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Plan for this Talk

@ Introduction and background

o Spherical spin glasses and Langevin dynamics
o Cugliandolo—Kurchan equations

» Bounding flows
o The threshold Ey

@ Main result: threshold energy of low temperature dynamics

o Upper bound: Lipschitz approximation and Branching OGP
o Lower bound: climbing near saddles

o Epilogue: topologically trivial spin glasses
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Definition of Pure Spherical Spin Glasses

Pure p-spin Hamiltonian: random function Hy : RV — R given by

Hp(o) = N(P1)/2 Z J;

1<it,iz,ennip<N

with i.i.d. Gaussian coefficients J;,

......

Inputs & will be on the sphere: Sy = {G cRN . vazl 012 = N}.
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Definition of Pure Spherical Spin Glasses

Pure p-spin Hamiltonian: random function Hy : RV — R given by

Hp(o) = N(P1)/2 Z J;

1<it,iz,ennip<N

with i.i.d. Gaussian coefficients J;,

Inputs & will be on the sphere: Sy = {G cRN . vazl 012 = N}.

Quick facts:
p
@ Rotationally invariant Gaussian process: EHp(c)Hy(p) = N ((ch .
@ Scaling: maxges, |Hn(o)l < N, IVHp(o)|| < VN, IV2Hp(0)]lop < 1.
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Spherical Langevin Dynamics

Langevin dynamics on Sy;:

(N— ].)Xt

dx; = <BvspHN(Xt)_ N

> dt + Py, dB:.

Invariant for Gibbs measure ug(do) = ePHN(9)dG/ Zy(B). Much is known about Ug even at
low temperature:

@ Ground state energy is ~ /log p.
o Free energy is 1-RSB [Talagrand 06, Chen 17,...]

e Geometric description: orthogonal deep wells, extremes are Poisson-Dirichlet [Subag 17].
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Spherical Langevin Dynamics

Langevin dynamics on Sy;:

(N— ].)Xt

dx; = <BvspHN(Xt)_ N

> dt + Py, dB:.

Invariant for Gibbs measure ug(do) = ePHN(9)dG/ Zy(B). Much is known about Mg even at
low temperature:

@ Ground state energy is ~ /log p.
o Free energy is 1-RSB [Talagrand 06, Chen 17,...]

e Geometric description: orthogonal deep wells, extremes are Poisson-Dirichlet [Subag 17].

tmix(B) > eN) for large B, so pg will not be realistically accessed [Ben Arous-Jagannath 18].

Study of O(1)-time dynamics since [Sompolinsky-Zippelius 82] (SK model).
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Physics Predictions and Rigorous Results

© Exact description via Cugliandolo-Kurchan equations [Crisanti-Horner-Sommers 93].
o [Ben Arous-Dembo-Guionnet 06]: Yes (for soft spherical spins)

@ Fluctuation-dissipation relation & exponential decay of correlations at high temperature.
o [Dembo-Guionnet-Mazza 07]: Yes, using @.
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Physics Predictions and Rigorous Results

© Exact description via Cugliandolo-Kurchan equations [Crisanti-Horner-Sommers 93].
o [Ben Arous-Dembo-Guionnet 06]: Yes (for soft spherical spins)

@ Fluctuation-dissipation relation & exponential decay of correlations at high temperature.
o [Dembo-Guionnet-Mazza 07]: Yes, using @.

© Aging at low temperatures [Cugliandolo-Kurchan 93].
o [Ben Arous-Dembo-Guionnet 01]: Yes, for p = 2.

@ Large time threshold energy Exo(p) = 24/ p_Tl as B — oo [Biroli 99].

o [Ben Arous-Gheissari-Jagannath 18]: Explicit bounds via differential inequalities.
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Closed system of equations as N — oo for:

C(s, t) = (xs, xt)/N,
R(s, t) = (xs, Bt)/N.



Cugliandolo-Kurchan Equations

Closed system of equations as N — oo for:

C(s, t) = (xs, xt)/N,
R(s, t) = (xs, Bt)/N.

