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Sampling

Goal: generate
x* ~u(dx) given pePR").

For 1 high-dimensional and NOT log-concave.
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Sampling

In this talk, focus on Ising models:

1
uAvB(X) = Z(B) eB(X'AX>/2, x € {_1,+1}n_




Sampling

In this talk, focus on Ising models:

1
uA,B(X) = meﬁ(x,AxV% x € {-1,+1}".

Glauber dynamics
@ Repeatedly choose i € [n] and resample x; given other coordinates.

@ Mixes rapidly if A is small. In general, mixing can be very slow.
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Sequential Sampling

Given a distribution p € P ({-1, +1}"), suppose we have a conditional
expectation oracle to evaluate

mt =FE*"M[x | (x1=x{,....xt=x{)], te{0,1,...,n-1}
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Sequential Sampling

Given a distribution p € P ({-1, +1}"), suppose we have a conditional
expectation oracle to evaluate

mt = E*"¥[x | (x =x{,....xt=x;{)], te{0,1,...,n-1}
Then we can directly sample x, one coordinate at a time. Namely,

m§+1+1

Pixepr =1 x1,....,xt] = >

This is the foundation for equivalence between counting and sampling.
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Downsides of Sequential Sampling

Sequential sampling may be too much to hope for.
@ Requires a strong oracle, especially for continuous variables.

@ Maybe estimating m? is no easier than sampling.

@ Unclear how to choose a good order for the coordinates.
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Downsides of Sequential Sampling

Sequential sampling may be too much to hope for.
@ Requires a strong oracle, especially for continuous variables.
@ Maybe estimating m? is no easier than sampling.

@ Unclear how to choose a good order for the coordinates.

In sequential sampling, we try to reveal x* gradually.
There are other ways to do this.
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Warm-Up: Pélya’s Urn

A silly way to sample p ~ Unif ([0, 1]):
@ Sample an infinite sequence (by, by, ...) of i.i.d. Ber(p) bits,
without knowing p.

Semi bs

7 .

@ Use law of large numbers to compute p = lim¢_ oo
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Warm-Up: Pélya’s Urn

A silly way to sample p ~ Unif ([0, 1]):
@ Sample an infinite sequence (by, by, ...) of i.i.d. Ber(p) bits,
without knowing p.

t
@ Use law of large numbers to compute p = lim¢_~ Zsztl bs
...and this is really not so bad.
e Given (by, ..., bt), the posterior expectation for p is given by

Laplace’s rule of succession:
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Warm-Up: Pélya’s Urn

A silly way to sample p ~ Unif ([0, 1]):
@ Sample an infinite sequence (by, by, ...) of i.i.d. Ber(p) bits,
without knowing p.

Semi bs

t .

@ Use law of large numbers to compute p = lim¢_ oo
...and this is really not so bad.

e Given (by, ..., bt), the posterior expectation for p is given by
Laplace’s rule of succession:

@ Hence the sequential rule

1+ b

Plbry1 = 1] = P

yields an i.i.d. Ber(p) sequence for p ~ Unif([0, 1]).

M. Sellke Stochastic Localization Sampling 7/34



Stochastic Localization: Revealing x* with Gaussian Noise

(A version of)) Eldan’s Stochastic localization:

ye=tx*+ By ~ N(tx*, tlp).

x* ~ W is independent of Brownian motion B:.
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Stochastic Localization: Revealing x* with Gaussian Noise

(A version of)) Eldan’s Stochastic localization:

ye=tx*+ By ~ N(tx*, tlp).

x* ~ W is independent of Brownian motion B:.

Suggests a sampling algorithm:

@ Simulate y, for a long time t € [0, T] without knowing x*.
@ Read off
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Stochastic Localization: Revealing x* with Gaussian Noise

(A version of)) Eldan’s Stochastic localization:

ye=tx*+ By ~ N(tx*, tlp).

x* ~ W is independent of Brownian motion B:.

Suggests a sampling algorithm:

@ Simulate y, for a long time t € [0, T] without knowing x*.

