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Plan for this Talk

@ Background on High-Dimensional Sampling
o Sequential sampling
o Stochastic localization

o Connection to diffusion models
o Goal for today: the Sherrington—Kirkpatrick model

@ Main Results

o Algorithm: approximate message passing and more

o Stability of the algorithm; hardness from chaos.
o p-spin generalizations; another source of chaos.
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Sampling

Goal: generate
x* ~p(dx) given pePR").

For 1 high-dimensional and NOT log-concave.
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Sampling

In this talk, focus on Ising models:

x € {-1,+1}".

eB(x,Ax>/2

1
Z(B)

A p(x)

5/36

Gl

ling for Spin

Diffusion S



Sampling

In this talk, focus on Ising models:

Glauber dynamics
@ Repeatedly choose i € [n] and resample x; given other coordinates.

@ Mixes rapidly if BA is small. In general, mixing can be very slow.
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Sequential Sampling

Given a distribution p € P ({-1, +1}"), suppose we have a conditional
expectation oracle to evaluate

mt =M |} =x7,....x¢ =x{)], t€{0,1,...,n-1}
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Sequential Sampling

Given a distribution p € P ({-1, +1}"), suppose we have a conditional
expectation oracle to evaluate

mt =M |} =x7,....x¢ =x{)], t€{0,1,...,n-1}
Then we can directly sample x, one coordinate at a time. Namely,

m£+1+1

Pixeyr =1 x1,...,xt] = >

This is the foundation for equivalence between counting and sampling.
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Sequential Sampling

Directly implementing sequential sampling may be too much to hope for.

@ Requires a strong oracle, especially for continuous variables.
@ Maybe estimating m! is no easier than sampling.

@ Unclear how to choose a good order for the coordinates.
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Sequential Sampling

Directly implementing sequential sampling may be too much to hope for.

@ Requires a strong oracle, especially for continuous variables.
@ Maybe estimating m! is no easier than sampling.

@ Unclear how to choose a good order for the coordinates.

The high-level idea is to reveal x* gradually. This is fundamentally
different from a Markov chain!

And, information can be gradually revealed in other ways.
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Sampling via Stochastic Localization

Given u € P(R"), consider a Brownian motion with unknown drift:
ye = txX* + By~ N(txF, thy).

x* ~ W is independent of Brownian motion B; and only y; is observed.
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Sampling via Stochastic Localization

Given u € P(R"), consider a Brownian motion with unknown drift:
ye = txX"+ By~ N(txF, tlp).
x* ~ W is independent of Brownian motion B; and only y; is observed.

Our sampling algorithm takes the following form:

@ Simulate y; for a long time t € [0, T| without knowing x*.

© Read off y

? .

*
X =

Equivalently, increments y(, 1)5 — ¥k are D noisy observations of x™.
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Sampling via Stochastic Localization

Given u € P(R"), consider a Brownian motion with unknown drift:
ye = txX* + By~ N(txF, thy).

x* ~ W is independent of Brownian motion B; and only y; is observed.

Our sampling algorithm takes the following form:

@ Simulate y; for a long time t € [0, T| without knowing x*.
@ Read off

~

P YT
X T

Equivalently, increments y(, 1)5 — ¥k are D noisy observations of x™.

This process has been popularized in high-dimensional convex geometry
[Eldan 13, Lee-Vempala 17, Chen 21, Klartag-Lehec 22, Jambulapati-Lee-Vempala 22].
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Simulating y;

Our goal is to sample a random path
ye =txX"+ By~ N(txF, tl)

from its distribution averaged over the unknown x*.
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Simulating y;

Our goal is to sample a random path
ye = txX"+ By~ N(txF, tlp)
from its distribution averaged over the unknown x*.

This law on paths is actually Markovian. The instantaneous drift is the
current conditional expectation of the unknown drift:

dy; = medt + dWy;
mt = Ex* | F¢] = E[x* | y,]

for Wt a (separate) Brownian motion.

Markov property: y; is a sufficient statistic for Y(o,4-
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Parallels with Pélya’s Urn

Pélya's urn gives an indirect way to sample p ~ Unif ([0, 1]). Stochastic
localization sampling is a continuous-time parallel.

