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Plan for this Talk

1 Introduction and background
Spherical spin glasses and Langevin dynamics
Cugliandolo–Kurchan equations
Bounding flows
The threshold E∞

2 Main result: threshold energy of low temperature dynamics
Upper bound: Lipschitz approximation and Branching OGP
Lower bound: climbing near saddles

3 Epilogue: topologically trivial spin glasses
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Definition of Pure Spherical Spin Glasses

Pure p-spin Hamiltonian: random function HN : RN → R given by

HN(σ) = N–(p–1)/2
∑

1≤i1,i2,...,ip≤N

Ji1,...,ipσi1 . . .σip

with i.i.d. Gaussian coefficients Ji1,...,ip ∼ N (0, 1).

Inputs σ will be on the sphere: SN =
{

σ ∈ RN :
∑N

i=1 σ2
i = N

}
.

Quick facts:

1 Rotationally invariant Gaussian process: EHN(σ)HN(ρ) = N
(
〈σ,ρ〉

N

)p
.

2 Scaling: maxσ∈SN |HN(σ)| � N, ‖∇HN(σ)‖ �
√
N, ‖∇2HN(σ)‖op � 1.
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Spherical Langevin Dynamics

Langevin dynamics on SN :

dx t =
(

β∇spHN(x t) –
(N – 1)x t

2N

)
dt + P⊥x t dBt .

Invariant for Gibbs measure µβ(dσ) = eβHN(σ)dσ/ZN(β). Much is known about µβ even at
low temperature:

Ground state energy is ≈
√

log p.
Free energy is 1-RSB [Talagrand 06, Chen 17,...]
Geometric description: orthogonal deep wells, extremes are Poisson-Dirichlet [Subag 17].

tmix (β) ≥ eΩ(N) for large β, so µβ will not be realistically accessed [Ben Arous-Jagannath 18].

Study of O(1)-time dynamics since [Sompolinsky-Zippelius 82] (SK model).
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Physics Predictions and Rigorous Results

1 Exact description via Cugliandolo-Kurchan equations [Crisanti-Horner-Sommers 93].
[Ben Arous-Dembo-Guionnet 06]: Yes (for soft spherical spins)

2 Fluctuation-dissipation relation & exponential decay of correlations at high temperature.
[Dembo-Guionnet-Mazza 07]: Yes, using 1 .

3 Aging at low temperatures [Cugliandolo-Kurchan 93].
[Ben Arous-Dembo-Guionnet 01]: Yes, for p = 2.

4 Large time threshold energy E∞(p) ≡ 2
√

p–1
p as β→∞ [Biroli 99].

[Ben Arous-Gheissari-Jagannath 18]: Explicit bounds via differential inequalities.
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Cugliandolo-Kurchan Equations

Closed system of equations as N →∞ for:

C (s, t) ≡ 〈xs , x t〉/N,
R(s, t) ≡ 〈xs ,Bt〉/N.

Tells you everything in principle, but hard to work with. For s ≥ t ≥ 0:
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Bounding Flows Approach

Rigorously understanding the Cugliandolo-Kurchan equations is difficult at low temperature.
Long-time asymptotic solutions are not unique.

[Ben Arous-Gheissari-Jagannath 18]: bounding flows method of differential inequalities.
Shows d(HN(x t), ‖∇HN(x t)‖2) ∈ Γ(HN(x t), ‖∇HN(x t)‖2) ⊆ R2.
Quantitative lower bounds on HN(xT ), even for disorder dependent x0 ∈ SN .

M. Sellke Langevin Dynamics for p-Spin Models 7 / 27



Bounding Flows Approach

Rigorously understanding the Cugliandolo-Kurchan equations is difficult at low temperature.
Long-time asymptotic solutions are not unique.

[Ben Arous-Gheissari-Jagannath 18]: bounding flows method of differential inequalities.
Shows d(HN(x t), ‖∇HN(x t)‖2) ∈ Γ(HN(x t), ‖∇HN(x t)‖2) ⊆ R2.
Quantitative lower bounds on HN(xT ), even for disorder dependent x0 ∈ SN .

M. Sellke Langevin Dynamics for p-Spin Models 7 / 27



Bounding Flows Approach

Explicit bounds from [Ben Arous-Gheissari-Jagannath 18]:
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Intuition for E∞

[Biroli 99]: E∞ = 2
√

p–1
p should be the threshold energy in the limit β→∞.