@ Read off
P YT
=
Geometric motivation: decompose general L into posteriors
we(dx) oc eex)=tlxI3/2y (dx).

o If 1 log-concave, each W is strongly log-concave.

X

@ KLS conjecture [Eldan 12, Lee-Vempala 17, Chen 21, Klartag-Lehec 22].
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Similarly to Pélya's urn, we can generate the path
yi:=tx*+ By, x"~p

without knowing x*.



Simulating y;

Similarly to Pélya's urn, we can generate the path
yr=tx*+ B, x*~p
without knowing x*. The annealed law of y; is described by

dy; = medt + dWy;
m; = E[x* | ] = E[x" | y{]

for W; another Brownian motion.
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Simulating y;

Similarly to Pélya's urn, we can generate the path
yr=tx*+ B, x*~p
without knowing x*. The annealed law of y; is described by

dy; = medt + dWy;
m; = E[x* | ] = E[x" | y{]

for W; another Brownian motion.

Equivalence:
@ Quadratic variation is Brownian in either case.
o y;— fot m¢dt is a martingale in either case since my = E[x, | F¢].

@ Now use Lévy's characterization of Brownian motion.
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The Resulting Algorithm

dy; = medt + dWo,

A continuous-time stochastic process is not really an algorithm.

Of course, we should discretize.
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The Resulting Algorithm

dyt = mdt + dWy,

Input: Data: Probability measure p
Input: Result: Sample x* ~
fort€[0,9,..., T -9] do

Sample g ~ N(0, /)

Set yris =yt + Me(y:)d + v3g:
end
Set x* = Round(y1/T) € {-1,+1}"
return x*
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The Resulting Algorithm

dyt = mdt + dWy,

Input: Data: Probability measure p
Input: Result: Sample x* ~
fort€[0,9,..., T -9] do

Sample g ~ N(0, /)

Set yris =yt + Me(y:)d + v3g:
end
Set x* = Round(y1/T) € {-1,+1}"
return x*

Main requirement: a good approximation m:(y;) ~ E[x* | y;].
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Where Do We Stand?

So far:
e General sampling procedure.

@ Requires estimating m:(y;) ~ E[x* | y¢].

We have replaced the need for one oracle with another...is it any better?
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Where Do We Stand?

So far:

e General sampling procedure.

@ Requires estimating m:(y;) ~ E[x* | y¢].

We have replaced the need for one oracle with another...is it any better?

Remainder of the talk: example where the answer is yes.
e SK model: coupling matrix A is GOE.

e Computing m¢(y;) falls into the wheelhouse of high-dimensional
statistics/optimization.
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Sherrington-Kirkpatrick Model

Ising model with random couplings:

1
16.4(x) = 7 eb xS

Random symmetric matrix G ~ GOE(n):
o G = G'. Entries otherwise independent.
° Gi,j NN(O, l/n) for i < j.
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Sherrington-Kirkpatrick Model

Ising model with random couplings:

1
16.4(x) = 7 eb xS

Random symmetric matrix G ~ GOE(n):
o G = G'. Entries otherwise independent.

° Gi,j NN(O, l/n) for i < j.

Goal: given G ~ GOE(n), generate a sample from pg g.

Dobrushin’s condition for fast mixing of Glauber works if p < cn™1/2.
But we would like B to be constant size.
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Brief History of the SK Model

[Ising 1925]: Ising model for ferromagnets.
[Sherrington-Kirkpatrick 1975]: model for disordered magnets.

[Parisi 1982]: non-rigorous solution via replica symmetry breaking.
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Brief History of the SK Model

[Ising 1925]: Ising model for ferromagnets.
[Sherrington-Kirkpatrick 1975]: model for disordered magnets.
[Parisi 1982]: non-rigorous solution via replica symmetry breaking.
[Talagrand 2005] proves the Parisi formula.

@ Huge amount of other important work including

[Aizenman-Ruelle-Lebowitz 82, Ruelle 87, Chatterjee 09,
Panchenko 14, Ding-Sly-Sun 15, Auffinger-Chen 17,...].
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Connections

SK model is a prototype for disordered, random probability measures.
@ Random MaxCut and K-SAT.
@ Coloring random graphs.

