Stochastic Localization Sampling For the SK Model

Mark Sellke

IAS CSDM

M. Sellke Stochastic Localization Sampling 1/34

Ahmed El Alaoui

Andrea Montanari

Goal: generate

$$\mathbf{x}^* \sim \mu(\mathsf{d}\mathbf{x})$$
 given $\mu \in \mathcal{P}(\mathbb{R}^n)$.

For $\boldsymbol{\mu}$ high-dimensional and NOT log-concave.

Sampling

In this talk, focus on Ising models:

$$\mu_{\boldsymbol{A},\beta}(\boldsymbol{x}) = \frac{1}{Z(\beta)} e^{\beta \langle \boldsymbol{x}, \boldsymbol{A} \boldsymbol{x} \rangle/2}, \qquad \boldsymbol{x} \in \{-1, +1\}^n.$$

Sampling

In this talk, focus on Ising models:

$$\mu_{\boldsymbol{A},\boldsymbol{\beta}}(\boldsymbol{x}) = \frac{1}{Z(\boldsymbol{\beta})} e^{\boldsymbol{\beta}\langle \boldsymbol{x},\boldsymbol{A}\boldsymbol{x}\rangle/2}, \qquad \boldsymbol{x} \in \{-1,+1\}^n.$$

Glauber dynamics

- Repeatedly choose $i \in [n]$ and resample x_i given other coordinates.
- Mixes rapidly if **A** is small. In general, mixing can be very slow.

Given a distribution $\mu \in \mathcal{P}(\{-1, +1\}^n)$, suppose we have a conditional expectation **oracle** to evaluate

$$m^t = \mathbb{E}^{x \sim \mu} [x \mid (x_1 = x_1^*, \dots, x_t = x_t^*)], \quad t \in \{0, 1, \dots, n-1\}.$$

Given a distribution $\mu \in \mathcal{P}(\{-1, +1\}^n)$, suppose we have a conditional expectation **oracle** to evaluate

$$m^t = \mathbb{E}^{x \sim \mu} [x \mid (x_1 = x_1^*, \dots, x_t = x_t^*)], \quad t \in \{0, 1, \dots, n-1\}.$$

Then we can directly sample x, one coordinate at a time. Namely,

$$\mathbb{P}^{t}[x_{t+1}=1 \mid x_{1}, \ldots, x_{t}] = \frac{m_{t+1}^{t}+1}{2}.$$

This is the foundation for equivalence between counting and sampling.

Sequential sampling may be too much to hope for.

- Requires a strong oracle, especially for continuous variables.
- Maybe estimating *m^t* is no easier than sampling.
- Unclear how to choose a good order for the coordinates.

Sequential sampling may be too much to hope for.

- Requires a strong oracle, especially for continuous variables.
- Maybe estimating *m^t* is no easier than sampling.
- Unclear how to choose a good order for the coordinates.

In sequential sampling, we try to reveal x^* gradually. There are other ways to do this.

Warm-Up: Pólya's Urn

A silly way to sample $p \sim Unif([0, 1])$:

- Sample an infinite sequence (b₁, b₂,...) of i.i.d. Ber(p) bits, without knowing p.
- Use law of large numbers to compute $p = \lim_{t \to \infty} \frac{\sum_{s=1}^{t} b_s}{t}$.

Warm-Up: Pólya's Urn

A silly way to sample $p \sim Unif([0, 1])$:

Sample an infinite sequence (b₁, b₂,...) of i.i.d. Ber(p) bits, without knowing p.

• Use law of large numbers to compute $p = \lim_{t\to\infty} \frac{\sum_{s=1}^{t} b_s}{t}$...and this is really not so bad.

• Given (b_1, \ldots, b_t) , the posterior expectation for p is given by Laplace's rule of succession:

$$\mathbb{E}^t[p] = \frac{1 + \sum_{s=1}^t b_t}{t+2}$$

Warm-Up: Pólya's Urn

A silly way to sample $p \sim Unif([0, 1])$:

Sample an infinite sequence (b₁, b₂,...) of i.i.d. Ber(p) bits, without knowing p.

• Use law of large numbers to compute $p = \lim_{t\to\infty} \frac{\sum_{s=1}^{t} b_s}{t}$...and this is really not so bad.

• Given (b_1, \ldots, b_t) , the posterior expectation for p is given by Laplace's rule of succession:

$$\mathbb{E}^t[p] = \frac{1 + \sum_{s=1}^t b_t}{t+2}.$$

• Hence the sequential rule

$$\mathbb{P}^{t}[b_{t+1}=1] = \frac{1+\sum_{s=1}^{t}b_{t}}{t+2},$$

yields an i.i.d. Ber(p) sequence for $p \sim Unif([0, 1])$.

Stochastic Localization: Revealing x^* with Gaussian Noise

(A version of) Eldan's Stochastic localization:

$$\mathbf{y}_t = t\mathbf{x}^* + \mathbf{B}_t \quad \sim \mathcal{N}(t\mathbf{x}^*, t\mathbf{I}_n).$$

 $x^* \sim \mu$ is independent of Brownian motion B_t .

