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Sampling

Goal: generate
x∗ ∼ µ(dx) given µ ∈ P(Rn).

For µ high-dimensional and NOT log-concave.
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Sampling

In this talk, focus on Ising models:

µA,β(x) =
1

Z (β)
eβ〈x ,Ax〉/2, x ∈ {–1,+1}n.

Glauber dynamics
Repeatedly choose i ∈ [n] and resample xi given other coordinates.
Mixes rapidly if A is small. In general, mixing can be very slow.
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Sequential Sampling

Given a distribution µ ∈ P ({–1,+1}n), suppose we have a conditional
expectation oracle to evaluate

mt = Ex∼µ[x | (x1 = x∗1 , . . . , xt = x∗t )], t ∈ {0, 1, . . . , n – 1}.

Then we can directly sample x , one coordinate at a time. Namely,

Pt [xt+1 = 1 | x1, . . . , xt ] =
mt

t+1 + 1
2

.

This is the foundation for equivalence between counting and sampling.
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Downsides of Sequential Sampling

Sequential sampling may be too much to hope for.

Requires a strong oracle, especially for continuous variables.
Maybe estimating mt is no easier than sampling.
Unclear how to choose a good order for the coordinates.

In sequential sampling, we try to reveal x∗ gradually.
There are other ways to do this.
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Warm-Up: Pólya’s Urn

A silly way to sample p ∼ Unif ([0, 1]):
Sample an infinite sequence (b1, b2, . . . ) of i.i.d. Ber(p) bits,
without knowing p.

Use law of large numbers to compute p = limt→∞
∑t

s=1 bs
t .

...and this is really not so bad.
Given (b1, . . . , bt), the posterior expectation for p is given by
Laplace’s rule of succession:

Et [p] =
1 +

∑t
s=1 bt

t + 2
.

Hence the sequential rule

Pt [bt+1 = 1] =
1 +

∑t
s=1 bt

t + 2
,

yields an i.i.d. Ber(p) sequence for p ∼ Unif ([0, 1]).
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Stochastic Localization: Revealing x∗ with Gaussian Noise

(A version of) Eldan’s Stochastic localization:

y t = tx∗ + Bt ∼ N (tx∗, tI n).

x∗ ∼ µ is independent of Brownian motion Bt .

Suggests a sampling algorithm:
1 Simulate y t for a long time t ∈ [0,T ] without knowing x∗.
2 Read off

x∗ ≈ yT
T

.

Geometric motivation: decompose general µ into posteriors
µt(dx) ∝ e〈y t ,x〉–t‖x‖22/2µ(dx).

If µ log-concave, each µt is strongly log-concave.
KLS conjecture [Eldan 12, Lee-Vempala 17, Chen 21, Klartag-Lehec 22].
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Simulating y t

Similarly to Pólya’s urn, we can generate the path

y t = tx∗ + Bt , x∗ ∼ µ

without knowing x∗.

The annealed law of y t is described by

dy t = mtdt + dW t ;
mt = E[x∗ | Ft ] = E[x∗ | y t ]

for Wt another Brownian motion.

Equivalence:
Quadratic variation is Brownian in either case.
y t –

∫ t
0 mtdt is a martingale in either case since mt = E[x∗ | Ft ].

Now use Lévy’s characterization of Brownian motion.
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The Resulting Algorithm

dy t = mtdt + dW t ,

A continuous-time stochastic process is not really an algorithm.

Of course, we should discretize.
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The Resulting Algorithm

dy t = mtdt + dW t ,

Input: Data: Probability measure µ

Input: Result: Sample x∗ ∼ µ

for t ∈ [0, δ, . . . ,T – δ] do
Sample gt ∼ N (0, In)
Set y t+δ = y t + m̂t(y t)δ +

√
δgt

end
Set x∗ = Round(yT /T ) ∈ {–1,+1}n

return x∗

Main requirement: a good approximation m̂t(y t) ≈ E[x∗ | y t ].
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Where Do We Stand?

So far:
General sampling procedure.
Requires estimating mt(y t) ≈ E[x∗ | y t ].

We have replaced the need for one oracle with another...is it any better?

Remainder of the talk: example where the answer is yes.
SK model: coupling matrix A is GOE.
Computing mt(y t) falls into the wheelhouse of high-dimensional
statistics/optimization.
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Sherrington-Kirkpatrick Model

Ising model with random couplings:

µG ,β(x) =
1

Zn(β)
eβ〈x ,Gx〉/2.