H Goal H Pélya's Urn ‘ Stoch. Loc.
Want to sample p~ Un/f([O 1]) x* ~ue PR")
Observation process ai, a, ... D Ber(p) y; = tx* + Bt
Process w/o sample a ~ Ber(]Et[p]) dy, = E'[x*] + dB;
Process — sample || p~(a;+---+a7)/T x*ryr/T
In this case, Ef[p] = % by Laplace’s rule of succession.
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Parallels with Pélya’s Urn

Pélya's urn gives an indirect way to sample p ~ Unif ([0, 1]). Stochastic
localization sampling is a continuous-time parallel.

H Goal H Pélya's Urn ‘ Stoch. Loc. H
Want to sample p ~ Unif ([0, 1]) x* ~pne PR
Observation process ai, a, ... D Ber(p) y; = tx* + Bt
Process w/o sample at ~ Ber(E'[p]) dy, = Ef[x*] + dB;
Process — sample || p~ (a1 +---+a7)/T x*ryr/T
Ne(1)+1

In this case, Ef[p] = N (0)+ Ne(1)+2 by Laplace’s rule of succession.

Sy = a1+ -+ at plays the role of y 1.
e Given p: St is a discrete walk with drift p.
e Given x*: y; is a continuous walk with drift x*.

@ Increments y(;,1)5 — ;5 Play the role of a;.
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The Resulting Algorithm

dy; = medt + dWy,

A continuous-time stochastic process is not really an algorithm.

Of course, we should discretize time.
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The Resulting Algorithm

dyt = mtdt + th,

Input: Data: Probability measure w
Input: Result: Sample x* ~
fort €[0,9,..., T-3] do

Sample g+ ~ N (0, I5)

Set Virs =Yr +0me(y;) + Vgt
end
Set X" = Round(y1/T) € {-1,+1}"
return X*
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The Resulting Algorithm

dyt = mtdt + th,

Input: Data: Probability measure w
Input: Result: Sample x* ~
fort €[0,9,..., T-3] do

Sample g+ ~ N (0, I5)

Set Virs =Yr +0me(y;) + Vgt
end
Set X" = Round(y1/T) € {-1,+1}"
return X*

Main requirement: a good approximation

me(y:) = me(ye) = E[X* | Vil
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Where Do We Stand?

So far:
@ General sampling procedure.

@ Requires repeatedly estimating m¢(y;) ~ E[x* | ¥¢].

We have replaced the need for one oracle with another...is it any better?
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Where Do We Stand?

So far:

@ General sampling procedure.

@ Requires repeatedly estimating m¢(y;) ~ E[x* | ¥¢].

We have replaced the need for one oracle with another...is it any better?

Main result for this talk: example where the answer is yes.
@ SK model: coupling matrix A is GOE.

e Computing m¢(y;) falls into the wheelhouse of high-dimensional
statistics/optimization.

@ But, provable hardness for “stable” sampling at large B.
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Connection to Diffusion Models




Connection to Diffusion Models

Modern diffusion-based sampling has two main processes:

@ Forward: turn sample Xy ~ W into noise via OU flow

dX1 =-X7 dT +V2dW7.
@ Backward: time-reverse the forward process, i.e. noise — sample.

@ The backward process gains a -dependent drift.
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Connection to Diffusion Models

Modern diffusion-based sampling has two main processes:

@ Forward: turn sample Xy ~ W into noise via OU flow

dX1 =-X7 dT +V2dW7.
@ Backward: time-reverse the forward process, i.e. noise — sample.

@ The backward process gains a -dependent drift.
Given Xg for S< T: el Xt d e>Xs + Ve2T —e25 N(0, Ip).

Given ys for s > t: yi/t d ys/s+ /ZEN(O, In).
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Connection to Diffusion Models

Modern diffusion-based sampling has two main processes:

@ Forward: turn sample Xy ~ W into noise via OU flow

dX1 =-X7 dT +V2dW7.
@ Backward: time-reverse the forward process, i.e. noise — sample.

@ The backward process gains a -dependent drift.
Given Xg for S< T: el Xt d e>Xs + Ve2T —e25 N(0, Ip).

Given ys for s > t: yi/t d ys/s+ /ZEN(O, In).

Stochastic localization is a reparametrization of the backward process!

o Diffusion models learn SDE coefficients from forward process on
samples. Provable guarantees from good estimates (ask Sitan!)

@ This talk: no samples, but a formula for p.
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Sherrington-Kirkpatrick Model

Ising model with random couplings:

1
HGp(x) = 5 greP*SI/2.

~ Za(B)

Random symmetric matrix G ~ GOE(n):

o G =G'. Entries otherwise independent.