Tells you everything in principle, but hard to work with. For s > t > 0:
OsR(s,t) = —u(s)R(s,t) + B*p(p — 1) ./: R(u,t)R(s,u)C(s,u)? ? du,
9,C(s,t) = —u(s)C(s,t) + B*p(p — 1) /OS C(u, t)R(s,u)C(s,u)P~? du
+ 8% / t C(s,u)P ' R(t,u) du;

p(s) = —I—ﬁ22/ C(s,u)’ ' R(s,u) du.

1
2
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Bounding Flows Approach

Rigorously understanding the Cugliandolo-Kurchan equations is difficult at low temperature.
Long-time asymptotic solutions are not unique.

[Ben Arous-Gheissari-Jagannath 18]: bounding flows method of differential inequalities.

o Shows d(Hyy(xz), |V H(x0)|12) € T(Hp(xe). |V Hiy(xe)|2) C 2.
e Quantitative lower bounds on Hp(x7), even for disorder dependent xg € Sy.
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Bounding Flows Approach

Rigorously understanding the Cugliandolo-Kurchan equations is difficult at low temperature.
Long-time asymptotic solutions are not unique.

[Ben Arous-Gheissari-Jagannath 18]: bounding flows method of differential inequalities.
o Shows d(Hy(xt), [ VHy(xe)l?) € D(Hy(xe). [VHy(xe)]?) € R?.
e Quantitative lower bounds on Hp(x7), even for disorder dependent xg € Sy.

/\”g
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Explicit bounds from [Ben Arous-Gheissari-Jagannath 18]:
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[Biroli 99]: Exc = 24/ p_Tl should be the threshold energy in the limit f — oo.

The Hessian's maximum eigenvalue “equals zero at zero temperature,
as is expected for a dynamics in a rugged energy landscape”.



Intuition for Exo

[Biroli 99]: Exc = 24/ % should be the threshold energy in the limit f — oo.

The Hessian's maximum eigenvalue “equals zero at zero temperature,
as is expected for a dynamics in a rugged energy landscape”.

Explanation:
@ For x € Sy, the spherical Hessian VngN(x) is a shifted GOE:

V2 H(x) £ \/p(p 1) GOE(N 1)~ p- W)

@ The prediction above says Amax (VngN(xT)) ~0.
@ Since Amax(GOE(N - 1)) = 2, we should also predict energy E, i.e.

lim p-lim Hy(x7)/N = Ex.

B, T—o0 N—oo

M. Sellke Langevin Dynamics for p-Spin Models 9/27



New Results: Ex is the Threshold Energy as B — oo

Theorem (S 23, Upper Bound)

For any B there is 8 > 0 such that for any T, if xg € Sy is independent of Hy:

P| sup Hy(xt)/N < Exo—8| >1-eN.
te[0,T]
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New Results: Ex is the Threshold Energy as B — oo

Theorem (S 23, Upper Bound)

For any B there is 8 > 0 such that for any T, if xg € Sy is independent of Hy:

P| sup Hpy(xt)/N < Exo-8| >1-eN.
tel0, T

Theorem (S 23, Lower Bound)

For anym > 0, with To = To(n) and B > Bo(n), even if xq is disorder dependent:

P inf Hy(xt)/N > Exo—m| > 1-eN,
te[To, To+eN]
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New Results: Ex is the Threshold Energy as B — oo

Theorem (S 23, Upper Bound)

For any B there is 8 > 0 such that for any T, if xg € Sy is independent of Hy:

P| sup Hpy(xt)/N < Exo-8| >1-eN.
tel0, T

Theorem (S 23, Lower Bound)

For anym > 0, with Tog = Tg(m) and B > Po(n), even if xq is disorder dependent:

P inf Hy(xt)/N > Exo—m| > 1-eN,
te[To, To+eN]

For large constant times t € [Tg, T] and large B, the energy stays uniformly just below Es:

Hy(xt)/N € [Eso =M, Eco — 9].
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Once energy settles, the gradient stays small:

Nlim ]P’[ sup ||VspHN(Xt)||/mS 5] =1, VB >Bo(8), T=>To(d).
=00 Lte[To, T



Some Comments

Once energy settles, the gradient stays small:

lim IP’{ sup HvSle\/(Xt)H/\/N < 5] =1 VB>PBo(d), T = To(d)
N—=oo  Lie[Ty, T]

Mixed p-spin models with covariance §(t) =3, Ygtp:

e Upper bound: ALG(E) = fol V&' (t)dt.
o Lower bound: E_ from [Auffinger-Ben Arous 2013].
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Some Comments

Once energy settles, the gradient stays small:

fim P| sup_ [ VspHu(xo)ll/VN <3| =1, VB =Bo(d), T2 To(d).
N=oo  Lte[To,T]
Mixed p-spin models with covariance §(t) =3, ygtp:

Upper bound: ALG(§) = fol V& (t)dt.
Lower bound: EZ, from [Auffinger-Ben Arous 2013].

"]
]
@ In mixed models, Amax &~ 0 can hold in a range of energies, e.g. [E5,, EX].
]

For pure multi-species spherical spin glasses, bounds continue to match at E.
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Some Comments

Once energy settles, the gradient stays small:

lim IP’{ sup HvSpHN(Xt)H/\/N < 5] =1 VB>PBo(d), T = To(d)
N—=oo  Lie[Ty, T]

Mixed p-spin models with covariance §(t) =3, ygtp:

e Upper bound: ALG(E) = fol VE(t)dt.

o Lower bound: E_ from [Auffinger-Ben Arous 2013].

@ In mixed models, Amax =~ 0 can hold in a range of energies, e.g. [Ey, EX].

@ For pure multi-species spherical spin glasses, bounds continue to match at E.
Initializing via high-temperature dynamics changes neither bound.

e For pure models, threshold equals E, regardless of early dynamics.

@ [Folena—Franz—Ricci-Tersenghi 21]: this does change the eventual energy for mixed models.
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Upper Bound via Hardness for Lipschitz Algorithms

Upper bound mostly follows by consideration of Lipschitz optimization algorithms.

Definition

An L-Lipschitz algorithm is an Ay, : RNV xQ — Sy which is L-Lipschitz in the 1st input.

For this talk, think A = A({Jj,.._i,} Bo,1)-
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Upper Bound via Hardness for Lipschitz Algorithms

Upper bound mostly follows by consideration of Lipschitz optimization algorithms.

Definition

An L-Lipschitz algorithm is an Ay, : RV x @ — Sy which is L-Lipschitz in the 1st input.

For this talk, think A = A({Jj,.._i,} Bo,1)-

Theorem (Huang-S 21 & 23)

Fix any L,m > 0. If Ay is an L-Lipschitz algorithm, then for N large enough,

P[Hn(An(HN))/N < Exo +m] > 1- N,

Algorithms with dimension-free Lipschitz constant cannot access energies above E, + op(1).
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Aside on Optimal Optimization Algorithms

[Subag 18]: to optimize Hy, start at xg = 0 € RV and:

@ Take v; the top eigenvector of tangential Hessian VzHN(xt)|XL.
t
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Aside on Optimal Optimization Algorithms

[Subag 18]: to optimize Hyy, start at xg = 0 € RV and:

@ Take vt the top eigenvector of tangential Hessian VzHN(XtNXJ_.
t

@ Explore with small, orthogonal steps:

Xe41 = Xt = VONvt, 0<t<&lL
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Aside on Optimal Optimization Algorithms

[Subag 18]: to optimize Hyy, start at xg = 0 € RV and:
@ Take vt the top eigenvector of tangential Hessian VzHN(XtNXJ_.
t

@ Explore with small, orthogonal steps:

Xe41 = Xt = VONvt, 0<t<&lL
(3] Output odls = XLS_lJ S SN-
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Aside on Optimal Optimization Algorithms

[Subag 18]: to optimize Hyy, start at xg = 0 € RV and:

@ Take vt the top eigenvector of tangential Hessian VzHN(XtNXJ_.
t

@ Explore with small, orthogonal steps:

Xe41 = Xt £ VONvt, 0<t<&lL
(3] Output odls = XLS_lJ S SN-

o The tangential Hessian has law /p(p—1)gP~2 x GOEp_; at radius /qN. Expect:

M (V2Hn(xe)l, 1) = (2= 8)V/p(p=1)(3)P.
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Aside on Optimal Optimization Algorithms

[Subag 18]: to optimize Hyy, start at xg = 0 € RV and:

© Take v; the top eigenvector of tangential Hessian V2Hp(x¢)|

@ Explore with small, orthogonal steps:
Xe41 = Xt £ VONvt, 0<t<&lL
(3] Output odls = XLS_lJ S SN-

o The tangential Hessian has law /p(p—1)gP~2 x GOEp_; at radius /qN. Expect:
M (V2 H()l ) 2 (2= 8)V/p(p - 1) ()7,

@ Total value accumulated as & — 0:

1 -
HN(X5_1)/Nz/O \/p(p—l)sp‘2d5=21/ppl.

M. Sellke Langevin Dynamics for p-Spin Models 13 /27
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Aside on Optimal Optimization Algorithms

[Subag 18]: to optimize Hyy, start at xg = 0 € RV and:
@ Take vt the top eigenvector of tangential Hessian vzHN(Xt)|XJ_.
t

@ Explore with small, orthogonal steps:

Xe41 = Xt £ VONvt, 0<t<&lL
(3] Output odls = XLS_IJ S SN-

o The tangential Hessian has law /p(p—1)gP~2 x GOEp_; at radius /qN. Expect:

M (V2Hn(xe)l, 1) = (2= 8)V/p(p=1)(3)P.

o Total value accumulated as & — 0:

1 —
HN(xs_l)/N%/O \/p(p—l)sP‘2d5=21/ppl.

@ By choosing the top 2 eigenvectors, get a continuously branching tree of outputs.
Optimality: the best such trees are at E, and this obstructs all Lipschitz algorithms.
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Upper Bound via Hardness for Lipschitz Algorithms

Upper bound uses hardness for Lipschitz optimization algorithms.

Definition

An L-Lipschitz algorithm is an Ay, : RV x @ — Sy which is L-Lipschitz in 1st coordinate.

Theorem (Huang-S 21 & 23)

Fix any L,m > 0. If Ay is an L-Lipschitz algorithm, then for N large enough,

P[Hn(An(HN))/N < Eso +1] > 1- eV,

(Informally: Lipschitz algorithms cannot access energies above E, + op(1).)

Proof: branching overlap gap property.
Run Ay on correlated copies of Hy.
Extends OGP from [Gamarnik-Sudan 14,..].

O
o8 o 0 0

g b ¢ o 0o b ¢ ©

© 00 00 0O OB O OO 6O ©
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Upper Bound via Hardness for Lipschitz Algorithms

.....

Previously known for soft spherical Langevin dynamics [Ben Arous-Dembo-Guionnet 06].
We approximate the hard dynamics pathwise by soft dynamics, which suffices.
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Upper Bound via Hardness for Lipschitz Algorithms

.....

Previously known for soft spherical Langevin dynamics [Ben Arous-Dembo-Guionnet 06].
We approximate the hard dynamics pathwise by soft dynamics, which suffices.

Combined with [Ben Arous-Dembo-Guionnet 06, Dembo-Guionnet-Mazza 07], a byproduct:

Corollary (S 23)

The hard spherical dynamics are described by Cugliandolo-Kurchan equations. They are given
by a limit of those for the soft dynamics.
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Upper Bound via Hardness for Lipschitz Algorithms

.....

Previously known for soft spherical Langevin dynamics [Ben Arous-Dembo-Guionnet 06].
We approximate the hard dynamics pathwise by soft dynamics, which suffices.

Combined with [Ben Arous-Dembo-Guionnet 06, Dembo-Guionnet-Mazza 07], a byproduct:

Corollary (S 23)

The hard spherical dynamics are described by Cugliandolo-Kurchan equations. They are given
by a limit of those for the soft dynamics.

Improving the upper bound from Es + op(1) to Exo — OB(].):

o [Ben Arous-Gheissari-Jagannath 18]: ||VspHpy(x¢)|| > 81(B)V/N for all times t.
@ Hence a final noise-less gradient step slightly improves the energy.