Random symmetric matrix G ∼ GOE (n):
G = G>. Entries otherwise independent.
Gi ,j ∼ N (0, 1/n) for i < j .

Goal: given G ∼ GOE (n), generate a sample from µG ,β.

Dobrushin’s condition for fast mixing of Glauber works if β ≤ cn–1/2.
But we would like β to be constant size.
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Brief History of the SK Model

[Ising 1925]: Ising model for ferromagnets.

[Sherrington-Kirkpatrick 1975]: model for disordered magnets.

[Parisi 1982]: non-rigorous solution via replica symmetry breaking.

[Talagrand 2005] proves the Parisi formula.
Huge amount of other important work including
[Aizenman-Ruelle-Lebowitz 82, Ruelle 87, Chatterjee 09,
Panchenko 14, Ding-Sly-Sun 15, Auffinger-Chen 17,. . . ].
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Connections

SK model is a prototype for disordered, random probability measures.
Random MaxCut and K -SAT.
Coloring random graphs.
Posteriors in high-dimensional statistics.

E.g. optimal MaxCut in a random sparse graph ([Dembo-Montanari-Sen 17]).
For G ∼ G

(
n, λ

n

)
:

MaxCut(G) = n

(
λ

4
+ C∗

√
λ

4
+ o(
√

λ)

)
+ o(n).
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Rigorous Results on Sampling

µG ,β(x) =
1

Zn(β)
eβ〈x ,Gx〉/2.

Expect: efficient sampling possible for β < 1, impossible for β > 1.
Replica symmetric iff β ≤ 1.

Recent progress: Glauber mixes in O(n log n) steps for β < 1/4.
[Bodineau-Bauerschmidt 20, Eldan-Koehler-Zeitouni 21, Anari-Jain-Koehler-Pham-Vuong 21].
A different method for tensor analogs: [Adhikari-Brennecke-Xu-Yau 22]

Our result: stochastic localization succeeds (in a weaker sense) for β < 1.
(Originally β < 1/2, improvement by [Celentano 22].)
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Normalized Wasserstein Metric

Given µ1,µ2 ∈ P({–1, 1}n), define the normalized Wasserstein metric

W1,n(µ1,µ2) = inf
(x1,x2)∼Coupling(µ1,µ2)

E[‖x1 – x2‖`1 ]
n

.

W1,n(µ1,µ2) ≤ o(1) means that x1, x2 differ by o(n) coordinates under
an optimal coupling. We will consider such pairs of points to be close.
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Main Result

Theorem (El Alaoui-Montanari-S 22, Celentano 22)

For any β < 1 and ε > 0, there exists a randomized algorithm with
complexity O(n2) which given G outputs x ∼ µ

alg
G ,β such that

E[W1,n(µ
alg
G ,β,µG ,β)] ≤ ε.
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Algorithmic Stability

Our algorithm is stable with respect to (G , β): just uses Oβ,ε(1)
matrix-vector products, and some 1-dimensional non-linearities.

Concretely, from i.i.d. G = G0 and G1, consider perturbation path

G s =
√

1 – s2G0 + sG1.

Stability of the algorithm means:

lim
s→0

lim
n→∞

E[W1,n(µ
alg
G0,β

,µ
alg
G s ,β)] = 0.

A purely structural consequence with an algorithmic proof:

Theorem (El Alaoui-Montanari-S 22; Celentano 22)

The true SK Gibbs measures are stable when β < 1:

lim
s→0

lim
n→∞

E[W1,n(µG0,β,µG s ,β)] = 0.

Similar stability holds for small pertubations in β.
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Hardness via Chaos

The stability property

lim
s→0

lim
n→∞

E[W1,n(µG0,β,µG s ,β)] = 0.

for the true Gibbs measure is false for β > 1. Combination of:

Theorem (Chatterjee 09; Disorder Chaos)

Let (x0, xs) ∼ µG0,β × µG s ,β. For all β ∈ R and s > 0,

lim
n→∞

E[|〈x0, xs〉|/n] = 0.

Theorem (Replica Symmetry Breaking)

Let x0, x ′0 ∼ µG0,β be independent. For all β > 1,

lim inf
n→∞

E[|〈x0, x ′0〉|/n] ≥ c(β) > 0.
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Hardness via Chaos

The previous results show that µG0,β and µG s ,β must be significantly
different. Therefore:

Theorem (El Alaoui-Montanari-S 22)

Let µ
alg
G ,β be the law of ALGn(G , β,ω) conditional on G . If ALGn is

stable, then for all β > 1,

lim inf
n→∞

E[W1,n(µ
alg
G ,β,µG ,β)] > c(β) > 0.