° G,"j NN(O. l/n) for i < j.
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Sherrington-Kirkpatrick Model

Ising model with random couplings:

1
HGp(x) = 5 greP*SI/2.

~ Za(B)

Random symmetric matrix G ~ GOE(n):

o G =G'. Entries otherwise independent.

° G,"j NN(O. l/n) for i < j.

Goal: given G ~ GOE(n), generate a sample from g g.

Dobrushin’s condition for fast mixing of Glauber works if p < cn™1/2.
But we would like B to be constant size.
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Brief History of the SK Model

[Ising 1925]: Ising model for ferromagnets.
[Sherrington-Kirkpatrick 1975]: model for disordered magnets.

[Parisi 1982]: non-rigorous solution via replica symmetry breaking.
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Brief History of the SK Model

[Ising 1925]: Ising model for ferromagnets.
[Sherrington-Kirkpatrick 1975]: model for disordered magnets.
[Parisi 1982]: non-rigorous solution via replica symmetry breaking.
[Talagrand 2006] proves the Parisi formula.

@ Huge amount of other important work including

[Aizenman-Ruelle-Lebowitz 82, Ruelle 87, Guerra 03, Chatterjee 09,
Panchenko 14, Ding-Sly-Sun 15, Auffinger-Chen 17,...].
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Connections

SK model is a prototype for disordered, random probability measures.
@ Random MaxCut and K-SAT.
@ Coloring random graphs.

@ Posteriors in high-dimensional statistics.
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Connections

SK model is a prototype for disordered, random probability measures.
@ Random MaxCut and K-SAT.
@ Coloring random graphs.

@ Posteriors in high-dimensional statistics.

E.g. optimal MaxCut in a random sparse graph ([Dembo-Montanari-Sen 17]).
For G~ G (n, %)

MaxCut(G) = n (2 + C*\/E—F o(ﬁ)) + o(n).
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Rigorous Results on Sampling

1 X,GX
i) = 7el S

Expect: efficient sampling possible for B < 1, impossible for § > 1.
@ "Replica symmetric” for B < 1. For independent x, x’ ~ LGB

E[|(x, x"}|/n] ~ 0.

@ "Replica symmetry breaking” for f > 1. Here

E[[(x,x")|/n] > c(B) > 0.
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Rigorous Results on Sampling

1 X,GX
i) = 7el S

Expect: efficient sampling possible for B < 1, impossible for § > 1.
@ "Replica symmetric” for B < 1. For independent x, x’ ~ LGB

E[|(x, x")|/n] =~ 0.
@ "Replica symmetry breaking” for f > 1. Here
E[|{x,x')|/n] = c(B) > 0.

Recent progress: Glauber mixes in O(nlog n) steps for < 1/4.
[Bodineau-Bauerschmidt 20, Eldan-Koehler-Zeitouni 21, Anari-Jain-Koehler-Pham-Vuong 21].
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Rigorous Results on Sampling

1 X,GX
i) = 7el S

Expect: efficient sampling possible for B < 1, impossible for § > 1.
@ "Replica symmetric” for B < 1. For independent x, x’ ~ LGB

E[|(x, x")|/n] =~ 0.
@ "Replica symmetry breaking” for f > 1. Here
E[|(x,x)|/n] > c(B) > 0.

Recent progress: Glauber mixes in O(nlog n) steps for < 1/4.
[Bodineau-Bauerschmidt 20, Eldan-Koehler-Zeitouni 21, Anari-Jain-Koehler-Pham-Vuong 21].

Our result: stochastic localization succeeds (in a weaker sense) for B < 1.
(Originally B < 1/2, improvement by [Celentano 22].)
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Normalized Wasserstein Metric

Given ug, up € P({-1,1}"), define the normalized Wasserstein metric

- E[[|x1 = x2||p1]
W, n(11, 12) = inf —_—.
ol ) (x1.x2)~ Coupling (b1 112) n

Wi p(p1, 12) < o(1) means that xq, xo differ by o(n) coordinates under
an optimal coupling. We will consider such pairs of points to be close.
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Main Result

Theorem (Alaoui-Montanari-S 22, Celentano 22)

For any 3 < 1 and € > 0, there exists a randomized algorithm with
complexity O(n?) which given G outputs x ~ Hzgg such that

E[W1,n(ug5. MG p)l <&
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Estimating the Mean

To sample for B < 1, our main goal is to estimate m; = E[x* | y,] for
yt = tX* + Bt.

