID∼ Ber(p) yt = tx∗ + Bt

Process w/o sample at ∼ Ber(Et [p]) dyt = Et [x∗] + dBt
Process → sample p ≈ (a1 + · · · + aT )/T x∗ ≈ yT /T

In this case, Et [p] = Nt(1)+1
Nt(0)+Nt(1)+2 by Laplace’s rule of succession.

SN = a1 + · · · + aT plays the role of yT .
Given p: ST is a discrete walk with drift p.
Given x∗: yt is a continuous walk with drift x∗.
Increments y(j+1)δ – yjδ play the role of aj .

M. Sellke Diffusion Sampling for Spin Glasses 10 / 36



Parallels with Pólya’s Urn

Pólya’s urn gives an indirect way to sample p ∼ Unif ([0, 1]). Stochastic
localization sampling is a continuous-time parallel.

Goal Pólya’s Urn Stoch. Loc.

Want to sample p ∼ Unif ([0, 1]) x∗ ∼ µ ∈ P(Rn)

Observation process a1, a2, . . .
IID∼ Ber(p) yt = tx∗ + Bt

Process w/o sample at ∼ Ber(Et [p]) dyt = Et [x∗] + dBt
Process → sample p ≈ (a1 + · · · + aT )/T x∗ ≈ yT /T

In this case, Et [p] = Nt(1)+1
Nt(0)+Nt(1)+2 by Laplace’s rule of succession.

SN = a1 + · · · + aT plays the role of yT .
Given p: ST is a discrete walk with drift p.
Given x∗: yt is a continuous walk with drift x∗.
Increments y(j+1)δ – yjδ play the role of aj .

M. Sellke Diffusion Sampling for Spin Glasses 10 / 36



The Resulting Algorithm

dyt = mtdt + dWt ,

A continuous-time stochastic process is not really an algorithm.

Of course, we should discretize time.
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The Resulting Algorithm

dyt = mtdt + dWt ,

Input: Data: Probability measure µ

Input: Result: Sample x∗ ∼ µ

for t ∈ [0, δ, . . . , T – δ] do
Sample gt ∼ N (0, In)
Set ŷt+δ = ŷt + δm̂t(yt) +

√
δgt

end
Set x̂∗ = Round(ŷT /T ) ∈ {–1, +1}n

return x̂∗

Main requirement: a good approximation

m̂t(ŷt) ≈ mt(ŷt) ≡ E[x∗ | ŷt ].
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Where Do We Stand?

So far:
General sampling procedure.
Requires repeatedly estimating mt(ŷt) ≈ E[x∗ | ŷt ].

We have replaced the need for one oracle with another...is it any better?

Main result for this talk: example where the answer is yes.
SK model: coupling matrix A is GOE.
Computing mt(yt) falls into the wheelhouse of high-dimensional
statistics/optimization.
But, provable hardness for “stable” sampling at large β.
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Connection to Diffusion Models
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Connection to Diffusion Models

Modern diffusion-based sampling has two main processes:
Forward: turn sample X0 ∼ µ into noise via OU flow

dXT = –XT dT +
√

2dWT .

Backward: time-reverse the forward process, i.e. noise → sample.
The backward process gains a µ-dependent drift.

Given XS for S < T : eT XT
d= eSXS +

√
e2T – e2S N (0, In).

Given ys for s > t: yt/t d= ys/s +
√

s–t
t N (0, In).

Stochastic localization is a reparametrization of the backward process!
Diffusion models learn SDE coefficients from forward process on
samples. Provable guarantees from good estimates (ask Sitan!)
This talk: no samples, but a formula for µ.
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Sherrington-Kirkpatrick Model

Ising model with random couplings:

µG,β(x) =
1

Zn(β)
eβ⟨x,Gx⟩/2.

Random symmetric matrix G ∼ GOE (n):
G = G⊤. Entries otherwise independent.
Gi ,j ∼ N (0, 1/n) for i < j .

Goal: given G ∼ GOE (n), generate a sample from µG,β.

Dobrushin’s condition for fast mixing of Glauber works if β ≤ cn–1/2.
But we would like β to be constant size.
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Brief History of the SK Model

[Ising 1925]: Ising model for ferromagnets.

[Sherrington-Kirkpatrick 1975]: model for disordered magnets.

[Parisi 1982]: non-rigorous solution via replica symmetry breaking.

[Talagrand 2006] proves the Parisi formula.
Huge amount of other important work including
[Aizenman-Ruelle-Lebowitz 82, Ruelle 87, Guerra 03, Chatterjee 09,
Panchenko 14, Ding-Sly-Sun 15, Auffinger-Chen 17,. . . ].
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Connections

SK model is a prototype for disordered, random probability measures.
Random MaxCut and K -SAT.
Coloring random graphs.
Posteriors in high-dimensional statistics.