Stochastic Localization: Revealing x^* with Gaussian Noise

(A version of) Eldan's Stochastic localization:

$$\mathbf{y}_t = t\mathbf{x}^* + \mathbf{B}_t \quad \sim \mathcal{N}(t\mathbf{x}^*, t\mathbf{I}_n).$$

 $\mathbf{x}^* \sim \mu$ is independent of Brownian motion \mathbf{B}_t .

Suggests a sampling algorithm:

3 Simulate y_t for a long time $t \in [0, T]$ without knowing x^* .

2 Read off

$$\mathbf{x}^* \approx \frac{\mathbf{y}_T}{T}.$$

Stochastic Localization: Revealing \boldsymbol{x}^* with Gaussian Noise

(A version of) Eldan's Stochastic localization:

$$\mathbf{y}_t = t\mathbf{x}^* + \mathbf{B}_t \quad \sim \mathcal{N}(t\mathbf{x}^*, t\mathbf{I}_n).$$

 $\mathbf{x}^* \sim \mu$ is independent of Brownian motion \mathbf{B}_t .

Suggests a sampling algorithm:

() Simulate y_t for a long time $t \in [0, T]$ without knowing x^* .

2 Read off

$$\mathbf{x}^* \approx \frac{\mathbf{y}_T}{T}$$

Geometric motivation: decompose general μ into posteriors $\mu_t(dx) \propto e^{\langle y_t, x \rangle - t \|x\|_2^2/2} \mu(dx).$

- If μ log-concave, each μ_t is strongly log-concave.
- KLS conjecture [Eldan 12, Lee-Vempala 17, Chen 21, Klartag-Lehec 22].

Similarly to Pólya's urn, we can generate the path

$$m{y}_t = t m{x}^* + m{B}_t, \quad m{x}^* \sim \mu$$

without knowing x^* .

Similarly to Pólya's urn, we can generate the path

$$\boldsymbol{y}_t = t \boldsymbol{x}^* + \boldsymbol{B}_t, \quad \boldsymbol{x}^* \sim \boldsymbol{\mu}$$

without knowing x^* . The **annealed** law of y_t is described by

$$dy_t = m_t dt + dW_t;$$

$$m_t = \mathbb{E}[x^* \mid \mathcal{F}_t] = \mathbb{E}[x^* \mid y_t]$$

for W_t another Brownian motion.

Similarly to Pólya's urn, we can generate the path

$$\mathbf{y}_t = t\mathbf{x}^* + \mathbf{B}_t, \quad \mathbf{x}^* \sim \mathbf{\mu}$$

without knowing x^* . The **annealed** law of y_t is described by

$$d\mathbf{y}_t = \mathbf{m}_t dt + d\mathbf{W}_t;$$

$$\mathbf{m}_t = \mathbb{E}[\mathbf{x}^* \mid \mathcal{F}_t] = \mathbb{E}[\mathbf{x}^* \mid \mathbf{y}_t]$$

for W_t another Brownian motion.

Equivalence:

- Quadratic variation is Brownian in either case.
- $\mathbf{y}_t \int_0^t \mathbf{m}_t dt$ is a martingale in either case since $\mathbf{m}_t = \mathbb{E}[\mathbf{x}_* \mid \mathcal{F}_t]$.
- Now use Lévy's characterization of Brownian motion.

 $\mathrm{d}\boldsymbol{y}_t = \boldsymbol{m}_t \mathrm{d}t + \mathrm{d}\boldsymbol{W}_t,$

A continuous-time stochastic process is not really an algorithm.

Of course, we should discretize.

 $\mathrm{d}\boldsymbol{y}_t = \boldsymbol{m}_t \mathrm{d}t + \mathrm{d}\boldsymbol{W}_t,$

Input: Data: Probability measure μ Input: Result: Sample $x^* \sim \mu$ for $t \in [0, \delta, ..., T - \delta]$ do $\begin{vmatrix} \text{Sample } \mathbf{g}_t \sim \mathcal{N}(0, I_n) \\ \text{Set } \mathbf{y}_{t+\delta} = \mathbf{y}_t + \hat{m}_t(\mathbf{y}_t)\delta + \sqrt{\delta}\mathbf{g}_t \\ \text{end} \\ \text{Set } x^* = Round(\mathbf{y}_T/T) \in \{-1, +1\}^n \\ \text{return } x^* \end{vmatrix}$

$$\mathrm{d}\boldsymbol{y}_t = \boldsymbol{m}_t \mathrm{d}t + \mathrm{d}\boldsymbol{W}_t,$$

Input: Data: Probability measure μ Input: Result: Sample $x^* \sim \mu$ for $t \in [0, \delta, ..., T - \delta]$ do Sample $\mathbf{g}_t \sim \mathcal{N}(0, l_n)$ Set $\mathbf{y}_{t+\delta} = \mathbf{y}_t + \hat{m}_t(\mathbf{y}_t)\delta + \sqrt{\delta}\mathbf{g}_t$ end Set $x^* = Round(\mathbf{y}_T/T) \in \{-1, +1\}^n$ return x^*

Main requirement: a good approximation $\hat{\boldsymbol{m}}_t(\boldsymbol{y}_t) \approx \mathbb{E}[\boldsymbol{x}^* \mid \boldsymbol{y}_t]$.