@ Posteriors in high-dimensional statistics.
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Connections

SK model is a prototype for disordered, random probability measures.
@ Random MaxCut and K-SAT.
@ Coloring random graphs.

@ Posteriors in high-dimensional statistics.

E.g. optimal MaxCut in a random sparse graph ([Dembo-Montanari-Sen 17]).
For G~ G (n,2):

MaxCut(G) = n (2 + C*\/f—l— o(ﬁ)) + o(n).
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Rigorous Results on Sampling

1
6 06) = 5P SN2

Expect: efficient sampling possible for B < 1, impossible for B > 1.
@ Replica symmetric iff B < 1.
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Rigorous Results on Sampling

1
6 06) = 5P SN2

Expect: efficient sampling possible for B < 1, impossible for B > 1.
@ Replica symmetric iff B < 1.

Recent progress: Glauber mixes in O(nlog n) steps for f < 1/4.
[Bodineau-Bauerschmidt 20, Eldan-Koehler-Zeitouni 21, Anari-Jain-Koehler-Pham-Vuong 21].
A different method for tensor analogs: [Adhikari-Brennecke-Xu-Yau 22]
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Rigorous Results on Sampling

1
6 06) = 5P SN2

Expect: efficient sampling possible for B < 1, impossible for B > 1.
@ Replica symmetric iff B < 1.

Recent progress: Glauber mixes in O(nlog n) steps for B < 1/4.
[Bodineau-Bauerschmidt 20, Eldan-Koehler-Zeitouni 21, Anari-Jain-Koehler-Pham-Vuong 21].
A different method for tensor analogs: [Adhikari-Brennecke-Xu-Yau 22]

Our result: stochastic localization succeeds (in a weaker sense) for B < 1.
(Originally B < 1/2, improvement by [Celentano 22].)
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Normalized Wasserstein Metric

Given i, up € P({-1,1}"), define the normalized Wasserstein metric

: Efllx1 = x2l|p]
Wy n(K1, 12) = inf — .
ol ) (x1,x2)~Coupling (u1,112) n

Wi p(p1, 12) < o(1) means that x7, xo differ by o(n) coordinates under
an optimal coupling. We will consider such pairs of points to be close.
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Main Result

Theorem (El Alaoui-Montanari-S 22, Celentano 22)

For any 3 < 1 and € > 0, there exists a randomized algorithm with

complexity O(n®) which given G outputs x ~ u‘zl;gﬁ such that

E[Wi, (g e p)l <&
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Algorithmic Stability

Our algorithm is stable with respect to (G, B): just uses Og ¢(1)
matrix-vector products, and some 1-dimensional non-linearities.

Concretely, from i.i.d. G = Gg and G1, consider perturbation path

Gs=V1-52Gg + sGy.

Stability of the algorithm means:

H . alg alg _
Jim lim E[W1,n(kg, g Hge p)] = O

M. Sellke Stochastic Localization Sampling 19 /34



Algorithmic Stability

Our algorithm is stable with respect to (G, B): just uses Og ¢(1)
matrix-vector products, and some 1-dimensional non-linearities.

Concretely, from i.i.d. G = Gg and G1, consider perturbation path

Gs=V1-52Gg + sGy.

Stability of the algorithm means:

lim lim E[len(“?éi,ﬁ’”ﬁ,ﬁ)] =0.

s—Q n—oo

A purely structural consequence with an algorithmic proof:

Theorem (EI Alaoui-Montanari-S 22; Celentano 22)

The true SK Gibbs measures are stable when 3 < 1:
Jim lim E[W1,n(kG,p: K6, p)l = O

Similar stability holds for small pertubations in 3.
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Hardness via Chaos

The stability property
lim lim E[W) n(kg, p. Ka.,p)l = O

s—0n

for the true Gibbs measure is false for f > 1. Combination of:
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Hardness via Chaos

The stability property

lim lim E[W) n(kg, p. Ka.,p)l = O

s—0n

for the true Gibbs measure is false for f > 1. Combination of:

Theorem (Chatterjee 09; Disorder Chaos)

Let (x0, xs) ~ G, p X LG, p- Forallp R ands >0,

Jlim_ B} (xo, x5)1/n] = 0.
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Hardness via Chaos

The stability property

lim lim E[W) n(kg, p. Ka.,p)l = O

s—0n—
for the true Gibbs measure is false for f > 1. Combination of:

Theorem (Chatterjee 09; Disorder Chaos)
Let (x0, xs) ~ G, p X LG, p- Forallp R ands >0,

lim E[|(xo, xs)|/n] = 0.

n—o0

N

Theorem (Replica Symmetry Breaking)

Let xg, x6 ~ UGy p be independent. For all p > 1,

im inf | (xo, x§) /] > c(B) > 0.
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Hardness via Chaos

The previous results show that ug, g and pg, g must be significantly
different. Therefore:

Theorem (El Alaoui-Montanari-S 22)

Let u‘z.gﬁ be the law of ALG,(G, B, ®) conditional on G. If ALG,, is
stable, then for all B > 1,

lim infE[Wlln(].Liz.gvﬁ, MG,B)] > c(B) > 0.

n—o0

Stability holds for gradient-based methods such as Langevin dynamics and
AMP, at least on dimension-independent time-scales.
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Back to the Main Story...

To sample for B < 1, our main requirement is to estimate
m; = E[x* | y;] for

The solution goes through several ideas in high-dimensional statistics and
optimization.
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Back to the Main Story...

To sample for B < 1, our main requirement is to estimate

m: = E[x* | y;] for

The solution goes through several ideas in high-dimensional statistics and
optimization.

Two phase procedure:
@ Rough estimate for m; using approximate message passing.

@ High-accuracy estimate for m; using gradient descent on a
well-chosen potential.
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Step 1: Rough Estimate of my

Self-consistent “naive mean-field” equation for m: = E[x | y4]:

m; ~ tanh (BGm; + y;)

o Intuitively, (BGm; +Yt),- is the effective field on x;.
e tanh(-) converts from field on {-1, 41} to probabilities
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Step 1: Rough Estimate of my

Self-consistent “naive mean-field” equation for m: = E[x | y4]:

m; ~ tanh (BGm; + y;)

o Intuitively, (BGm; +Yt),- is the effective field on x;.
e tanh(-) converts from field on {-1, 41} to probabilities
@ Not quite right. It actually should be

m; = Ef[tanh (BGx + y,)].

tanh(-) is non-linear and although Ef[Gx] = Gm; there is nontrivial
conditional randomness left.
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Step 1: Rough Estimate of my

Self-consistent “naive mean-field” equation for m: = E[x | y4]:

m; ~ tanh (BGm; + y;)

o Intuitively, (BGm; +)’t),- is the effective field on x;.
e tanh(-) converts from field on {-1, 41} to probabilities
@ Not quite right. It actually should be

m; = Ef[tanh (BGx + y,)].

tanh(-) is non-linear and although Ef[Gx] = Gm; there is nontrivial
conditional randomness left.
Revised Thouless-Anderson-Palmer (TAP) equation:

- o (4 Imel3
m; ~ tanh | BGm: + y,—P° | 1 — m; | .
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Step 1: Rough Estimate of my

Turn the TAP equation into a recursion and repeat until convergence to
an approximate fixed point:

D = tanh (BGm{) + y, - b)),

(k)12
_g2 (1 Ilml3
by = B (1 12 ).
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Step 1: Rough Estimate of my

Turn the TAP equation into a recursion and repeat until convergence to
an approximate fixed point:

D = tanh (BGm{) + y, - b)),

(k)12
_g2 (1 Ilml3
by = B (1 12 ).