@ This modified algorithm is just as Lipschitz as before.
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Lower Bound: Reaching Approximate Local Maxima

Definition

x € Sy is an e-approximate local maximum if both:
Q |VspHn(¥)Il < &VN.
Q }"SN(vngN(X)) <eE&.
If @ holds but @ doesn't, then x is an e-approximate saddle.
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Lower Bound: Reaching Approximate Local Maxima

Definition

x € Sy is an e-approximate local maximum if both:
O |[VspHn(x)l| <evN.
Q ng(VngN(X)) <eE.
If @ holds but @ doesn't, then x is an e-approximate saddle.

Proposition (Specific to Pure p-Spin Models)

With probability 1 - =N, all e-approximate local maxima satisfy Hy(x)/N > Eoo — 0g(1).
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Lower Bound: Reaching Approximate Local Maxima

Definition

x € Sy is an e-approximate local maximum if both:
Q [[VspHu(x)| < evN.

Q ng(VngN(X)) <eE.
If @ holds but @ doesn't, then x is an e-approximate saddle.

Proposition (Specific to Pure p-Spin Models)

With probability 1 - =N, all e-approximate local maxima satisfy Hy(x)/N > Eoo — 0g(1).

Theorem (Only Uses 3rd-Order Smoothness of Hy; cf [ZLC 17, INGKJ 21])

Suppose all e-approximate local maxima satisfy Hy(x)/N > E.(g).
Then for large Ty, B depending on €, and disorder-dependent xg € Sy :

P inf Hy(xt)/N > Ex(g) - 0g(1)| > 1-eN.
te[To, To+eN]
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Energy Gain While Below E(€)

We directly show Hp(x¢) increases while Hy(xt)/N < Ei(€). This is formalized with a
closely spaced sequence of stopping times

O=tm<nu<-—-<ty~T
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Energy Gain While Below E(€)

We directly show Hp(x¢) increases while Hy(xt)/N < Ei(€). This is formalized with a
closely spaced sequence of stopping times

O=tm<nu<-—-<ty~T

Definition of E«(€) leads to three cases:
@ Large energy: Hpy(xz)/N > Ei(g).
@ Large gradient: ||[VspHp(x1)|| > CRY/2VN.
© Approximate saddle: ||VspHy(x<)|| < CBY/2v/N and Agy (V2 Hpy(x1)) > €.
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Energy Gain While Below E(€)

We directly show Hp(x¢) increases while Hy(xt)/N < Ei(€). This is formalized with a
closely spaced sequence of stopping times

O=tm<nu<-—-<ty~T

Definition of E«(€) leads to three cases:
@ Large energy: Hpy(xz)/N > Ei(g).
@ Large gradient: ||[VspHp(x1)|| > CRY/2VN.
© Approximate saddle: ||VspHy(x<)|| < CBY/2v/N and Agy (V2 Hpy(x1)) > €.

If x7 is in Case @, simply stop once the energy drops below Ei(€).

In Cases ®, ©, we will show Hp(x¢) increases.
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Energy Gain From Large Gradient

Lemma (Large Gradient Case)

If |VspHn(x2)|| > CB~Y/2\/N then with probability 1 — e N :

Hp (X yg-10) = Hy(xz) > BON.
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Energy Gain From Large Gradient

Lemma (Large Gradient Case)

If |VspHn(x2)|| > CB~Y/2\/N then with probability 1 — e N :

Hp (X yg-10) = Hy(xz) > BON.

Proof: large gradient overwhelms the 1té term.

dH(xe) = ((BIVspH(xe)|2 & O(N) ) dt + B|[VspHiy(xt)]| dB:.

>CN on 1<t<t+p10 O(VN)

M. Sellke Langevin Dynamics for p-Spin Models 18 /27



Energy Gain From Large Gradient

Lemma (Large Gradient Case)

If |VspHn(x2)|| > CB~Y/2\/N then with probability 1 — e N :

Hp (X yg-10) = Hy(xz) > BON.