So far:

- General sampling procedure.
- Requires estimating $\boldsymbol{m}_t(\boldsymbol{y}_t) \approx \mathbb{E}[x^* \mid \boldsymbol{y}_t]$.

We have replaced the need for one oracle with another...is it any better?

So far:

- General sampling procedure.
- Requires estimating $\boldsymbol{m}_t(\boldsymbol{y}_t) \approx \mathbb{E}[x^* \mid \boldsymbol{y}_t]$.

We have replaced the need for one oracle with another...is it any better?

Remainder of the talk: example where the answer is yes.

- SK model: coupling matrix A is GOE.
- Computing $m_t(y_t)$ falls into the wheelhouse of high-dimensional statistics/optimization.

Ising model with random couplings:

$$\mu_{\boldsymbol{G},\beta}(\boldsymbol{x}) = \frac{1}{Z_n(\beta)} e^{\beta \langle \boldsymbol{x}, \boldsymbol{G} \boldsymbol{x} \rangle/2}.$$

Random symmetric matrix $\boldsymbol{G} \sim GOE(n)$:

• $G = G^{\top}$. Entries otherwise independent.

•
$$G_{i,j} \sim \mathcal{N}(0, 1/n)$$
 for $i < j$.

Ising model with random couplings:

$$\mu_{\boldsymbol{G},\boldsymbol{\beta}}(\boldsymbol{x}) = \frac{1}{Z_n(\boldsymbol{\beta})} e^{\boldsymbol{\beta} \langle \boldsymbol{x}, \boldsymbol{G} \boldsymbol{x} \rangle/2}.$$

Random symmetric matrix $\boldsymbol{G} \sim GOE(n)$:

• $\boldsymbol{G} = \boldsymbol{G}^{\top}$. Entries otherwise independent.

•
$$G_{i,j} \sim \mathcal{N}(0, 1/n)$$
 for $i < j$.

Goal: given $\boldsymbol{G} \sim GOE(n)$, generate a sample from $\mu_{\boldsymbol{G},\boldsymbol{\beta}}$.

Dobrushin's condition for fast mixing of Glauber works if $\beta \leq cn^{-1/2}$. But we would like β to be constant size. [Ising 1925]: Ising model for ferromagnets.

[Sherrington-Kirkpatrick 1975]: model for disordered magnets.

[Parisi 1982]: non-rigorous solution via replica symmetry breaking.

[Ising 1925]: Ising model for ferromagnets.

[Sherrington-Kirkpatrick 1975]: model for disordered magnets.

[Parisi 1982]: non-rigorous solution via replica symmetry breaking.

[Talagrand 2005] proves the Parisi formula.

• Huge amount of other important work including [Aizenman-Ruelle-Lebowitz 82, Ruelle 87, Chatterjee 09, Panchenko 14, Ding-Sly-Sun 15, Auffinger-Chen 17,...]. SK model is a prototype for disordered, random probability measures.

- Random MaxCut and K-SAT.
- Coloring random graphs.
- Posteriors in high-dimensional statistics.

SK model is a prototype for disordered, random probability measures.

- Random MaxCut and K-SAT.
- Coloring random graphs.
- Posteriors in high-dimensional statistics.

E.g. optimal MaxCut in a random sparse graph ([Dembo-Montanari-Sen 17]). For G ~ G $\left(n, \frac{\lambda}{n}\right)$:

$$\mathsf{MaxCut}(\mathsf{G}) = n\left(\frac{\lambda}{4} + C_*\sqrt{\frac{\lambda}{4}} + o(\sqrt{\lambda})\right) + o(n).$$

Rigorous Results on Sampling

$$\mu_{\boldsymbol{G},\beta}(\boldsymbol{x}) = \frac{1}{Z_n(\beta)} e^{\beta \langle \boldsymbol{x}, \boldsymbol{G} \boldsymbol{x} \rangle/2}.$$

Expect: efficient sampling possible for $\beta < 1$, impossible for $\beta > 1$. • Replica symmetric iff $\beta \le 1$.

M. Sellke Stochastic Localization Sampling

16 / 34

Rigorous Results on Sampling

$$\mu_{\boldsymbol{G},\boldsymbol{\beta}}(\boldsymbol{x}) = \frac{1}{Z_n(\boldsymbol{\beta})} e^{\boldsymbol{\beta} \langle \boldsymbol{x}, \boldsymbol{G} \boldsymbol{x} \rangle/2}.$$

Expect: efficient sampling possible for $\beta < 1$, impossible for $\beta > 1$.

• Replica symmetric iff $\beta \leq 1$.