The Hessian’s maximum eigenvalue “equals zero at zero temperature,
as is expected for a dynamics in a rugged energy landscape”.

Explanation:
For x ∈ SN , the spherical Hessian ∇2

spHN(x) is a shifted GOE:

∇2
spHN(x) d=

√
p(p – 1)GOE (N – 1) – p · HN(x)

N
.

The prediction above says λmax
(
∇2
spHN(xT )

)
≈ 0.

Since λmax(GOE (N – 1)) ≈ 2, we should also predict energy E∞, i.e.

lim
β,T→∞

p-lim
N→∞

HN(xT )/N = E∞.
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New Results: E∞ is the Threshold Energy as β→∞

Theorem (S 23, Upper Bound)

For any β there is δ > 0 such that for any T , if x0 ∈ SN is independent of HN :

P

[
sup

t∈[0,T ]
HN(x t)/N ≤ E∞ – δ

]
≥ 1 – e–cN .

Theorem (S 23, Lower Bound)

For any η > 0, with T0 = T0(η) and β ≥ β0(η), even if x0 is disorder dependent:

P

[
inf

t∈[T0,T0+ecN ]
HN(x t)/N ≥ E∞ – η

]
≥ 1 – e–cN .

For large constant times t ∈ [T0,T ] and large β, the energy stays uniformly just below E∞:

HN(x t)/N ∈ [E∞ – η,E∞ – δ].
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Some Comments

Once energy settles, the gradient stays small:

lim
N→∞

P
[

sup
t∈[T0,T ]

‖∇spHN(x t)‖/
√
N ≤ δ

]
= 1, ∀ β ≥ β0(δ), T ≥ T0(δ).

Mixed p-spin models with covariance ξ(t) =
∑

p≥2 γ2pt
p:

Upper bound: ALG(ξ) =
∫ 1
0
√

ξ′′(t) dt.
Lower bound: E–

∞ from [Auffinger-Ben Arous 2013].
In mixed models, λmax ≈ 0 can hold in a range of energies, e.g. [E–

∞,E+
∞].

For pure multi-species spherical spin glasses, bounds continue to match at E∞.
Initializing via high-temperature dynamics changes neither bound.

For pure models, threshold equals E∞ regardless of early dynamics.
[Folena–Franz–Ricci-Tersenghi 21]: this does change the eventual energy for mixed models.
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Upper Bound via Hardness for Lipschitz Algorithms

Upper bound mostly follows by consideration of Lipschitz optimization algorithms.

Definition

An L-Lipschitz algorithm is an AN : RNp
×Ω→ SN which is L-Lipschitz in the 1st input.

For this talk, think A = A({Ji1,...,ip},B [0,T ]).

Theorem (Huang-S 21 & 23)

Fix any L,η > 0. If AN is an L-Lipschitz algorithm, then for N large enough,

P[HN(AN(HN))/N ≤ E∞ + η] ≥ 1 – e–cN .

Algorithms with dimension-free Lipschitz constant cannot access energies above E∞ + oN(1).
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Aside on Optimal Optimization Algorithms

[Subag 18]: to optimize HN , start at x0 = ~0 ∈ RN and:

1 Take vt the top eigenvector of tangential Hessian ∇2HN(xt)|x⊥t .

2 Explore with small, orthogonal steps:

xt+1 = xt ±
√

δNvt , 0 ≤ t ≤ δ
–1.

3 Output σalg = xbδ–1c ∈ SN .

The tangential Hessian has law
√

p(p – 1)qp–2 × GOEN–1 at radius
√
qN. Expect:

λ1

(
∇2HN(xt)|x⊥t

)
≥ (2 – δ)

√
p(p – 1)(tδ)p.

Total value accumulated as δ→ 0:

HN(x
δ–1)/N ≈

∫ 1

0

√
p(p – 1)sp–2ds = 2

√
p – 1
p

.

By choosing the top 2 eigenvectors, get a continuously branching tree of outputs.
Optimality: the best such trees are at E∞, and this obstructs all Lipschitz algorithms.
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Upper Bound via Hardness for Lipschitz Algorithms

Upper bound uses hardness for Lipschitz optimization algorithms.

Definition

An L-Lipschitz algorithm is an AN : RNp
×Ω→ SN which is L-Lipschitz in 1st coordinate.