Proof: large gradient overwhelms the 1t term.

dH(xe) = ((BIVspH(xe)|2 & O(N) ) dt + B|[VspHiy(xt)]| dB:.

>CN on 1<t<t+p10 O(VN)

Noise level is so small that differential inequalities remain true with probability 1 —e~<V.
(Similarly, bound growth of ||x; — x||> with another differential inequality.)
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Gaining Energy Near Approximate Saddles

Remains to show the following (with B > C(g) > 1/e > C < 1).

IF [ VspH(xe)ll < CBY2VN and hen (V,Hi(x2)) > &

HN(XHf(g)B—l) - Hy(xz) > B_lN-
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Gaining Energy Near Approximate Saddles

Remains to show the following (with B > C(g) > 1/e > C < 1).

IF [ VspH(xe)ll < CBY2VN and hen (V,Hi(x2)) > &

Hy (%o ceypt) — Hn(xe) = BTN

Wishful thinking: imagine Hy is quadratic and flatten the domain Sy to RNV-1.
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Gaining Energy Near Approximate Saddles

Remains to show the following (with B > C(g) > 1/e > C < 1).

If || VspHn(x2)|| < CB™Y/2V/N and Ay (V2,Hy(x1)) > &

HN(XH_E(S)B—l) — Hy(x<) = B_lN-

Wishful thinking: imagine Hy is quadratic and flatten the domain Sy to RNV-1.

Then x4+ would be a multi-dimensional OU process. Easy to analyze!
o Positive eigendirections: exponentially fast energy gain.
o Negative eigendirections: trapped or diffusive movement.
o Overall energy gain of Q(NB™1) after time C(g)p~L.
°

(But, energy can initially drop. This is a problem for differential inequalities.)
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Ornstein—Uhlenbeck Approximation via Taylor Expansion

In general: map Sy to RV~1 and Taylor expand the SDE coefficients near x;.

@ A suitable approximation exactly yields a multi-dimensional OU process.

@ Suffices to carefully estimate the approximation error.
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Ornstein—Uhlenbeck Approximation via Taylor Expansion

In general: map Sy to RV~1 and Taylor expand the SDE coefficients near x;.

@ A suitable approximation exactly yields a multi-dimensional OU process.

@ Suffices to carefully estimate the approximation error.

Use stereographic projection map I'x, centered at —xr: 2

Tx, - Sy\{—xc} — RNV,
FXT(XT) =
1—‘xr(xt“) = Xt,

Hy(Re) = Hy(Txt(Re)) = Hu(x)

x) Ol
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Ornstein—Uhlenbeck Approximation via Taylor Expansion

RN_]'

In general: map Sy to and Taylor expand the SDE coefficients near xz.

@ A suitable approximation exactly yields a multi-dimensional OU process.

@ Suffices to carefully estimate the approximation error.

Use stereographic projection map I'x, centered at —xr: 2

Tx, - Sy\{—xc} — RNV,
FXT(XT) =
1—‘xr(xt“) = Xt,

Hy(Re) = Hy(Txt(Re)) = Hu(x)

x) Ol

RN-1 and quadratic approximation:

Projected dynamics in
d?t = be(X¢) dt + 6:d W,
dx{? = BVHQ (D)t + dw,.
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Required Estimates for Ornstein—Uhlenbeck Approximation

We show ng)
@ Movement is small on O(1/B) time-scales since ||VspHpy(x1)|| < CB~Y2V/N:
1%, cps = Xel < O(B™/2VN), (1)
— IVHN Ry )]l < Oc(B/2VN),

A Xt via more scalar approximate differential inequalities.