The solution goes through several ideas in high-dimensional statistics and
optimization.
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Estimating the Mean

To sample for B < 1, our main goal is to estimate m; = E[x* | y;] for
yt = tX* + Bt.

The solution goes through several ideas in high-dimensional statistics and
optimization.

Two phase procedure:
@ Rough estimate for m; using approximate message passing.

@ High-accuracy estimate for m; using gradient descent on a
well-chosen potential.

For now, assume perfect simulation until time t. Observe
Y~ N(tX*, tln),
estimate m¢(y;).
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Step 1: Rough Estimate of m¢

Self-consistent “naive mean-field” equation for my = E[x | y;]:
m¢ ~ tanh (BGm¢ +y;)

o Intuitively, (BGm; + Yt),- is the effective field on x;.
@ tanh(:) converts from field on {-1, +1} to probabilities
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Step 1: Rough Estimate of m¢

Self-consistent “naive mean-field” equation for my = E[x | y;]:

m¢ = tanh (BGm¢ + y;)

o Intuitively, (BGm; + Yt),- is the effective field on x;.
@ tanh(:) converts from field on {-1, +1} to probabilities
@ Not quite right. It actually should be

m¢ = Ef[tanh (BGx + y;)].

tanh(-) is non-linear and although E![Gx] = Gm¢ there is nontrivial
conditional randomness left.
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Step 1: Rough Estimate of m¢

Self-consistent “naive mean-field” equation for my = E[x | y;]:

m¢ ~ tanh (BGm¢ +y;)

o Intuitively, (BGm; + Yt),- is the effective field on x;.
@ tanh(:) converts from field on {-1, +1} to probabilities
@ Not quite right. It actually should be

m¢ = Ef[tanh (BGx + y;)].

tanh(-) is non-linear and although E![Gx] = Gm¢ there is nontrivial
conditional randomness left.

Revised Thouless-Anderson-Palmer (TAP) equation:

~ _R2 _Hth%
m¢ &~ tanh | BGm;: +y,—B“( 1 e me | .
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Step 1: Rough Estimate of m¢

Turn the TAP equation into a recursion and repeat until convergence to
an approximate fixed point:

(k)12
_g2 (1 lImel3
by =B (1 . .
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Step 1: Rough Estimate of m¢

Turn the TAP equation into a recursion and repeat until convergence to
an approximate fixed point:

g = tanh (BGmE +y, - bt V),

(k)12
_g2 (1 lImel3
by =B (1 . .

This is an approximate message passing algorithm. Generalizes belief
propagation to dense matrices G.

(k-1)

e Onsager term b,m; cancels “backtracking” paths.
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Step 1: Rough Estimate of m¢

Turn the TAP equation into a recursion and repeat until convergence to
an approximate fixed point:

g = tanh (BGmE +y, - bt V),

by =p%[1-

This is an approximate message passing algorithm. Generalizes belief
propagation to dense matrices G.

(k-1)

e Onsager term b,m; cancels “backtracking” paths.

@ By now, a major tool in high-dimensional statistics.
[Bolthausen 14, Donoho-Maleki-Montanari 09, Bayati-Montanari 11, Javanmard-Montanari 12,

Rush-Venkataramanan 18, Chen-Lam 20, Fan 20, Dudeja-Lu-Sen 22]

For large n and k = O(1) iterations, state evolution describes AMP.
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State Evolution for AMP

rﬁgk_'_l) = tanh (BGmt +y;—b m&k 1))

Idea of AMP: for deterministic v, w, the vectors
Gv, Gw

each have i.i.d. Gaussian coordinates. Covariance between (Gv); and
(Gw); equals (v, w).
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State Evolution for AMP

rﬁgk_'_l) = tanh (BGmt +y: - bkmgk 1))

Idea of AMP: for deterministic v, w, the vectors
Gv, Gw

each have i.i.d. Gaussian coordinates. Covariance between (Gv); and
(Gw); equals (v, w).

. . ~(k+1 .
@ Onsager term lets us apply this recursively to each mg + ), despite
re-using the same G many times.

State evolution: from simple initialization (M, y,), choose uniform
i € [n]. Tells us the n — oo limiting distribution of

(@D @i, (@) € R
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State Evolution for AMP

rﬁgk_'_l) = tanh (BGmt +y: - bkmgk 1))

Idea of AMP: for deterministic v, w, the vectors
Gv, Gw

each have i.i.d. Gaussian coordinates. Covariance between (Gv); and
(Gw); equals (v, w).

