The Setup

- Problem: K -armed stochastic bandits with multiple playe
- $\succ K$ arms with reward probabilities p_1, \dots, p_K .
- \blacktriangleright At time t = 1, 2, ..., T each of $m \leq K$ players choose an ar
- > Players cannot communicate.
- > Colliding (choosing the same arm) gives **no reward**.
- \succ Goal: low expected regret R_T compared to top *m* arms.
- \succ Motivation: cognitive radio. Arms \approx channels.

[Lai-Jiang-Poor 08, Liu-Zhao 10 Anandkumar-Michael-Tang-Swan

(2)

1

Some Existing Work

 $\geq R_T \leq \tilde{O}(\sqrt{T})$ when $p_i \leq 1 - \varepsilon$ [Lugosi-Mehrabian 18]. $\geq R_T \leq O\left(\sum_{i=1}^K \frac{\log T}{\Delta_i}\right)$ [Huang-Combes-Trinh 21]. > Adversarial losses [BLPS 20] \succ Adaptive losses, no shared randomness: $R_T \geq \Omega$ $\gg R_T \leq \tilde{O}(\sqrt{T})$ if collisions are explicitly announce $\geq R_T \leq \tilde{O}\left(T^{1-\frac{1}{2m}}\right)$, only losses observed.

> Theme: collisions allow **implicit communication**.

Relies on observing the lack of reward from coll

Cooperative and Stochastic Multi-Player Multi-Armed Bandit: Optimal Regret With Neither Communication Nor Collisions

Sébastien Bubeck (Microsoft), Thomas Budzinski (ENS Lyon), Mark Sellke (Stanford): COLT 2021

	3 Main Result: Optimal Regret wit
/ers.	Theorem: using public shared rando
arm.	$R_T \le O(mK^{5.5}\sqrt{7})$
	<pre>P[there is a collision]</pre>
	[BB 20]: for $(K, m) = (3, 2), R_T = \Theta(\sqrt{T})$
	4 Topological Obstruction and Padding
ami 11].	Assume full-feedback. (Bandit uses similar con
	Naïve Goal: always play top 2 actions of empiri
	Naïve Strategy: everywhere in "state space", pi
	Problem: going "around a circle" leads to inevir
$\Omega(T).$	Fix [BB20]: add "padding layer" as buffer. Rand
ed.	$ ightarrow$ Player estimates close \Rightarrow use adjacent regions
	1 best
lision.	Padding layer prevents collisions
(1,3) 3 worst (1,2)	
(3,1) (3,2) (3,2)	
3 best	1 worst 2 best 3 b

th No Collisions At All

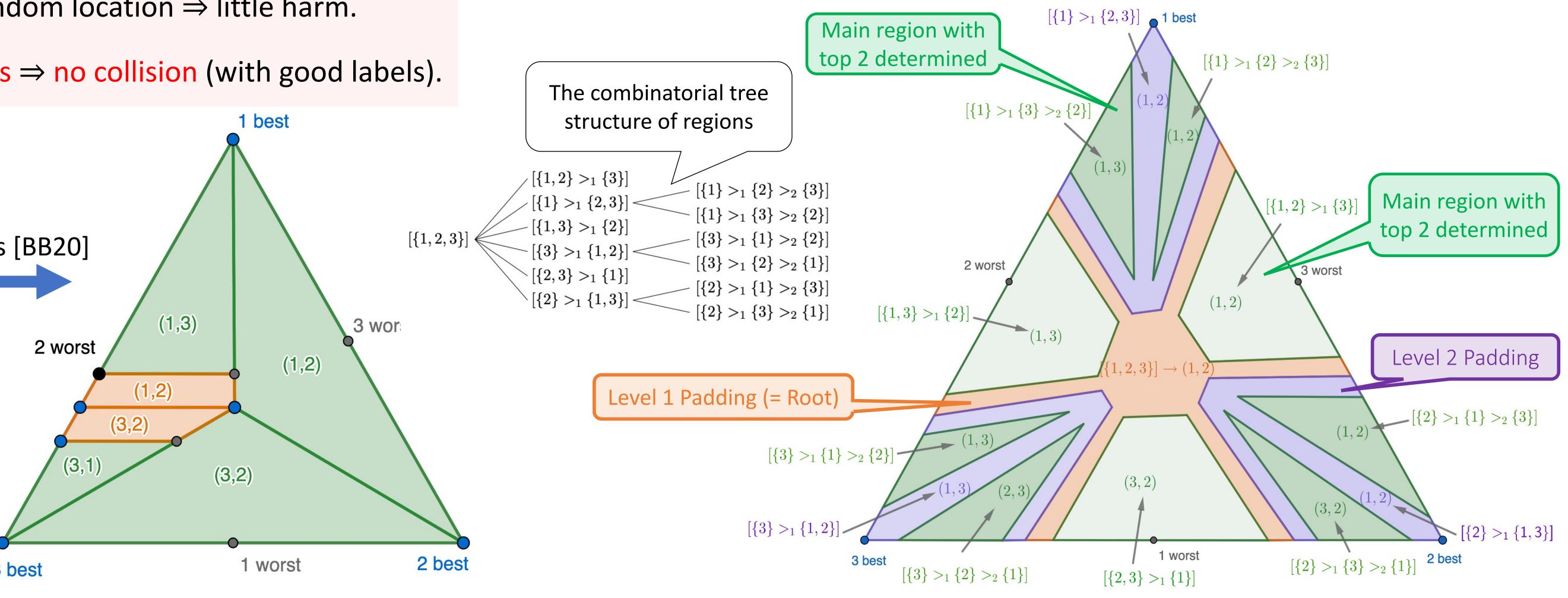
omness, can achieve

 $T\log T$;

 $\leq O(1/T^2).$

 $\overline{T}\log T$) is optimal.

g Layer for (K, m) = (3, 2)


nstruction, but more technical.)

rical estimates.

pre-label player-action matching.

vitable collision.

dom location \Rightarrow little harm.

New Ingredient: A Partition for General (K, m)

(5)

- \succ Example for (K, m) = (10, 5):

 \succ Main difficulty: need a complicated generalization of the partition.

> Idea: define tree of regions by ordered set of inequalities between arm means.

 \succ Separate arms that *might* be top m until top m vs bottom K - m determined.

Start from the root

with no inequalities

- - {1,2,3,4,5,6,7,8,9,10}
- \rightarrow {1,2,3,4,5,6,8} >₁ {7,9,10}
- \rightarrow {1,3,5} >₂ {2,4,6,8} >₁ {7,9,10}
- $\rightarrow \{1,3,5\} >_2 \{4,8\} >_3 \{2,6\} >_1 \{7,9,10\}$
- \geq Main regions have top *m* determined. These are leaves in the tree.
- > Generalized padding layers used for separation if:
 - 1. There is a near-tie for which inequality to add next.
 - 2. We are close to a previous layer of padding.