Since H,(VQ) is a 2nd order Taylor approximation for I’-\IN, (1) gives:

Q Q o Q _
M O g ) = v T )| < O (B7/2M) @)
(Q)

@ Same-time approximation x; *’ & X turns out to be better since dB; cancels:

I s = %espsll < OBV,

Combining the previous two,

ereps) = A Tg)| < Oc(B™2). 3)

Energy gain of H,(VQ)(ng)) is Q(BLN) by explicit OU computation. Combining with (2), (3):
Hn (e )~ Hv(xe) = Fin(Ryy ) — A (%) = Q(BN).
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And Now For Something Different

@ Introduction and background

o Spherical spin glasses and Langevin dynamics
o Cugliandolo—Kurchan equations

» Bounding flows
o The threshold E~

@ Main result: threshold energy of low temperature dynamics

o Upper bound: Lipschitz approximation and Branching OGP
o Lower bound: climbing near saddles

o Epilogue: topologically trivial spin glasses



Topological Trivialization under Strong External Field

Consider a spherical spin glass with external field:

HN(G) = N_(p_l)/2 Z J,'l i»Ofp -+ - Oj + <H, G>.
1<i1, iy ip<N

Here h € RN is deterministic; only h = ||/7||/\/N matters by symmetry.
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Topological Trivialization under Strong External Field

Consider a spherical spin glass with external field:

HN(G) = N_(p_l)/2 Z J,'l i»Ofp ---Oj + <H, G>.
1<i1, iy ip<N

Here h € RN is deterministic; only h = ||/7||/\/N matters by symmetry.

Let Crt(Hp) C Sy be the discrete set of critical points for Hy. The Kac-Rice formula
enables computations such as the following.

Theorem ([Fyodorov 15, BCNS 22])

ecN / —
E|Crt(Hp)| ~ {2 ,h >h </_p(§(_P2)'2)v
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Topological Trivialization under Strong External Field

Consider a spherical spin glass with external field:

HN(G) = N_(p_l)/2 Z J,'l i»Ofp -+ - Oj + <H, G>.
1<i1, iy ip<N

Here h € RN is deterministic; only h = ||/7||/\/N matters by symmetry.

Let Crt(Hp) C Sy be the discrete set of critical points for Hy. The Kac-Rice formula
enables computations such as the following.

Theorem ([Fyodorov 15, BCNS 22])

ecN / —
E|Crt(Hy)| = {2 ,h >h </p(;7(_P2)'2)y

The latter case is topological trivialization: all critical points are global extrema. Hope:

@ Fast convergence of low temperature Langevin to the global optimum.

@ Functional inequalities with dimension-free parameters.
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Robust Kac—Rice

Kac—Rice estimates can be made “robust” to approximate critical points, yielding direct
energy lower bounds for Langevin dynamics.

Theorem (Huang-S 23; Informal)

Suppose a spherical spin glass model has O(e_Q(N )) critical points (resp. local maxima)
on average with energy in [A, B]. Then with probability 1 e~<N it has no 8-approximate
critical points (resp. local maxima) with energy in [A+ 8, B —9].
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Robust Kac—Rice

Kac—Rice estimates can be made “robust” to approximate critical points, yielding direct
energy lower bounds for Langevin dynamics.

Theorem (Huang-S 23; Informal)

Suppose a spherical spin glass model has O(e_Q(N )) critical points (resp. local maxima)
on average with energy in [A, B]. Then with probability 1 e~<N it has no 8-approximate
critical points (resp. local maxima) with energy in [A+ 8, B —9].

Proof idea: suppose Hpy has a 3-approximate critical point. Rerandomizing the disorder by
§1/100 yields at least eos(N) genuine nearby critical points for Hp, in expectation.
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Robust Kac—Rice

Kac—Rice estimates can be made “robust” to approximate critical points, yielding direct
energy lower bounds for Langevin dynamics.

Theorem (Huang-S 23; Informal)

Suppose a spherical spin glass model has O(e_Q(N )) critical points (resp. local maxima)
on average with energy in [A, B]. Then with probability 1 e~<N it has no 8-approximate
critical points (resp. local maxima) with energy in [A+ 8, B —9].

Proof idea: suppose Hpy has a 3-approximate critical point. Rerandomizing the disorder by
§1/100 yields at least eos(N) genuine nearby critical points for Hp, in expectation.