. . ~(k+1 .
@ Onsager term lets us apply this recursively to each mg + ), despite
re-using the same G many times.

State evolution: from simple initialization (M, y,), choose uniform
i € [n]. Tells us the n — oo limiting distribution of

(@D @i, (@) € R

Problem: x* ~ g g is NOT SIMPLE. So neither is yr ~ N (tx*, tln).
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Contiguity with a Simpler Spiked Model

To analyze the AMP recursion, we switch to a spiked joint distribution Q
over (G,x*,y;). Under Q:

x* ~ Unif ({-1,1}"), yr = tx* + B,

G ~ GOE(n) + BX*(:*)T
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Contiguity with a Simpler Spiked Model

To analyze the AMP recursion, we switch to a spiked joint distribution Q
over (G,x*,y;). Under Q:

x* ~ Unif ({-1,1}"), yr = tx* + B,
k(L k) |
G ~ GOE(n) + BX(:)
The conditional law Q[G | x*] looks similar to P[x* | G] in SK:

QIG | %] o ePHON2y e (6).
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Contiguity with a Simpler Spiked Model

To analyze the AMP recursion, we switch to a spiked joint distribution Q
over (G,x*,y;). Under Q:

x* ~ Unif ({-1,1}"), y: = txX* + B,
G ~ GOE(n) + BX*(:*)T
The conditional law Q[G | x*] looks similar to P[x* | G] in SK:
QIG | %] o ePHON2y e (6).
Swapping the order distorts probabilities by a partition function factor

Zsc(G)= D PO
ve{-1,+1}"

e Zsk(G) fluctuates mildly for < 1 [Aizenman-Ruelle-Lebowitz 82].
Yields contiguity; estimating m; w.h.p. is equivalent.
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State Evolution for AMP

State evolution: i-th coordinate of rﬁgk) behaves like
tanh (agk)x,- + bgk)Z), Z ~N(0,1).

Limits (a$°, bZ°) yield the asymptotic mean-squared error (MSE)

. . ~(k
E.(t) = lim p—I|mEng)

2
—x[3.
k—o00 n—o00
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State Evolution for AMP

State evolution: i-th coordinate of rﬁgk) behaves like

tanh (agk)x,- + bgk)Z), Z ~N(0,1).
Limits (a$°, bZ°) yield the asymptotic mean-squared error (MSE)

. . ~(k
E.(t) = lim p—I|mEng)

2
—x[3.
k—o00 n—o00

~(k
To conclude mg ) ~ m¢, we want:

E.(t) =~ MMSE(t) = E|/m; - x||3,
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State Evolution for AMP

State evolution: i-th coordinate of rﬁgk) behaves like

tanh (a¥)x; + 69 7), Z ~ N(0,1).
Limits (a$°, bZ°) yield the asymptotic mean-squared error (MSE)

. . ~(k
E.(t) = lim p—I|mEng)

2
—x[3.
k—o00 n—o00

=(K)

To conclude m;"/ ~ m¢, we want:
E.(t) =~ MMSE(t) = E|/m; - x||3,
[-MMSE Area Law [Guo-Shamai-Verdu 04, Deshpande-Abbe-Montanari 15]:

1 oo
2/ MMSE(t) dt = Ent(x").
0

o We verify explicitly that fO E.(t) dt =~ Ent(x*) for large n.
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Conclusion of Step 1: Rough Estimate for m¢

ng) = tanh (BGm(k) +y:— bkA(k 1)> ,

Proposition (Alaoui-Montanari-S 22)
For p < 1 and any €, t > 0 there exists ko(t, €) such that for all k > ko,

im P[5 (ve) - me(ye)l| < ev/] = 1.

Here y; is perfect stochastic localization at time t. The algorithm can
only use an estimate y;.

. (k)
We still must bound Hmt (yt) (
accumulation across time.

yt)|| to control error
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Step 2: Refined Estimate of m¢

Surprisingly, finishing the proof is non-obvious.

(k)

@ Two types of error: SDE &-discretization and m; ’ ~ my.
e Sending (9, k) — (0, c0) does not suffice.
(

o Lipschitz constant of ﬁ1tk) diverges with k.

M. Sellke Diffusion Sampling for Spin Glasses

29 /36



Step 2: Refined Estimate of m¢

Surprisingly, finishing the proof is non-obvious.