@ This is an approximate message passing algorithm. Generalizes
belief propagation to dense matrices G.
(k-1)

o Onsager term by cancels “backtracking” paths.
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Step 1: Rough Estimate of my

Turn the TAP equation into a recursion and repeat until convergence to
an approximate fixed point:

D = tanh (BGm{) + y, - b)),

k
b — 2 (12 Ime 1B

n

@ This is an approximate message passing algorithm. Generalizes
belief propagation to dense matrices G.

o Onsager term bkrﬁ(k_l) cancels “backtracking” paths.
e By now, a major tool in high-dimensional statistics.
[Bolthausen 14, Donoho-Maleki-Montanari 09, Bayati-Montanari 11, Javanmard-Montanari 12,
Rush-Venkataramanan 18, Chen-Lam 20, Fan 20, Dudeja-Lu-Sen 22]
@ In our case, the AMP state evolution is unclear. y; = tx* + B; for
x* ~ Ug g has a complicated distribution.
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Contiguity with a Simpler Spiked Model

To analyze the AMP recursion, we consider a spiked joint distribution Q
over (G, x*, y;). Under Q:

x* ~ Unif ({-1,1}"), y: = tx* + B,

Bxx "

G ~ GOE(n) +
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Contiguity with a Simpler Spiked Model

To analyze the AMP recursion, we consider a spiked joint distribution Q
over (G, x*, y;). Under Q:
x* ~ Unif ({-1,1}"), y: = tx* + B,

i
G ~ GOE(n) + PX*_

The resulting conditional law Q[G | x*] looks similar to P[x* | G] for the
SK model:

Q[G | X*] x eﬁ(x*,GX*>/2.
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Contiguity with a Simpler Spiked Model

To analyze the AMP recursion, we consider a spiked joint distribution Q
over (G, x*, y;). Under Q:

x* ~ Unif ({-1,1}"), y: = tx* + B,

Bxx "

G ~ GOE(n) +

The resulting conditional law Q[G | x*] looks similar to P[x* | G] for the
SK model:
Q[G | X*] x eﬁ(x*,GX*>/2.

Swapping the order distorts probabilities by a partition function factor

Zsk(G) = 3 Pneu
ve{-1,+1}"

e Zsk(G) fluctuates mildly for B < 1 [Aizenman-Ruelle-Lebowitz 82].
The spiked model is contiguous with the original.
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State Evolution for AMP

m{ ) = tanh (Bt + y, - b))

Idea of AMP: for fixed v, w, the vectors
(Gv,Gw)

each have i.i.d. Gaussian coordinates. Covariance between (Gv); and
(Gw); equals (v, w).
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State Evolution for AMP

m{ ) = tanh (Bt + y, - b))

Idea of AMP: for fixed v, w, the vectors
(Gv,Gw)

each have i.i.d. Gaussian coordinates. Covariance between (Gv); and
(Gw); equals (v, w).

@ Onsager term lets us apply this recursively to each mf,"“), despite
accumulating dependence on G.

@ In spiked model, correlation with x; also enters the recursion.
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State Evolution for AMP

m{ ) = tanh (Bt + y, - b))

Idea of AMP: for fixed v, w, the vectors
(Gv,Gw)

each have i.i.d. Gaussian coordinates. Covariance between (Gv); and
(Gw); equals (v, w).

@ Onsager term lets us apply this recursively to each m( +1) , despite
accumulating dependence on G.
@ In spiked model, correlation with x; also enters the recursion.

State evolution: i-th coordinate of r%gk) behaves like

tanh(ag )x, b(k) Z), Z~N(01).

° (agk), bgk)) determined recursively, converge to (ag°, bz®).
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From (ag°, bZ°), one can read off the asymptotic MSE

E. = lim plimE[m

2
- x|[3.
k—00 n—o00



State Evolution for AMP

From (ag°, bz®), one can read off the asymptotic MSE

E, = lim plimE|m% - x|2.

k—00 n—o0

If we can show
2
2

Ei. ~ MMSE(t) = E|m;: - x|

then we conclude ﬁvgk) ~ my.
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State Evolution for AMP

From (ag°, bz®), one can read off the asymptotic MSE

E, = lim plimE|m% - x|2.
k—o00 n—o0
If we can show
E. ~ MMSE(t) = E|\m; - x||3,

then we conclude ﬁvgk) ~ my.