Recent progress: Glauber mixes in $O(n \log n)$ steps for $\beta < 1/4$. [Bodineau-Bauerschmidt 20, Eldan-Koehler-Zeitouni 21, Anari-Jain-Koehler-Pham-Vuong 21]. A different method for tensor analogs: [Adhikari-Brennecke-Xu-Yau 22]

$$\mu_{\boldsymbol{G},\beta}(\boldsymbol{x}) = \frac{1}{Z_n(\beta)} e^{\beta \langle \boldsymbol{x}, \boldsymbol{G} \boldsymbol{x} \rangle/2}.$$

Expect: efficient sampling possible for $\beta < 1$, impossible for $\beta > 1$.

• Replica symmetric iff $\beta \leq 1$.

Recent progress: Glauber mixes in $O(n \log n)$ steps for $\beta < 1/4$. [Bodineau-Bauerschmidt 20, Eldan-Koehler-Zeitouni 21, Anari-Jain-Koehler-Pham-Vuong 21]. A different method for tensor analogs: [Adhikari-Brennecke-Xu-Yau 22]

Our result: stochastic localization succeeds (in a weaker sense) for $\beta < 1$. (Originally $\beta < 1/2$, improvement by [Celentano 22].) Given $\mu_1, \mu_2 \in \mathcal{P}(\{-1, 1\}^n)$, define the normalized Wasserstein metric

$$W_{1,n}(\mu_1,\mu_2) = \inf_{(x_1,x_2)\sim Coupling(\mu_1,\mu_2)} \frac{\mathbb{E}[\|x_1-x_2\|_{\ell^1}]}{n}.$$

 $W_{1,n}(\mu_1,\mu_2) \le o(1)$ means that x_1, x_2 differ by o(n) coordinates under an optimal coupling. We will consider such pairs of points to be close.

- - - -

Theorem (El Alaoui-Montanari-S 22, Celentano 22)

For any $\beta < 1$ and $\varepsilon > 0$, there exists a randomized algorithm with complexity $O(n^2)$ which given **G** outputs $\mathbf{x} \sim \mu_{\mathbf{G},\beta}^{\text{alg}}$ such that

$$\mathbb{E}[W_{1,n}(\mu_{\boldsymbol{G},\beta}^{\text{alg}},\mu_{\boldsymbol{G},\beta})] \leq \epsilon.$$

Algorithmic Stability

Our algorithm is stable with respect to $(\boldsymbol{G}, \boldsymbol{\beta})$: just uses $O_{\boldsymbol{\beta}, \boldsymbol{\epsilon}}(1)$ matrix-vector products, and some 1-dimensional non-linearities.

Concretely, from i.i.d. $\boldsymbol{G} = \boldsymbol{G}_0$ and \boldsymbol{G}_1 , consider perturbation path

$$\boldsymbol{G}_{\boldsymbol{s}} = \sqrt{1 - \boldsymbol{s}^2} \boldsymbol{G}_0 + \boldsymbol{s} \boldsymbol{G}_1.$$

Stability of the algorithm means:

$$\lim_{s\to 0} \lim_{n\to\infty} \mathbb{E}[W_{1,n}(\mu_{\boldsymbol{G}_0,\beta}^{\mathrm{alg}},\mu_{\boldsymbol{G}_s,\beta}^{\mathrm{alg}})] = 0.$$

Algorithmic Stability

Our algorithm is stable with respect to $(\boldsymbol{G}, \boldsymbol{\beta})$: just uses $O_{\boldsymbol{\beta}, \boldsymbol{\epsilon}}(1)$ matrix-vector products, and some 1-dimensional non-linearities.

Concretely, from i.i.d. $\boldsymbol{G} = \boldsymbol{G}_0$ and \boldsymbol{G}_1 , consider perturbation path

$$\boldsymbol{G}_{\boldsymbol{s}} = \sqrt{1 - \boldsymbol{s}^2} \boldsymbol{G}_0 + \boldsymbol{s} \boldsymbol{G}_1.$$

Stability of the algorithm means:

$$\lim_{s\to 0}\lim_{n\to\infty}\mathbb{E}[W_{1,n}(\mu_{\boldsymbol{G}_0,\beta}^{\mathrm{alg}},\mu_{\boldsymbol{G}_s,\beta}^{\mathrm{alg}})]=0.$$

A purely structural consequence with an algorithmic proof:

Theorem (El Alaoui-Montanari-S 22; Celentano 22)

The **true** SK Gibbs measures are stable when $\beta < 1$:

$$\lim_{s\to 0}\lim_{n\to\infty}\mathbb{E}[W_{1,n}(\mu_{\boldsymbol{G}_0,\beta},\mu_{\boldsymbol{G}_s,\beta})]=0.$$

Similar stability holds for small pertubations in β .