E.g. optimal MaxCut in a random sparse graph ([Dembo-Montanari-Sen 17]).
For G ∼ G

(
n, λ

n

)
:

MaxCut(G) = n

(
λ

4
+ C∗

√
λ

4
+ o(

√
λ)

)
+ o(n).
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Rigorous Results on Sampling

µG,β(x) =
1

Zn(β)
eβ⟨x,Gx⟩/2.

Expect: efficient sampling possible for β < 1, impossible for β > 1.
“Replica symmetric” for β < 1. For independent x , x ′ ∼ µG ,β,

E[|⟨x , x ′⟩|/n] ≈ 0.

“Replica symmetry breaking” for β > 1. Here

E[|⟨x , x ′⟩|/n] ≥ c(β) > 0.

Recent progress: Glauber mixes in O(n log n) steps for β < 1/4.
[Bodineau-Bauerschmidt 20, Eldan-Koehler-Zeitouni 21, Anari-Jain-Koehler-Pham-Vuong 21].

Our result: stochastic localization succeeds (in a weaker sense) for β < 1.
(Originally β < 1/2, improvement by [Celentano 22].)
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Normalized Wasserstein Metric

Given µ1, µ2 ∈ P({–1, 1}n), define the normalized Wasserstein metric

W1,n(µ1, µ2) = inf
(x1,x2)∼Coupling(µ1,µ2)

E[∥x1 – x2∥ℓ1 ]
n

.

W1,n(µ1, µ2) ≤ o(1) means that x1, x2 differ by o(n) coordinates under
an optimal coupling. We will consider such pairs of points to be close.
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Main Result

Theorem (Alaoui-Montanari-S 22, Celentano 22)

For any β < 1 and ε > 0, there exists a randomized algorithm with
complexity O(n2) which given G outputs x ∼ µ

alg
G,β such that

E[W1,n(µalg
G,β, µG,β)] ≤ ε.
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Estimating the Mean

To sample for β < 1, our main goal is to estimate mt = E[x∗ | yt ] for

yt = tx∗ + Bt .

The solution goes through several ideas in high-dimensional statistics and
optimization.

Two phase procedure:
Rough estimate for mt using approximate message passing.
High-accuracy estimate for mt using gradient descent on a
well-chosen potential.

For now, assume perfect simulation until time t. Observe

yt ∼ N (tx∗, tIn),

estimate mt(yt).
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Step 1: Rough Estimate of mt
Self-consistent “naive mean-field” equation for mt = E[x | yt ]:

mt ≈ tanh (βGmt + yt)

Intuitively,
(
βGmt + yt

)
i is the effective field on xi .

tanh(·) converts from field on {–1, +1} to probabilities

Not quite right. It actually should be

mt = Et [tanh (βGx + yt)].

tanh(·) is non-linear and although Et [Gx ] = Gmt there is nontrivial
conditional randomness left.

Revised Thouless-Anderson-Palmer (TAP) equation:

mt ≈ tanh

(
βGmt + yt – β

2

(
1 –

∥mt∥2
2

n

)
mt

)
.
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Step 1: Rough Estimate of mt

Turn the TAP equation into a recursion and repeat until convergence to
an approximate fixed point:

m̂(k+1)
t = tanh

(
βGm̂(k)

t + yt – bkm̂(k–1)
t

)
,

bk = β
2

(
1 –

∥m(k)
t ∥2

2
n

)
.

This is an approximate message passing algorithm. Generalizes belief
propagation to dense matrices G.

Onsager term bkm̂(k–1)
t cancels “backtracking” paths.

By now, a major tool in high-dimensional statistics.
[Bolthausen 14, Donoho-Maleki-Montanari 09, Bayati-Montanari 11, Javanmard-Montanari 12,

Rush-Venkataramanan 18, Chen-Lam 20, Fan 20, Dudeja-Lu-Sen 22]

For large n and k = O(1) iterations, state evolution describes AMP.
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t = tanh
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t

)
,

bk = β
2

(
1 –

∥m(k)
t ∥2

2
n

)
.
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State Evolution for AMP

m̂(k+1)
t = tanh

(
βGm̂(k)

t + yt – bkm̂(k–1)
t

)
Idea of AMP: for deterministic v, w, the vectors

Gv, Gw

each have i.i.d. Gaussian coordinates. Covariance between (Gv)i and
(Gw)i equals ⟨v, w⟩.

Onsager term lets us apply this recursively to each m̂(k+1)
t , despite

re-using the same G many times.
State evolution: from simple initialization (m̂0

t , yt), choose uniform
i ∈ [n]. Tells us the n → ∞ limiting distribution of(

(m̂0
t )i , (m̂

1
t )i , . . . , (m̂

k
t )i
)
∈ Rk+1.