Theorem (Huang-S 21 & 23)

Fix any L,η > 0. If AN is an L-Lipschitz algorithm, then for N large enough,

P[HN(AN(HN))/N ≤ E∞ + η] ≥ 1 – e–cN .

(Informally: Lipschitz algorithms cannot access energies above E∞ + oN(1).)

Proof: branching overlap gap property.
Run AN on correlated copies of HN .
Extends OGP from [Gamarnik-Sudan 14,...].
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Upper Bound via Hardness for Lipschitz Algorithms

Remains to approximate xT by an L(β,T )-Lipschitz function of (Ji1,...,ip )
N
ik=1 for each B [0,T ].

Previously known for soft spherical Langevin dynamics [Ben Arous-Dembo-Guionnet 06].
We approximate the hard dynamics pathwise by soft dynamics, which suffices.

Combined with [Ben Arous-Dembo-Guionnet 06, Dembo-Guionnet-Mazza 07], a byproduct:

Corollary (S 23)

The hard spherical dynamics are described by Cugliandolo-Kurchan equations. They are given
by a limit of those for the soft dynamics.

Improving the upper bound from E∞ + oN(1) to E∞ – oβ(1):

[Ben Arous-Gheissari-Jagannath 18]: ‖∇spHN(x t)‖ ≥ δ1(β)
√
N for all times t.

Hence a final noise-less gradient step slightly improves the energy.
This modified algorithm is just as Lipschitz as before.
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Lower Bound: Reaching Approximate Local Maxima

Definition
x ∈ SN is an ε-approximate local maximum if both:

1 ‖∇spHN(x)‖ ≤ ε
√
N.

2 λεN
(
∇2
spHN(x)

)
≤ ε.

If 1 holds but 2 doesn’t, then x is an ε-approximate saddle.

Proposition (Specific to Pure p-Spin Models)

With probability 1 – e–cN , all ε-approximate local maxima satisfy HN(x)/N ≥ E∞ – oε(1).

Theorem (Only Uses 3rd-Order Smoothness of HN ; cf [ZLC 17, JNGKJ 21])

Suppose all ε-approximate local maxima satisfy HN(x)/N ≥ E∗(ε).
Then for large T0, β depending on ε, and disorder-dependent x0 ∈ SN :

P

[
inf

t∈[T0,T0+ecN ]
HN(x t)/N ≥ E∗(ε) – oε(1)

]
≥ 1 – e–cN .
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Energy Gain While Below E∗(ε)

We directly show HN(x t) increases while HN(x t)/N ≤ E∗(ε). This is formalized with a
closely spaced sequence of stopping times

0 = τ0 < τ1 < · · · < τM ≈ T

Definition of E∗(ε) leads to three cases:

1 Large energy: HN(xτ)/N ≥ E∗(ε).

2 Large gradient: ‖∇spHN(xτ)‖ ≥ Cβ–1/2
√
N.

3 Approximate saddle: ‖∇spHN(xτ)‖ ≤ Cβ–1/2
√
N and λεN

(
∇2
spHN(xτ)

)
≥ ε.

If xτ is in Case 1 , simply stop once the energy drops below E∗(ε).

In Cases 2 , 3 , we will show HN(x t) increases.
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Energy Gain From Large Gradient

Lemma (Large Gradient Case)

If ‖∇spHN(xτ)‖ ≥ Cβ–1/2
√
N then with probability 1 – e–cN :

HN(x
τ+β–10) – HN(xτ) ≥ β

–10N.

Proof: large gradient overwhelms the Itô term.

dHN(x t) =
(

β‖∇spHN(x t)‖2 ± O(N)
)

︸ ︷︷ ︸
≥CN on τ≤t≤τ+β–10

dt + β‖∇spHN(x t)‖︸ ︷︷ ︸
O(
√

N)

dBt .

Noise level is so small that differential inequalities remain true with probability 1 – e–cN .
(Similarly, bound growth of ‖x t – xτ‖2 with another differential inequality.)
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Gaining Energy Near Approximate Saddles

Remains to show the following (with β� C (ε)� 1/ε� C � 1).

Lemma

If ‖∇spHN(xτ)‖ ≤ Cβ–1/2
√
N and λεN

(
∇2
spHN(xτ)

)
≥ ε:

HN(x
τ+C(ε)β–1) – HN(xτ) ≥ β

–1N.