The stability property

$$\lim_{s\to 0} \lim_{n\to\infty} \mathbb{E}[W_{1,n}(\mu_{\boldsymbol{G}_0,\beta},\mu_{\boldsymbol{G}_s,\beta})] = 0.$$

for the true Gibbs measure is **false** for $\beta > 1$. Combination of:

The stability property

$$\lim_{s\to 0}\lim_{n\to\infty}\mathbb{E}[W_{1,n}(\mu_{\boldsymbol{G}_0,\beta},\mu_{\boldsymbol{G}_s,\beta})]=0.$$

for the true Gibbs measure is **false** for $\beta > 1$. Combination of:

The stability property

$$\lim_{s\to 0}\lim_{n\to\infty}\mathbb{E}[W_{1,n}(\mu_{\boldsymbol{G}_0,\beta},\mu_{\boldsymbol{G}_s,\beta})]=0.$$

for the true Gibbs measure is **false** for $\beta > 1$. Combination of:

Theorem (Chatterjee 09; Disorder Chaos)

Let
$$(\mathbf{x}_0, \mathbf{x}_s) \sim \mu_{\mathbf{G}_0, \beta} \times \mu_{\mathbf{G}_s, \beta}$$
. For all $\beta \in \mathbb{R}$ and $s > 0$,

$$\lim_{n\to\infty}\mathbb{E}[|\langle x_0,x_s\rangle|/n]=0.$$

Theorem (Replica Symmetry Breaking)

Let $x_0, x_0' \sim \mu_{\boldsymbol{G}_0, \beta}$ be independent. For all $\beta > 1$,

$$\liminf_{n\to\infty} \mathbb{E}[|\langle x_0, x'_0 \rangle|/n] \ge c(\beta) > 0.$$

The previous results show that $\mu_{\pmb{G}_0,\beta}$ and $\mu_{\pmb{G}_s,\beta}$ must be significantly different. Therefore:

Theorem (El Alaoui-Montanari-S 22)

Let $\mu_{\boldsymbol{G},\beta}^{\mathrm{alg}}$ be the law of $ALG_n(\boldsymbol{G},\beta,\omega)$ conditional on \boldsymbol{G} . If ALG_n is stable, then for all $\beta > 1$,

$$\liminf_{n\to\infty} \mathbb{E}[W_{1,n}(\mu_{\boldsymbol{G},\beta}^{\text{alg}},\mu_{\boldsymbol{G},\beta})] > c(\beta) > 0.$$

Stability holds for gradient-based methods such as Langevin dynamics and AMP, at least on **dimension-independent** time-scales.

Back to the Main Story...

To sample for $\beta < 1$, our main requirement is to estimate $m_t = \mathbb{E}[\mathbf{x}^* \mid \mathbf{y}_t]$ for

$$\mathbf{y}_t = t\mathbf{x}^* + \mathbf{B}_t.$$

The solution goes through several ideas in high-dimensional statistics and optimization.

To sample for $\beta < 1$, our main requirement is to estimate $m_t = \mathbb{E}[x^* \mid y_t]$ for

$$\mathbf{y}_t = t\mathbf{x}^* + \mathbf{B}_t.$$

The solution goes through several ideas in high-dimensional statistics and optimization.

Two phase procedure:

- Rough estimate for m_t using approximate message passing.
- High-accuracy estimate for *m*_t using gradient descent on a well-chosen potential.

Self-consistent "naive mean-field" equation for $m_t = \mathbb{E}[x \mid y_t]$: $m_t \approx \tanh(\beta G m_t + y_t)$

- Intuitively, $(\beta G m_t + y_t)_i$ is the effective field on x_i .
- $tanh(\cdot)$ converts from field on $\{-1, +1\}$ to probabilities

Self-consistent "naive mean-field" equation for $m_t = \mathbb{E}[x \mid y_t]$: $m_t \approx \tanh(\beta G m_t + y_t)$

- Intuitively, $(\beta G m_t + y_t)_i$ is the effective field on x_i .
- $tanh(\cdot)$ converts from field on $\{-1, +1\}$ to probabilities
- Not quite right. It actually should be

$$\boldsymbol{m}_t = \mathbb{E}^t [\operatorname{tanh} (\beta \boldsymbol{G} \boldsymbol{x} + \boldsymbol{y}_t)].$$

 $tanh(\cdot)$ is non-linear and although $\mathbb{E}^{t}[Gx] = Gm_{t}$ there is nontrivial conditional randomness left.

Self-consistent "naive mean-field" equation for $m_t = \mathbb{E}[x \mid y_t]$: $m_t \approx \tanh(\beta G m_t + y_t)$

- Intuitively, $(\beta G m_t + y_t)_i$ is the effective field on x_i .
- $tanh(\cdot)$ converts from field on $\{-1, +1\}$ to probabilities
- Not quite right. It actually should be

$$\boldsymbol{m}_t = \mathbb{E}^t [\operatorname{tanh} (\beta \boldsymbol{G} \boldsymbol{x} + \boldsymbol{y}_t)].$$

 $tanh(\cdot)$ is non-linear and although $\mathbb{E}^{t}[Gx] = Gm_{t}$ there is nontrivial conditional randomness left.