Corollary (Huang-S 23)

In the topologically trivial phase, all 3-approximate critical points are O(3) from the global
extrema. Low-temperature Langevin rapidly reaches oB(\m) of the global maximum.
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From Hitting Times to Poincare Inequalities

Theorem ([Bakry-Barthe-Cattiaux-Guillin 08]; informal)

Given a diffusion on a compact manifold M, suppose the restriction to S C M has Poincare
constant Cy, and the expected hitting time of S is uniformly at most C,. Then the Poincare
constant on M is at most C(Cy, (7).
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From Hitting Times to Poincare Inequalities

Theorem ([Bakry-Barthe-Cattiaux-Guillin 08]; informal)

Given a diffusion on a compact manifold M, suppose the restriction to S C M has Poincare
constant Cy, and the expected hitting time of S is uniformly at most C,. Then the Poincare
constant on M is at most C(Cy, (7).

For us, S is a locally concave neighborhood of the global maximum. Bakry-Emery theory
bounds Cj. Lack of approximate critical points bounds .

In the topologically trivial phase, for B sufficiently small, ug has Poincare constant at most
C(p, h) with probability 1 — =N
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Multi-Species Spherical Spin Glasses

A sphere is a geometrically simple manifold. On most other manifolds, generic smooth
functions must have saddles. Multi-species spin glasses are defined on a product of
spheres SN x SN2 5 ... x SN e g

Hy(o.p) =Ya D &ijSiPi+Y8 .  8ijijnjsOinPjPpPjs- + (ha o) + (hg.p).
1<i<N; 1<ii<M
1<<N, 1<j1j23<N2
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Multi-Species Spherical Spin Glasses

A sphere is a geometrically simple manifold. On most other manifolds, generic smooth
functions must have saddles. Multi-species spin glasses are defined on a product of
spheres SN x SN2 5 ... x SN e g

Hy(o.p) =Ya D &ijSiPi+Y8 .  8ijijnjsOinPjPpPjs- + (ha o) + (hg.p).
1<i<N; 1<ii<M
1<<N, 1<j1j23<N2

Morse theory says |Crt(Hp)| > 2" almost surely. Modulo this, the picture is the same:
Theorem (Huang-S 23)

In the topologically trivial phase of multi-species models, all -approximate critical points are
O(8) from one of 2" critical points, and 2" — 2 are saddles.
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Multi-Species Spherical Spin Glasses

A sphere is a geometrically simple manifold. On most other manifolds, generic smooth
functions must have saddles. Multi-species spin glasses are defined on a product of
spheres SN x SN2 5 ... x SN e g

Hy(o.p) =Ya D &ijSiPi+Y8 .  8ijijnjsOinPjPpPjs- + (ha o) + (hg.p).
1<i<N; 1<ii<M
1<<N, 1<j1j23<N2

Morse theory says |Crt(Hp)| > 2" almost surely. Modulo this, the picture is the same:
Theorem (Huang-S 23)

In the topologically trivial phase of multi-species models, all -approximate critical points are
O(8) from one of 2" critical points, and 2" — 2 are saddles.

No spurious approximate local maxima, so the main part of the talk applies!

Corollary (Huang-S 23)

In the topologically trivial phase of multi-species models, for B sufficiently small, pug has

Poincare constant at most C(p, h) with probability 1 - e=<N.
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Conclusion

Pure p-spin Hamiltonian:

Hu(o)= N"PD2 %7,

1<iy iz, ...ip<N

Main result: for spherical Langevin dynamics,

lim p-lim Hy(x7)/N = Exo(p) = 24/ —.

T.B—o00 N—oo p
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Conclusion

Pure p-spin Hamiltonian:

Hu(o)= N"PD2 %7,

1<iy iz, ...ip<N

Main result: for spherical Langevin dynamics,

lim p-lim Hy(x7)/N = Exo(p) = 24/ —.

T.B—o00 N—oo p

Upper bound holds for Lipschitz algorithms via branching overlap gap property.

Lower bound: dynamics reach approximate local maxima in general smooth landscapes.
@ Holds for disorder-dependent xg € Sy, and uniformly in t € [Tg, To + eCN].
o Consequences for topologically trivial spin glasses.

Open: prove gradient flow reaches Eo.7 Monotonicity-in-time of asymptotic energy for
fixed P, or just existence of T — oo limiting energy?
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