@ Two types of error: SDE d-discretization and rﬁ(tk) A mg.
e Sending (9, k) — (0, c0) does not suffice.
(k

o Lipschitz constant of m; ) diverges with k.

(k)

Second step: by construction, m; ’ is an approximate stationary point for
the “TAP free energy'"

Frap(m,y:) = §<m Gm) = (¥¢, m Zh m;).

e With gradient descent, refine r?ngk) to

m;° = argmin Frap(m, yy).
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Step 2: Refined Estimate of m¢

Surprisingly, finishing the proof is non-obvious.

@ Two types of error: SDE d-discretization and rﬁ(tk) A mg.
e Sending (9, k) — (0, c0) does not suffice.
(k

o Lipschitz constant of m; ) diverges with k.

(k)

Second step: by construction, m; ’ is an approximate stationary point for
the “TAP free energy'"

Frap(m,y:) = 2<m Gm) = (¥¢, m Zh m;).

e With gradient descent, refine r?ngk) to
m;° = argmin Frap(m, yy).

o [Celentano 22]: Frap is strongly convex near m;° for B < 1.
Hence m$® is Cp-Lipschitz in ;. No blow-up with AMP accuracy.
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Algorithmic Stability

Our algorithm is stable with respect to (G, B): just uses Op ¢(1)
matrix-vector products, and some 1-dimensional non-linearities.

Concretely, from i.i.d. G = Gg and G, consider perturbation path

Gs = V1-52Gq + sGj.

Stability of the algorithm tells us:

H H alg alg _
Jim lim E[W1n(kg, g Mesp)l = 0.
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Algorithmic Stability

Our algorithm is stable with respect to (G, B): just uses Op ¢(1)
matrix-vector products, and some 1-dimensional non-linearities.

Concretely, from i.i.d. G = Gg and G, consider perturbation path
Gs = V1-52Gq + sGj.
Stability of the algorithm tells us:

H H alg alg _
Jim lim E[W1n(kg, g Mesp)l = 0.

A purely structural consequence with an algorithmic proof:

Theorem (Alaoui-Montanari-S 22; Celentano 22)

The true SK Gibbs measures are stable when 3 < 1:
Jim lim E[W1,n(KG, p Mas,p)l = 0.

Similar stability holds for small pertubations in 3.
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Hardness via Chaos

The stability property
lim lim E[W) n(Ke,p:Hes, )] = 0.

s—0n

for the true Gibbs measure is false for f > 1. Combination of:
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Hardness via Chaos

The stability property

lim lim E[W) n(Ke,p:Hes, )] = 0.

s—0n

for the true Gibbs measure is false for f > 1. Combination of:

Theorem (Chatterjee 09; Disorder Chaos)

Let (x0,xs) ~ UGy,p X MG,,p- Forall B € R and s >0,

lim_ Bl (x0,x5) /] = 0.
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Hardness via Chaos

The stability property

lim lim E[W) n(Ke,p:Hes, )] = 0.

s—0n

for the true Gibbs measure is false for f > 1. Combination of:

Theorem (Chatterjee 09; Disorder Chaos)

Let (x0,xs) ~ UGy,p X MG,,p- Forall B € R and s >0,

lim K[| (xo,xs)|/n] = 0.

Theorem (Replica Symmetry Breaking)

Let xg, x6 ~ UGy be independent. For all p > 1,

liminf E[|(x, xg)|/n] > c(B) > 0.
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Hardness via Chaos

The previous results show that ug, g and g, g must be significantly
different. Therefore:

Theorem (Alaoui-Montanari-S 22)

Let u‘"égﬁ be the law of ALG,(G, B, ®) conditional on G. If ALG, is
stable, then for all B > 1,

lim infE[len(},LEl%B, MG,ﬁ)] > c(B) > 0.

n—o0

Stability holds for gradient-based methods such as Langevin dynamics and
AMP, at least on dimension-independent time-scales.
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Extension to p-spin Models

Instead of a random matrix, start with a Gaussian tensor
G ~ n(p1)/2 - N(O, Ipp).
The pure p-spin glass distribution is:

1 «®p G(P)
up,B(X)Zvan(B)em G,
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Extension to p-spin Models

Instead of a random matrix, start with a Gaussian tensor
G ~ n(p1)/2 - N(O, Ipp).
The pure p-spin glass distribution is:

1 «®p G(P)
up,B(X)Zvan(B)em G,

Physics belief: sampleable for = B4,,(p) ~ \/%.