Revised Thouless-Anderson-Palmer (TAP) equation:

$$\boldsymbol{m}_t \approx anh\left(eta \boldsymbol{G} \boldsymbol{m}_t + \boldsymbol{y}_t - eta^2 \left(1 - \frac{\|\boldsymbol{m}_t\|_2^2}{n}\right) \boldsymbol{m}_t
ight).$$

Turn the TAP equation into a **recursion** and repeat until convergence to an approximate **fixed point**:

$$\hat{m}_{t}^{(k+1)} = \tanh\left(\beta G \hat{m}_{t}^{(k)} + y_{t} - b_{k} \hat{m}_{t}^{(k-1)}\right),\b_{k} = \beta^{2} \left(1 - \frac{\|\boldsymbol{m}_{t}^{(k)}\|_{2}^{2}}{n}\right).$$

Turn the TAP equation into a **recursion** and repeat until convergence to an approximate **fixed point**:

$$\hat{m}_{t}^{(k+1)} = \tanh\left(\beta G \hat{m}_{t}^{(k)} + y_{t} - b_{k} \hat{m}_{t}^{(k-1)}\right),\$$
$$b_{k} = \beta^{2} \left(1 - \frac{\|m_{t}^{(k)}\|_{2}^{2}}{n}\right).$$

- This is an **approximate message passing** algorithm. Generalizes belief propagation to dense matrices **G**.
 - Onsager term $b_k \hat{\boldsymbol{m}}_t^{(k-1)}$ cancels "backtracking" paths.

Turn the TAP equation into a **recursion** and repeat until convergence to an approximate **fixed point**:

$$\hat{m}_{t}^{(k+1)} = \tanh\left(\beta G \hat{m}_{t}^{(k)} + y_{t} - b_{k} \hat{m}_{t}^{(k-1)}\right),\$$
$$b_{k} = \beta^{2} \left(1 - \frac{\|m_{t}^{(k)}\|_{2}^{2}}{n}\right).$$

- This is an **approximate message passing** algorithm. Generalizes belief propagation to dense matrices **G**.
 - Onsager term $b_k \hat{m}_t^{(k-1)}$ cancels "backtracking" paths.
 - By now, a major tool in high-dimensional statistics.

[Bolthausen 14, Donoho-Maleki-Montanari 09, Bayati-Montanari 11, Javanmard-Montanari 12, Rush-Venkataramanan 18, Chen-Lam 20, Fan 20, Dudeja-Lu-Sen 22]

• In our case, the AMP state evolution is unclear. $y_t = tx^* + B_t$ for $x^* \sim \mu_{G,\beta}$ has a complicated distribution.

Contiguity with a Simpler Spiked Model

To analyze the AMP recursion, we consider a **spiked** joint distribution \mathbb{Q} over $(\mathbf{G}, \mathbf{x}^*, \mathbf{y}_t)$. Under \mathbb{Q} :

$$\mathbf{x}^* \sim Unif(\{-1, 1\}^n), \qquad \mathbf{y}_t = t\mathbf{x}^* + B_t,$$

 $\mathbf{G} \sim GOE(n) + \frac{\beta \mathbf{x} \mathbf{x}^\top}{n}.$

Contiguity with a Simpler Spiked Model

To analyze the AMP recursion, we consider a **spiked** joint distribution \mathbb{Q} over $(\mathbf{G}, \mathbf{x}^*, \mathbf{y}_t)$. Under \mathbb{Q} :

$$\mathbf{x}^* \sim Unif(\{-1, 1\}^n), \qquad \mathbf{y}_t = t\mathbf{x}^* + B_t,$$

 $\mathbf{G} \sim GOE(n) + \frac{\beta \mathbf{x} \mathbf{x}^\top}{n}.$

The resulting conditional law $\mathbb{Q}[G \mid x^*]$ looks similar to $\mathbb{P}[x^* \mid G]$ for the SK model:

$$\mathbb{Q}[\boldsymbol{G} \mid \boldsymbol{x}^*] \propto e^{\beta \langle \boldsymbol{x}^*, \boldsymbol{G} \boldsymbol{x}^* \rangle/2}$$

Contiguity with a Simpler Spiked Model

To analyze the AMP recursion, we consider a **spiked** joint distribution \mathbb{Q} over $(\mathbf{G}, \mathbf{x}^*, \mathbf{y}_t)$. Under \mathbb{Q} :

$$\mathbf{x}^* \sim Unif(\{-1, 1\}^n), \qquad \mathbf{y}_t = t\mathbf{x}^* + B_t,$$

 $\mathbf{G} \sim GOE(n) + \frac{\beta \mathbf{x} \mathbf{x}^\top}{n}.$

The resulting conditional law $\mathbb{Q}[G \mid x^*]$ looks similar to $\mathbb{P}[x^* \mid G]$ for the SK model:

$$\mathbb{Q}[\boldsymbol{G} \mid \boldsymbol{x}^*] \propto e^{\beta \langle \boldsymbol{x}^*, \boldsymbol{G} \boldsymbol{x}^* \rangle/2}.$$

Swapping the order distorts probabilities by a partition function factor

$$Z_{SK}(\boldsymbol{G}) = \sum_{\boldsymbol{v} \in \{-1,+1\}^n} e^{\beta \langle \boldsymbol{v}, \boldsymbol{G} \boldsymbol{v} \rangle/2}.$$