[-MMSE Area Law [Guo-Shamai-Verdu 04, Deshpande-Abbe-Montanari 15]:

oo
/ MMSE(t) dt = 2 - Ent(x™).
0

o Verify explicitly that [y E.(t) asympotically matches Ent(x*).
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Conclusion of Step 1: Rough Estimate for my

) = tanh (chf_f‘) +y- bkmf_f“l)) ,

Proposition (El Alaoui-Montanari-S 22)

For p < 1 and any €, t > 0 there exists ko(t, €) such that for all k > ko,

n—o0

lim P [[|ml%) - my| < gﬁ] ~1
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Step 2: Refined Estimate of my

Surprisingly, this is not quite enough.
(k)

@ Two types of error: SDE &-discretization and m; ' ~ m;.

e Simply sending (3, k) — (0, c0) doesn’t work. Not Lipschitz enough.
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Step 2: Refined Estimate of my

Surprisingly, this is not quite enough.

@ Two types of error: SDE §-discretization and rﬁgk) A my.

e Simply sending (3, k) — (0, c0) doesn’t work. Not Lipschitz enough.

(k)

Second step: by construction, fi1;"’ is an approximate stationary point for
the TAP free energy:

Frap(m,y;) =

l§<m Gm) - Zh m;).

(k)

o Refine i}’ to M = argminm Frap(m, y;) via gradient descent.
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Step 2: Refined Estimate of my

Surprisingly, this is not quite enough.
@ Two types of error: SDE d-discretization and rﬁgk) ~ my.

e Simply sending (3, k) — (0, c0) doesn’t work. Not Lipschitz enough.

(k)

Second step: by construction, fi1;"’ is an approximate stationary point for
the TAP free energy:

Frap(m,y;) =

l§<m Gm) - Zh m;).

(k)

o Refine i}’ to M = argminm Frap(m, y;) via gradient descent.
o [Celentano 22]: Fyap is strongly convex near m; for f < 1.
Implies y; — fin; is Cp-Lipschitz. (ye— ﬁwgk) is Cé(—Lipschitz.)
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This type of algorithm must be completely impractical, right?

Not quite...



Connection to Image Generation

Recall:

me(y:) =E[x | y¢l. y:=txe+Vtg, g~N(0 In),
me=arg _min_ Eflo(y:)- x|[3]-

l.e.

Bayes-optimal inversion of Gaussian noise suffices to sample.
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Image Generation

Let x1,...,Xxp be i.i.d. natural images. Generate noisy versions y;.

Choose m: = ¢(y;) minimizing empirical loss
1 »
;Z 19(yi) - xill2

i=1

...for ¢ € F constrained inside some function class such as
convolutional neural networks.
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Image Generation

These are diffusion models! [Song-Ermon 19], DALL-E 2, Imagen.




Image Generation

These are diffusion models! [Song-Ermon 19], DALL-E 2, Imagen.

e Equivalent setup: turn x ~ W into Gaussian noise with OU flow.
Then simulate the time-reversal (corresponds to y;/t).

@ Mean-estimation is done using “forward” sample paths.



Image Generation

These are diffusion models! [Song-Ermon 19], DALL-E 2, Imagen.

e Equivalent setup: turn x ~ W into Gaussian noise with OU flow.
Then simulate the time-reversal (corresponds to y;/t).

@ Mean-estimation is done using “forward” sample paths.
[Chen-Chewi-Li-Li-Salim-Zhang 22, Lee-Lu-Tan 22a,22b,22c]: estimating my
in L2 suffices for sampling if y, — m; is globally Lipschitz.

e For us: proxy m; is typically locally Lipschitz near the sample path.



Summary

Stochastic localization for the SK model: interaction with
high-dimensional probability enables a rigorous, end-to-end analysis.

Our algorithm produces Waserstein-approximate samples for § < 1. For
B > 1, disorder chaos is a natural barrier for stable algorithms.

@ What other distributions are stochastic localization sampleable?

@ Sharp thresholds in related models.

o Shattering may obstruct efficient sampling even when replica
symmetric. Absent in SK model, expected for pure spherical p-spin.
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