Wishful thinking: imagine HN is quadratic and flatten the domain SN to RN–1.

Then xτ+t would be a multi-dimensional OU process. Easy to analyze!
Positive eigendirections: exponentially fast energy gain.
Negative eigendirections: trapped or diffusive movement.
Overall energy gain of Ω(Nβ–1) after time C (ε)β–1.
(But, energy can initially drop. This is a problem for differential inequalities.)
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Ornstein–Uhlenbeck Approximation via Taylor Expansion

In general: map SN to RN–1 and Taylor expand the SDE coefficients near xτ.
A suitable approximation exactly yields a multi-dimensional OU process.
Suffices to carefully estimate the approximation error.

Use stereographic projection map Γxτ
centered at –xτ:

Γxτ
: SN\{–xτ}→ RN–1,

Γxτ
(xτ) = ~0,

Γxτ
(x t) = x̂ t ,

ĤN(x̂ t) = HN(Γ–1
xτ
(x̂ t)) = HN(x t)

Projected dynamics in RN–1 and quadratic approximation:

dx̂ t = ~bt(x̂ t) dt + σtdW t ,

dx(Q)
t = β∇H(Q)

N (x(Q)
t )dt + dW t .
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Required Estimates for Ornstein–Uhlenbeck Approximation

We show x(Q)
t ≈ x̂ t via more scalar approximate differential inequalities.

Movement is small on O(1/β) time-scales since ‖∇spHN(xτ)‖ ≤ Cβ–1/2
√

N:

‖x̂
τ+Cβ–1

– x̂ t‖ ≤ OC (β
–1/2√N), (1)

=⇒ ‖∇ĤN(x̂
τ+Cβ–1

)‖ ≤ OC (β
–1/2√N).

Since H(Q)
N is a 2nd order Taylor approximation for ĤN , (1) gives:∣∣H(Q)

N (x(Q)
τ+Cβ–1

) – ĤN(x(Q)
τ+Cβ–1

)
∣∣ ≤ OC (β

–3/2N). (2)

Same-time approximation x(Q)
t ≈ x̂ t turns out to be better since dBt cancels:

‖x(Q)
τ+Cβ–1

– x̂
τ+Cβ–1

‖ ≤ OC (β
–1√N).

Combining the previous two,∣∣ĤN(x̂
τ+Cβ–1

) – ĤN(x(Q)
τ+Cβ–1

)
∣∣ ≤ OC (β

–3/2N). (3)

Energy gain of H(Q)
N (x(Q)

t ) is Ω(β–1N) by explicit OU computation. Combining with (2), (3):

HN(x
τ+Cβ–1

) – HN(xτ) = ĤN(x̂
τ+Cβ–1

) – ĤN(x̂τ) ≥ Ω(β–1N).
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And Now For Something Different

1 Introduction and background
Spherical spin glasses and Langevin dynamics
Cugliandolo–Kurchan equations
Bounding flows
The threshold E∞

2 Main result: threshold energy of low temperature dynamics
Upper bound: Lipschitz approximation and Branching OGP
Lower bound: climbing near saddles

3 Epilogue: topologically trivial spin glasses
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Topological Trivialization under Strong External Field

Consider a spherical spin glass with external field:

HN(σ) = N–(p–1)/2
∑

1≤i1,i2,...,ip≤N

Ji1,...,ipσi1 . . .σip + 〈~h,σ〉.

Here ~h ∈ RN is deterministic; only h = ‖~h‖/
√
N matters by symmetry.

Let Crt(HN) ⊆ SN be the discrete set of critical points for HN . The Kac-Rice formula
enables computations such as the following.

Theorem ([Fyodorov 15, BCNS 22])

E|Crt(HN)| ≈

{
ecN , h <

√
p(p – 2),

2, h >
√

p(p – 2).

The latter case is topological trivialization: all critical points are global extrema. Hope:
1 Fast convergence of low temperature Langevin to the global optimum.
2 Functional inequalities with dimension-free parameters.
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Robust Kac–Rice

Kac–Rice estimates can be made “robust” to approximate critical points, yielding direct
energy lower bounds for Langevin dynamics.

Theorem (Huang-S 23; Informal)

Suppose a spherical spin glass model has O(e–Ω(N)) critical points (resp. local maxima)
on average with energy in [A,B]. Then with probability 1 – e–cN , it has no δ-approximate
critical points (resp. local maxima) with energy in [A+ δ,B – δ].