• $Z_{SK}(G)$ fluctuates mildly for $\beta < 1$ [Aizenman-Ruelle-Lebowitz 82]. The spiked model is contiguous with the original.

$$\hat{m}_t^{(k+1)} = \tanh\left(\beta G \hat{m}_t^{(k)} + y_t - \frac{b_k \hat{m}_t^{(k-1)}}{b_t}\right)$$

Idea of AMP: for fixed v, w, the vectors

(Gv, Gw)

each have i.i.d. Gaussian coordinates. Covariance between $(Gv)_i$ and $(Gw)_i$ equals $\langle v, w \rangle$.

$$\hat{m}_t^{(k+1)} = \tanh\left(\beta G \hat{m}_t^{(k)} + y_t - \frac{b_k \hat{m}_t^{(k-1)}}{b_t}\right)$$

Idea of AMP: for fixed v, w, the vectors

(Gv, Gw)

each have i.i.d. Gaussian coordinates. Covariance between $(Gv)_i$ and $(Gw)_i$ equals $\langle v, w \rangle$.

- Onsager term lets us apply this recursively to each $\hat{m}_t^{(k+1)}$, despite accumulating dependence on G.
- In spiked model, correlation with x_i also enters the recursion.

$$\hat{\boldsymbol{m}}_{t}^{(k+1)} = \tanh\left(\beta \boldsymbol{G} \hat{\boldsymbol{m}}_{t}^{(k)} + \boldsymbol{y}_{t} - \boldsymbol{b}_{k} \hat{\boldsymbol{m}}_{t}^{(k-1)}\right)$$

Idea of AMP: for fixed v, w, the vectors

(Gv, Gw)

each have i.i.d. Gaussian coordinates. Covariance between $(Gv)_i$ and $(Gw)_i$ equals $\langle v, w \rangle$.

- Onsager term lets us apply this recursively to each $\hat{m}_t^{(k+1)}$, despite accumulating dependence on G.
- In spiked model, correlation with x_i also enters the recursion. State evolution: *i*-th coordinate of $\hat{m}_t^{(k)}$ behaves like

$$anh(a_t^{(k)}x_i+b_t^{(k)}Z), \quad Z\sim \mathcal{N}(0,1).$$

• $(a_t^{(k)}, b_t^{(k)})$ determined recursively, converge to $(a_t^{\infty}, b_t^{\infty})$.

State Evolution for AMP

From $(a_t^{\infty}, b_t^{\infty})$, one can read off the asymptotic MSE

$$E_* = \lim_{k \to \infty} \operatorname{p-lim}_{n \to \infty} \mathbb{E} \| \hat{\boldsymbol{m}}_t^{(k)} - \boldsymbol{x} \|_2^2.$$

State Evolution for AMP

From $(a_t^{\infty}, b_t^{\infty})$, one can read off the asymptotic MSE

$$E_* = \lim_{k \to \infty} \operatorname{p-lim}_{n \to \infty} \mathbb{E} \| \hat{\boldsymbol{m}}_t^{(k)} - \boldsymbol{x} \|_2^2.$$

If we can show

$$E_* pprox MMSE(t) \equiv \mathbb{E} \| \boldsymbol{m}_t - \boldsymbol{x} \|_2^2,$$

then we conclude $\hat{m}_t^{(k)} \approx m_t$.

State Evolution for AMP

From $(a_t^{\infty}, b_t^{\infty})$, one can read off the asymptotic MSE

$$E_* = \lim_{k \to \infty} \operatorname{p-lim}_{n \to \infty} \mathbb{E} \| \hat{\boldsymbol{m}}_t^{(k)} - \boldsymbol{x} \|_2^2.$$

If we can show

$$E_* \approx MMSE(t) \equiv \mathbb{E} \|\boldsymbol{m}_t - \boldsymbol{x}\|_2^2$$

then we conclude $\hat{\boldsymbol{m}}_t^{(k)} \approx \boldsymbol{m}_t$.

I-MMSE Area Law [Guo-Shamai-Verdu 04, Deshpande-Abbe-Montanari 15]:

$$\int_0^\infty \mathsf{MMSE}(t) \, \mathsf{d}t = 2 \cdot \mathsf{Ent}(\mathbf{x}^*).$$

• Verify explicitly that $\int_0^\infty E_*(t)$ asympttically matches $Ent(x^*)$.

$$\hat{m}_t^{(k+1)} = anh\left(eta G \hat{m}_t^{(k)} + y_t - b_k \hat{m}_t^{(k-1)}
ight),$$

Proposition (El Alaoui-Montanari-S 22)

For $\beta < 1$ and any ε , $t \ge 0$ there exists $k_0(t, \varepsilon)$ such that for all $k \ge k_0$,

$$\lim_{n\to\infty}\mathbb{P}\left[\|\hat{\boldsymbol{m}}_t^{(k)}-\boldsymbol{m}_t\|\leq\varepsilon\sqrt{n}\right]=1.$$

Step 2: Refined Estimate of m_t

Surprisingly, this is not quite enough.