[ABXY 22, AJKPV 23]: Glauber mixes fast for f < p~3/2.
[Alaoui-Montanari-S 23]: stochastic localization succeeds for B < %.
However, replica-symmetric below B.(p) = /2log2 > de,,
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Shattering

Bc(p) > Bayn(p) is expected for large p due to shattering.
This means there are disjoint clusters Cy,...,Cp C {-1, +1}" with...

© Small diameter and probability:

diam(Cp) < eV/N, Cm) < &N,
1<meM iam(Cm) < eVN 1§nr]na§(MuB( m <
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Shattering

Bc(p) > Bayn(p) is expected for large p due to shattering.
This means there are disjoint clusters Cq, ..., Cvm € {-1,4+1}" with...

© Small diameter and probability:

diam(Cp) < eV/N, Cm) < &N,
1<meM iam(Cm) < eVN 1§nr]na§(MuB( m <

@ Uniform separation:

1§mlrzi,r:,zgl\/’ dist(Cmy, Cmy) > 10eV/N.
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Shattering

Bc(p) > Bayn(p) is expected for large p due to shattering.
This means there are disjoint clusters Cq, ..., Cvm € {-1,4+1}" with...

© Small diameter and probability:

diam(Cp) < eV/N, Cm) < &N,
1<meM iam(Cm) < eVN 1§nr]na§(MuB( m <

@ Uniform separation:

1§mlrzi,r:,zgl\/’ dist(Cmy, Cmy) > 10eV/N.

© Together, the clusters account for nearly all the probability:

M
Hﬁ( U Cm) >1-e N

m=1
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For B > Bc, we still have “RSB = chaos = hardness”. Below ...



Hardness for p-spin Sampling

For B > B¢, we still have “RSB = chaos = hardness”. Below Pc...

Theorem (Gamarnik-Jagannath-Kizildag 23)
Pure p-spin glasses shatter for 0.51B¢(p) < B < 0.99B(p) and p > O(1).

Theorem (Alaoui-Montanari-S 23b)

For spin glasses, “shattering —> chaos —> hardness”.

o Noising G(P) re-randomizes cluster weight ratios ue(Ci)/up(C;).
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Hardness for p-spin Sampling

For B > B¢, we still have “RSB = chaos = hardness”. Below Pc...

Theorem (Gamarnik-Jagannath-Kizildag 23)

Pure p-spin glasses shatter for 0.51B¢(p) < B < 0.99B(p) and p > O(1).

Theorem (Alaoui-Montanari-S 23b)

For spin glasses, “shattering —> chaos —> hardness”.

o Noising G(P) re-randomizes cluster weight ratios ue(Ci)/up(C;).

For spherical analogs: BZ@:( )R Ve K BsPh( ) ~ +/log p.

Theorem (Alaoui-Montanari-S 23b)

Spherical p-spin glasses shatter for B € [O(1), B h(p)).

Sharp thresholds (algorithmic and mathematical) open beyond SK.
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Summary

Stochastic localization sampling for the SK model

]' X, GX
6 ple) = el KO

Approach: to obtain x* ~ u, simulate y; = tx* + Bs.
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Summary

Stochastic localization sampling for the SK model

]' X, X
e = 7 gy

Approach: to obtain x* ~ W, simulate y; = tx* + Bt.

Main result: Wasserstein-approximate samples for B < 1. For B > 1,
disorder chaos is a natural barrier for stable algorithms.

@ For general p-spin models, sharp thresholds will require an
understanding of shattering.

e Upgrade to TV sampling?

@ What other distributions are stochastic localization sampleable?
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Summary

Stochastic localization sampling for the SK model

eB(x,Gx>/2.

Hep() = 57

X) =
P Zn(B)
Approach: to obtain x* ~ u, simulate y; = tx* + By.

Main result: Wasserstein-approximate samples for B < 1. For B > 1,
disorder chaos is a natural barrier for stable algorithms.

@ For general p-spin models, sharp thresholds will require an
understanding of shattering.

e Upgrade to TV sampling?

@ What other distributions are stochastic localization sampleable?
Other provable implementations of diffusion sampling:

@ [Montanari-Wu 23]: posterior sampling for noisy low-rank matrices.

o [AHLVXY 23]: TV sampling for structured |, e.g. DPPs.
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