Proof idea: suppose HN has a δ-approximate critical point. Rerandomizing the disorder by
δ1/100 yields at least e–oδ(N) genuine nearby critical points for H̃N , in expectation.

Corollary (Huang-S 23)

In the topologically trivial phase, all δ-approximate critical points are O(δ) from the global
extrema. Low-temperature Langevin rapidly reaches oβ(

√
N) of the global maximum.
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From Hitting Times to Poincare Inequalities

Theorem ([Bakry-Barthe-Cattiaux-Guillin 08]; informal)

Given a diffusion on a compact manifold M, suppose the restriction to S ⊆ M has Poincare
constant C1, and the expected hitting time of S is uniformly at most C2. Then the Poincare
constant on M is at most C (C1,C2).

For us, S is a locally concave neighborhood of the global maximum. Bakry-Emery theory
bounds C1. Lack of approximate critical points bounds C2.

Corollary
In the topologically trivial phase, for β sufficiently small, µβ has Poincare constant at most
C (p, h) with probability 1 – e–cN .
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Multi-Species Spherical Spin Glasses

A sphere is a geometrically simple manifold. On most other manifolds, generic smooth
functions must have saddles. Multi-species spin glasses are defined on a product of
spheres SN1 × SN2 × · · · × SNr , e.g.

HN(σ, ρ) = γA
∑

1≤i≤N1
1≤j≤N2

gi ,jσiρj + γB
∑

1≤i1≤N1
1≤j1,j2,j3≤N2

gi1,j1,j2,j3σi1ρj1ρj2ρj3 . + 〈
~hA,σ〉+ 〈~hB , ρ〉.

Morse theory says |Crt(HN)| ≥ 2r almost surely. Modulo this, the picture is the same:

Theorem (Huang-S 23)

In the topologically trivial phase of multi-species models, all δ-approximate critical points are
O(δ) from one of 2r critical points, and 2r – 2 are saddles.

No spurious approximate local maxima, so the main part of the talk applies!

Corollary (Huang-S 23)

In the topologically trivial phase of multi-species models, for β sufficiently small, µβ has
Poincare constant at most C (p, h) with probability 1 – e–cN .

M. Sellke Langevin Dynamics for p-Spin Models 26 / 27



Multi-Species Spherical Spin Glasses

A sphere is a geometrically simple manifold. On most other manifolds, generic smooth
functions must have saddles. Multi-species spin glasses are defined on a product of
spheres SN1 × SN2 × · · · × SNr , e.g.

HN(σ, ρ) = γA
∑

1≤i≤N1
1≤j≤N2

gi ,jσiρj + γB
∑

1≤i1≤N1
1≤j1,j2,j3≤N2

gi1,j1,j2,j3σi1ρj1ρj2ρj3 . + 〈
~hA,σ〉+ 〈~hB , ρ〉.

Morse theory says |Crt(HN)| ≥ 2r almost surely. Modulo this, the picture is the same:

Theorem (Huang-S 23)

In the topologically trivial phase of multi-species models, all δ-approximate critical points are
O(δ) from one of 2r critical points, and 2r – 2 are saddles.

No spurious approximate local maxima, so the main part of the talk applies!

Corollary (Huang-S 23)

In the topologically trivial phase of multi-species models, for β sufficiently small, µβ has
Poincare constant at most C (p, h) with probability 1 – e–cN .
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Conclusion

Pure p-spin Hamiltonian:

HN(σ) = N–(p–1)/2
∑

1≤i1,i2,...,ip≤N

Ji1,...,ipσi1 . . .σip

Main result: for spherical Langevin dynamics,

lim
T ,β→∞

p-lim
N→∞

HN(xT )/N = E∞(p) ≡ 2

√
p – 1
p

.

Upper bound holds for Lipschitz algorithms via branching overlap gap property.

Lower bound: dynamics reach approximate local maxima in general smooth landscapes.
Holds for disorder-dependent x0 ∈ SN , and uniformly in t ∈ [T0,T0 + ecN ].
Consequences for topologically trivial spin glasses.

Open: prove gradient flow reaches E∞? Monotonicity-in-time of asymptotic energy for
fixed β, or just existence of T →∞ limiting energy?
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