- Two types of error: SDE δ -discretization and $\hat{m}_t^{(k)} pprox m_t$.
- Simply sending $(\delta, k) \rightarrow (0, \infty)$ doesn't work. Not Lipschitz enough.

Step 2: Refined Estimate of m_t

Surprisingly, this is not quite enough.

- Two types of error: SDE δ -discretization and $\hat{m}_t^{(k)} \approx m_t$.
- Simply sending $(\delta, k) \rightarrow (0, \infty)$ doesn't work. Not Lipschitz enough.

Second step: by construction, $\hat{m}_t^{(k)}$ is an approximate stationary point for the TAP free energy:

$$F_{TAP}(\boldsymbol{m}, \boldsymbol{y}_t) = -\frac{\beta}{2} \langle \boldsymbol{m}, \boldsymbol{G} \boldsymbol{m} \rangle - \langle \boldsymbol{y}_t, \boldsymbol{m} \rangle - \sum_{i=1}^n h(m_i).$$

• Refine $\hat{m}_t^{(k)}$ to $\hat{m}_t = \arg \min_{m} F_{TAP}(m, y_t)$ via gradient descent.

Step 2: Refined Estimate of m_t

Surprisingly, this is not quite enough.

- Two types of error: SDE δ -discretization and $\hat{m}_t^{(k)} pprox m_t$.
- Simply sending $(\delta, k) \rightarrow (0, \infty)$ doesn't work. Not Lipschitz enough.

Second step: by construction, $\hat{m}_t^{(k)}$ is an approximate stationary point for the TAP free energy:

$$F_{TAP}(\boldsymbol{m}, \boldsymbol{y}_t) = -\frac{\beta}{2} \langle \boldsymbol{m}, \boldsymbol{G} \boldsymbol{m} \rangle - \langle \boldsymbol{y}_t, \boldsymbol{m} \rangle - \sum_{i=1}^n h(m_i).$$

• Refine $\hat{m}_t^{(k)}$ to $\hat{m}_t = \arg\min_{m} F_{TAP}(m, y_t)$ via gradient descent.

• [Celentano 22]: F_{TAP} is strongly convex near m_t for $\beta < 1$. Implies $y_t \mapsto \hat{m}_t$ is C_{β} -Lipschitz. ($y_t \mapsto \hat{m}_t^{(k)}$ is C_{β}^k -Lipschitz.)

This type of algorithm must be completely impractical, right?

Not quite...

Recall:

$$m_t(\mathbf{y}_t) = \mathbb{E}[\mathbf{x} \mid \mathbf{y}_t], \quad \mathbf{y}_t = t\mathbf{x}_t + \sqrt{t}\mathbf{g}, \quad \mathbf{g} \sim \mathcal{N}(0, l_n),$$
$$m_t = \arg\min_{\boldsymbol{\phi}:\mathbb{R}^n \to \mathbb{R}^n} \mathbb{E}[\|\boldsymbol{\phi}(\mathbf{y}_t) - \mathbf{x}\|_2^2].$$

l.e.:

Bayes-optimal inversion of Gaussian noise suffices to sample.

Let x_1, \ldots, x_n be i.i.d. natural images. Generate noisy versions y_i .

Choose $\hat{\boldsymbol{m}}_t = \phi(\boldsymbol{y}_i)$ minimizing empirical loss

$$\frac{1}{n}\sum_{i=1}^n \|\phi(\mathbf{y}_i) - \mathbf{x}_i\|_2^2$$

...for $\phi \in \mathcal{F}$ constrained inside some function class such as convolutional neural networks.

Image Generation

These are diffusion models! [Song-Ermon 19], DALL-E 2, Imagen.

Image Generation

These are diffusion models! [Song-Ermon 19], DALL-E 2, Imagen.

- Equivalent setup: turn $x \sim \mu$ into Gaussian noise with OU flow. Then simulate the time-reversal (corresponds to y_t/t).
- Mean-estimation is done using "forward" sample paths.

Image Generation

These are diffusion models! [Song-Ermon 19], DALL-E 2, Imagen.

- Equivalent setup: turn $x \sim \mu$ into Gaussian noise with OU flow. Then simulate the time-reversal (corresponds to y_t/t).
- Mean-estimation is done using "forward" sample paths.

[Chen-Chewi-Li-Li-Salim-Zhang 22, Lee-Lu-Tan 22a,22b,22c]: estimating m_t in L^2 suffices for sampling if $y_t \mapsto m_t$ is globally Lipschitz.

• For us: proxy \hat{m}_t is typically locally Lipschitz near the sample path.

Stochastic localization for the SK model: interaction with high-dimensional probability enables a rigorous, end-to-end analysis.

Our algorithm produces Waserstein-approximate samples for $\beta < 1$. For $\beta > 1$, disorder chaos is a natural barrier for stable algorithms.

- What other distributions are stochastic localization sampleable?
- Sharp thresholds in related models.
 - **Shattering** may obstruct efficient sampling even when replica symmetric. Absent in SK model, expected for pure spherical *p*-spin.