Stability holds for gradient-based methods such as Langevin dynamics and
AMP, at least on dimension-independent time-scales.
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Back to the Main Story...

To sample for β < 1, our main requirement is to estimate
mt = E[x∗ | y t ] for

y t = tx∗ + Bt .

The solution goes through several ideas in high-dimensional statistics and
optimization.

Two phase procedure:
Rough estimate for mt using approximate message passing.
High-accuracy estimate for mt using gradient descent on a
well-chosen potential.
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Step 1: Rough Estimate of mt

Self-consistent “naive mean-field” equation for mt = E[x | y t ]:

mt ≈ tanh (βGmt + y t)

Intuitively,
(
βGmt + y t

)
i is the effective field on x i .

tanh(·) converts from field on {–1,+1} to probabilities

Not quite right. It actually should be

mt = Et [tanh (βGx + y t)].

tanh(·) is non-linear and although Et [Gx ] = Gmt there is nontrivial
conditional randomness left.

Revised Thouless-Anderson-Palmer (TAP) equation:

mt ≈ tanh

(
βGmt + y t – β

2

(
1 –
‖mt‖22

n

)
mt

)
.

M. Sellke Stochastic Localization Sampling 23 / 34



Step 1: Rough Estimate of mt

Self-consistent “naive mean-field” equation for mt = E[x | y t ]:

mt ≈ tanh (βGmt + y t)

Intuitively,
(
βGmt + y t

)
i is the effective field on x i .

tanh(·) converts from field on {–1,+1} to probabilities
Not quite right. It actually should be

mt = Et [tanh (βGx + y t)].

tanh(·) is non-linear and although Et [Gx ] = Gmt there is nontrivial
conditional randomness left.

Revised Thouless-Anderson-Palmer (TAP) equation:

mt ≈ tanh

(
βGmt + y t – β

2

(
1 –
‖mt‖22

n

)
mt

)
.

M. Sellke Stochastic Localization Sampling 23 / 34



Step 1: Rough Estimate of mt

Self-consistent “naive mean-field” equation for mt = E[x | y t ]:

mt ≈ tanh (βGmt + y t)

Intuitively,
(
βGmt + y t

)
i is the effective field on x i .

tanh(·) converts from field on {–1,+1} to probabilities
Not quite right. It actually should be

mt = Et [tanh (βGx + y t)].

tanh(·) is non-linear and although Et [Gx ] = Gmt there is nontrivial
conditional randomness left.

Revised Thouless-Anderson-Palmer (TAP) equation:

mt ≈ tanh

(
βGmt + y t – β

2

(
1 –
‖mt‖22

n

)
mt

)
.

M. Sellke Stochastic Localization Sampling 23 / 34



Step 1: Rough Estimate of mt

Turn the TAP equation into a recursion and repeat until convergence to
an approximate fixed point:

m̂(k+1)
t = tanh

(
βGm̂(k)

t + y t – bkm̂
(k–1)
t

)
,

bk = β
2

(
1 –
‖m(k)

t ‖22
n

)
.

This is an approximate message passing algorithm. Generalizes
belief propagation to dense matrices G .

Onsager term bkm̂(k–1)
t cancels “backtracking” paths.

By now, a major tool in high-dimensional statistics.
[Bolthausen 14, Donoho-Maleki-Montanari 09, Bayati-Montanari 11, Javanmard-Montanari 12,

Rush-Venkataramanan 18, Chen-Lam 20, Fan 20, Dudeja-Lu-Sen 22]

In our case, the AMP state evolution is unclear. y t = tx∗ + Bt for
x∗ ∼ µG ,β has a complicated distribution.
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Contiguity with a Simpler Spiked Model

To analyze the AMP recursion, we consider a spiked joint distribution Q
over (G , x∗, y t). Under Q:

x∗ ∼ Unif
(
{–1, 1}n), y t = tx∗ + Bt ,

G ∼ GOE (n) +
βxx>

n
.

The resulting conditional law Q[G | x∗] looks similar to P[x∗ | G ] for the
SK model:

Q[G | x∗] ∝ eβ〈x∗,Gx∗〉/2.

Swapping the order distorts probabilities by a partition function factor

ZSK (G ) =
∑

v∈{–1,+1}n

eβ〈v ,Gv〉/2.