Problem: x∗ ∼ µG ,β is NOT SIMPLE. So neither is yt ∼ N (tx∗, tIn).
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Contiguity with a Simpler Spiked Model
To analyze the AMP recursion, we switch to a spiked joint distribution Q
over (G, x∗, yt). Under Q:

x∗ ∼ Unif
(
{–1, 1}n), yt = tx∗ + Bt ,

G ∼ GOE (n) +
βx∗(x∗)⊤

n
.

The conditional law Q[G | x∗] looks similar to P[x∗ | G] in SK:

Q[G | x∗] ∝ eβ⟨x∗,Gx∗⟩/2
νGOE(n)(G ).

Swapping the order distorts probabilities by a partition function factor

ZSK (G) =
∑

v∈{–1,+1}n

eβ⟨v,Gv⟩/2.

ZSK (G) fluctuates mildly for β < 1 [Aizenman-Ruelle-Lebowitz 82].
Yields contiguity; estimating mt w.h.p. is equivalent.
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State Evolution for AMP
State evolution: i-th coordinate of m̂(k)

t behaves like

tanh
(
a(k)
t xi + b(k)

t Z
)
, Z ∼ N (0, 1).

Limits (a∞t , b∞t ) yield the asymptotic mean-squared error (MSE)

E∗(t) = lim
k→∞

p-lim
n→∞

E∥m̂(k)
t – x∥2

2.

To conclude m̂(k)
t ≈ mt , we want:

E∗(t) ≈ MMSE (t) ≡ E∥mt – x∥2
2,

I-MMSE Area Law [Guo-Shamai-Verdu 04, Deshpande-Abbe-Montanari 15]:

1
2

∫ ∞

0
MMSE(t) dt = Ent(x∗).

We verify explicitly that
∫∞
0 E∗(t) dt ≈ Ent(x∗) for large n.
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Conclusion of Step 1: Rough Estimate for mt

m̂(k+1)
t = tanh

(
βGm̂(k)

t + yt – bkm̂(k–1)
t

)
,

Proposition (Alaoui-Montanari-S 22)

For β < 1 and any ε, t ≥ 0 there exists k0(t, ε) such that for all k ≥ k0,

lim
n→∞

P
[
∥m̂(k)

t (yt) – mt(yt)∥ ≤ ε
√

n
]

= 1.

Here yt is perfect stochastic localization at time t. The algorithm can
only use an estimate ŷt .

We still must bound ∥m̂(k)
t (yt) – m̂(k)

t (ŷt)∥ to control error
accumulation across time.
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Step 2: Refined Estimate of mt
Surprisingly, finishing the proof is non-obvious.

Two types of error: SDE δ-discretization and m̂(k)
t ≈ mt .

Sending (δ, k) → (0,∞) does not suffice.
Lipschitz constant of m̂(k)

t diverges with k .

Second step: by construction, m̂(k)
t is an approximate stationary point for

the “TAP free energy”:

FTAP(m, yt) = –
β

2
⟨m, Gm⟩ – ⟨ŷt , m⟩ –

n∑
i=1

h(mi ).

With gradient descent, refine m̂(k)
t to

m̂∞
t = arg min

m
FTAP(m, yt).

[Celentano 22]: FTAP is strongly convex near m̂∞
t for β < 1.

Hence m̂∞
t is Cβ-Lipschitz in ŷt . No blow-up with AMP accuracy.
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t is Cβ-Lipschitz in ŷt . No blow-up with AMP accuracy.

M. Sellke Diffusion Sampling for Spin Glasses 29 / 36



Step 2: Refined Estimate of mt
Surprisingly, finishing the proof is non-obvious.

Two types of error: SDE δ-discretization and m̂(k)
t ≈ mt .

Sending (δ, k) → (0,∞) does not suffice.
Lipschitz constant of m̂(k)

t diverges with k .

Second step: by construction, m̂(k)
t is an approximate stationary point for

the “TAP free energy”:

FTAP(m, yt) = –
β

2
⟨m, Gm⟩ – ⟨ŷt , m⟩ –
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Algorithmic Stability
Our algorithm is stable with respect to (G, β): just uses Oβ,ε(1)
matrix-vector products, and some 1-dimensional non-linearities.

Concretely, from i.i.d. G = G0 and G1, consider perturbation path

Gs =
√

1 – s2G0 + sG1.

Stability of the algorithm tells us:

lim
s→0

lim
n→∞

E[W1,n(µalg
G0,β

, µ
alg
Gs ,β)] = 0.

A purely structural consequence with an algorithmic proof:

Theorem (Alaoui-Montanari-S 22; Celentano 22)

The true SK Gibbs measures are stable when β < 1:

lim
s→0

lim
n→∞

E[W1,n(µG0,β, µGs ,β)] = 0.

Similar stability holds for small pertubations in β.
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Hardness via Chaos

The stability property

lim
s→0

lim
n→∞

E[W1,n(µG0,β, µGs ,β)] = 0.

for the true Gibbs measure is false for β > 1. Combination of:

Theorem (Chatterjee 09; Disorder Chaos)

Let (x0, xs) ∼ µG0,β × µGs ,β. For all β ∈ R and s > 0,

lim
n→∞

E[|⟨x0, xs⟩|/n] = 0.

Theorem (Replica Symmetry Breaking)

Let x0, x′0 ∼ µG0,β be independent. For all β > 1,

lim inf
n→∞

E[|⟨x0, x′0⟩|/n] ≥ c(β) > 0.
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Hardness via Chaos

The previous results show that µG0,β and µGs ,β must be significantly
different. Therefore:

Theorem (Alaoui-Montanari-S 22)

Let µ
alg
G,β be the law of ALGn(G, β, ω) conditional on G. If ALGn is

stable, then for all β > 1,

lim inf
n→∞

E[W1,n(µalg
G,β, µG,β)] > c(β) > 0.

Stability holds for gradient-based methods such as Langevin dynamics and
AMP, at least on dimension-independent time-scales.
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Extension to p-spin Models

Instead of a random matrix, start with a Gaussian tensor

G(p) ∼ N–(p–1)/2 · N (0, Inp ).

The pure p-spin glass distribution is:

µp,β(x) =
1

Zp,n(β)
eβ⟨x⊗p ,G(p)⟩.

Physics belief: sampleable for β = βdyn(p) ≈
√

1
p .

[ABXY 22, AJKPV 23]: Glauber mixes fast for β ≪ p–3/2.

[Alaoui-Montanari-S 23]: stochastic localization succeeds for β ≪ 1
p .

However, replica-symmetric below βc(p) ≈
√

2 log 2 ≫ βdyn(p).

M. Sellke Diffusion Sampling for Spin Glasses 33 / 36



Extension to p-spin Models

Instead of a random matrix, start with a Gaussian tensor

G(p) ∼ N–(p–1)/2 · N (0, Inp ).

The pure p-spin glass distribution is:

µp,β(x) =
1

Zp,n(β)
eβ⟨x⊗p ,G(p)⟩.

Physics belief: sampleable for β = βdyn(p) ≈
√

1
p .

[ABXY 22, AJKPV 23]: Glauber mixes fast for β ≪ p–3/2.

[Alaoui-Montanari-S 23]: stochastic localization succeeds for β ≪ 1
p .

However, replica-symmetric below βc(p) ≈
√

2 log 2 ≫ βdyn(p).

M. Sellke Diffusion Sampling for Spin Glasses 33 / 36



Shattering

βc(p) ≫ βdyn(p) is expected for large p due to shattering.
This means there are disjoint clusters C1, . . . , CM ⊆ {–1, +1}n with...

1 Small diameter and probability:

max
1≤m≤M

diam(Cm) ≤ ε
√

N, max
1≤m≤M

µβ(Cm) ≤ e–cN .

2 Uniform separation:

min
1≤m1<m2≤M

dist(Cm1 , Cm2) ≥ 10ε
√

N.

3 Together, the clusters account for nearly all the probability:

µβ

( M⋃
m=1

Cm
)
≥ 1 – e–cN .
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Hardness for p-spin Sampling

For β > βc , we still have “RSB =⇒ chaos =⇒ hardness”. Below βc ...

Theorem (Gamarnik-Jagannath-Kizildag 23)

Pure p-spin glasses shatter for 0.51βc(p) < β < 0.99βc(p) and p ≥ O(1).

Theorem (Alaoui-Montanari-S 23b)

For spin glasses, “shattering =⇒ chaos =⇒ hardness”.

Noising G(p) re-randomizes cluster weight ratios µβ(Ci )/µβ(Cj ).

For spherical analogs: β
sph
dyn(p) ≈

√
e ≪ β

sph
c (p) ≈

√
log p.

Theorem (Alaoui-Montanari-S 23b)

Spherical p-spin glasses shatter for β ∈ [O(1), β
sph
c (p)).

Sharp thresholds (algorithmic and mathematical) open beyond SK.
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Summary

Stochastic localization sampling for the SK model

µG,β(x) =
1

Zn(β)
eβ⟨x,Gx⟩/2.

Approach: to obtain x∗ ∼ µ, simulate yt = tx∗ + Bt .

Main result: Wasserstein-approximate samples for β < 1. For β > 1,
disorder chaos is a natural barrier for stable algorithms.

For general p-spin models, sharp thresholds will require an
understanding of shattering.
Upgrade to TV sampling?
What other distributions are stochastic localization sampleable?

Other provable implementations of diffusion sampling:
[Montanari-Wu 23]: posterior sampling for noisy low-rank matrices.
[AHLVXY 23]: TV sampling for structured µ, e.g. DPPs.
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