ZSK (G ) fluctuates mildly for β < 1 [Aizenman-Ruelle-Lebowitz 82].
The spiked model is contiguous with the original.
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State Evolution for AMP

m̂(k+1)
t = tanh

(
βGm̂(k)

t + y t – bkm̂
(k–1)
t

)
Idea of AMP: for fixed v ,w , the vectors

(Gv ,Gw)

each have i.i.d. Gaussian coordinates. Covariance between (Gv)i and
(Gw)i equals 〈v ,w〉.

Onsager term lets us apply this recursively to each m̂(k+1)
t , despite

accumulating dependence on G .
In spiked model, correlation with xi also enters the recursion.

State evolution: i-th coordinate of m̂(k)
t behaves like

tanh(a(k)t xi + b(k)t Z ), Z ∼ N (0, 1).

(a(k)t , b(k)t ) determined recursively, converge to (a∞t , b∞t ).
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State Evolution for AMP

From (a∞t , b∞t ), one can read off the asymptotic MSE

E∗ = lim
k→∞

p-lim
n→∞

E‖m̂(k)
t – x‖22.

If we can show
E∗ ≈ MMSE (t) ≡ E‖mt – x‖22,

then we conclude m̂(k)
t ≈ mt .

I-MMSE Area Law [Guo-Shamai-Verdu 04, Deshpande-Abbe-Montanari 15]:∫ ∞
0

MMSE(t) dt = 2 · Ent(x∗).

Verify explicitly that
∫∞
0 E∗(t) asympotically matches Ent(x∗).
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Conclusion of Step 1: Rough Estimate for mt

m̂(k+1)
t = tanh

(
βGm̂(k)

t + y t – bkm̂
(k–1)
t

)
,

Proposition (El Alaoui-Montanari-S 22)

For β < 1 and any ε, t ≥ 0 there exists k0(t, ε) such that for all k ≥ k0,

lim
n→∞

P
[
‖m̂(k)

t – mt‖ ≤ ε
√

n
]
= 1.
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Step 2: Refined Estimate of mt

Surprisingly, this is not quite enough.

Two types of error: SDE δ-discretization and m̂(k)
t ≈ mt .

Simply sending (δ, k)→ (0,∞) doesn’t work. Not Lipschitz enough.

Second step: by construction, m̂(k)
t is an approximate stationary point for

the TAP free energy:

FTAP(m, y t) = –
β

2
〈m,Gm〉 – 〈y t ,m〉 –

n∑
i=1

h(mi ).

Refine m̂(k)
t to m̂t = argminm FTAP(m, y t) via gradient descent.

[Celentano 22]: FTAP is strongly convex near mt for β < 1.
Implies y t 7→ m̂t is Cβ-Lipschitz. (y t 7→ m̂(k)

t is Ck
β
-Lipschitz.)
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Some Last Remarks

This type of algorithm must be completely impractical, right?

Not quite...
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Connection to Image Generation

Recall:

mt(y t) = E[x | y t ], y t = tx t +
√

tg, g ∼ N (0, In),

mt = arg min
φ:Rn→Rn

E[‖φ(y t) – x‖22].

I.e.:

Bayes-optimal inversion of Gaussian noise suffices to sample.
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Image Generation

Let x1, . . . , xn be i.i.d. natural images. Generate noisy versions y i .

Choose m̂t = φ(y i ) minimizing empirical loss

1
n

n∑
i=1

‖φ(y i ) – x i‖22

...for φ ∈ F constrained inside some function class such as
convolutional neural networks.
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Image Generation

These are diffusion models! [Song-Ermon 19], DALL-E 2, Imagen.

Equivalent setup: turn x ∼ µ into Gaussian noise with OU flow.
Then simulate the time-reversal (corresponds to y t/t).
Mean-estimation is done using “forward” sample paths.

[Chen-Chewi-Li-Li-Salim-Zhang 22, Lee-Lu-Tan 22a,22b,22c]: estimating mt
in L2 suffices for sampling if y t 7→ mt is globally Lipschitz.

For us: proxy m̂t is typically locally Lipschitz near the sample path.
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Summary

Stochastic localization for the SK model: interaction with
high-dimensional probability enables a rigorous, end-to-end analysis.

Our algorithm produces Waserstein-approximate samples for β < 1. For
β > 1, disorder chaos is a natural barrier for stable algorithms.

What other distributions are stochastic localization sampleable?
Sharp thresholds in related models.

Shattering may obstruct efficient sampling even when replica
symmetric. Absent in SK model, expected for pure spherical p-spin.
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