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Motivating Example: Tensor PCA
Fix p ≥ 2. Recover signal x0 ∈ SN =

√
NSN−1 from noisy tensor observation

T = λx⊗p
0 + G (p), G (p) ∈ (RN)⊗p has i.i.d. N (0, 1) entries

E.g. x⊗20 ∈ RN×N is a matrix with (i , j) entry xixj .

Applications to topic modelling (Anandkumar-Ge-Hsu-Kakade-Telgarsky 12),
collaborative filtering, hypergraph matching (Duchenne-Bach-Kwon-Ponce 09)
Max-likelihood estimator is non-convex, random optimization problem:

xMLE = arg max
x∈SN

〈T , x⊗p〉

xMLE NP-hard even to approximate in worst case (Hillar-Lim 13)
Convex relaxations suboptimal by N(p−2)/4 factor (Montanari-Richard 14,
Hopkins-Shi-Steurer 15)
Existing frameworks leave incomplete understanding of computational limits.

What are the basic computational limits of random optimization problems?
Null model MLE is precisely optimization of a spin glass:

xnull = arg max
x∈SN

〈G (p), x⊗p〉
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Mean Field Spin Glasses

Polynomials HN : RN → R with random coefficients, e.g. random cubic

HN(σ) =
1
N

N∑
i1,i2,i3=1

gi1,i2,i3 · σi1σi2σi3 =
1
N
〈G (3),σ⊗3〉 gi1,i2,i3 ∼i.i.d. N (0, 1)

More generally, mix different degrees. For γ2, γ3, . . . ≥ 0,

HN(σ) =
P∑

p=2

γp
N(p−1)/2 〈G

(p),σ⊗p〉 G (p) ∈ (RN)⊗p i.i.d. N (0, 1)s

Gaussian process on RN with covariance

E[HN(σ)HN(ρ)] = Nξ(〈σ,ρ〉/N), ξ(q) =
P∑

p=2

γ2pq
p

ξ mixture function, determines model. Cubic above: ξ(q) = q3

Goal: optimize HN over sphere SN =
√
NSN−1
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Motivations and Connections

Origin: diluted magnetic alloys (Sherrington-Kirkpatrick 75)

Natural high-dimensional, non-convex random optimization problem

MLE for tensor PCA log-likelihood in null model (Ben Arous-Mei-Montanari-Nica 17)

Random MaxCut and MaxSAT with many constraints (Dembo-Montanari-Sen 17,

Panchenko 18)

Neural networks, high-dimensional statistics (Hopfield 82, Gardner-Derrida 87/88,

Talagrand 00/02, Choromanska-Henaff-Mathieu-Ben Arous-LeCun 15, Ding-Sun 18,

Fan-Mei-Montanari 21)
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The maximum of HN

Two basic questions for any random optimization problem:
OPT: maximum value that exists?
ALG: maximum value found by efficient algorithm?

Theorem (Parisi 82, Talagrand 06/10, Panchenko 14, Auffinger-Chen 17)

The limiting maximum value

OPT = p-lim
N→∞

1
N

max
σ∈SN

HN(σ)

exists and is given by the Parisi formula P(ξ).
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Efficient Optimization

Today’s goal: understand power of efficient algorithms A to optimize HN .
For σ = A(HN), what is max of

E =
1
N
HN(σ) ?

Gradient descent, convex optimization don’t cut it
Rich landscapes, ecN bad local maxima well below OPT (ABAČ 13, Subag 17)

Worst-case lower bounds overly pessimistic
Adversarial HN : (logc N)-approximation NP-hard (ABHKS 05, BBHKSZ 12)
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Efficient Optimization: Some Approaches

Can study specific algorithms like Langevin/Glauber dynamics

Rich literature (Cugliandolo-Kurchen 92, Ben Arous-Dembo-Guionnet 01& 06, Ben

Arous-Gheissari-Jagannath 20)

Slow mixing, stuck at threshold energy on short time scales

Can study critical points of HN

Pure p-spin models (p ≥ 3): ecN local maxima appear at value E∞ < OPT
(Auffinger-Ben Arous-Černý 13, Subag 17)

Conjectured to obstruct e.g. gradient descent

But no rigorous hardness implications
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Informal Result

We determine sharp threshold ALG for a class of Lipschitz algorithms
A Lipschitz algorithm attains ALG
No Lipschitz algorithm surpasses ALG
No known efficient algorithm surpasses ALG

Result holds for yet more general multi-species spin glasses
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Overlap Gap Property

solution geometry clustering ⇒ rigorous hardness for stable algorithms

Max independent set in random sparse graphs (Gamarnik-Sudan 14, Rahman-Virág

17, Gamarnik-Jagannath-Wein 20, Wein 20)

Random (NAE-)k-SAT (Gamarnik-Sudan 17, Bresler-Huang 21)

Hypergraph maxcut (Chen-Gamarnik-Panchenko-Rahman 19)

Symmetric binary perceptron (Gamarnik-Kızıldağ-Perkins-Xu 22)

Mean field spin glass (Gamarnik-Jagannath 19, Gamarnik-Jagannath-Wein 20)

Overlap: 〈σ,ρ〉/N ∈ [−1, 1]

Overlap gap: no high-value σ,ρ have medium overlap ∈ [ν1, ν2]

Means high-value points are either close together or far apart
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Classic OGP (Gamarnik-Sudan 14)

1 Stable algorithm A reaching E ⇒ 2 points of value E with medium overlap

Construct by partially rerandomizing A

2 Overlap gap ⇒ this pair does not exist. So A cannot reach E
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Classic OGP to Multi-OGP

Easy Impossible

ALG OPT

??? Hard by Classic OGP

Multi-OGP: more complex forbidden structure

Can we push hardness all the way to ALG?
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Star OGP (Rahman-Virág 17)
For max independent set

1 Stable algorithm A reaching E ⇒ constellation of points of value E

2 Such a constellation does not exist. So A cannot reach E
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Ladder OGP (Wein 20, Bresler-Huang 21)
For max independent set, random k-SAT

1 Stable algorithm A reaching E ⇒ constellation of points of value E

2 Such a constellation does not exist. So A cannot reach E
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Overview of Main Result (Huang-S 21, 23+)

We show that for spin glasses, Branching OGP gives tight hardness
Matches value ALG of best algorithm

Forbidden constellation is densely branching ultrametric tree
Inspired by ultrametricity of Gibbs measures eβHN (x)dx (Parisi 82, Panchenko 14,

Jagannath 17, Chatterjee-Sloman 21)

Hardness for O(1)-Lipschitz algorithms
View A as map from (g1,1, . . . , gN,N , g1,1,1, . . .) to RN (with L2 distance)
Includes:

O(1) rounds of gradient descent or any constant order method
Langevin dynamics for eβHN for O(1) time
The algorithm attaining ALG
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Branching OGP (Huang-S 21)

1 O(1)-Lipschitz algorithm A reaching E ⇒ ultrametric of points of value E

Construct from correlated Hamiltonian ensemble (more later)

2 Constellation does not exist for E = ALG + ε. So A cannot beat ALG
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The Algorithmic Threshold

Theorem (Subag 18)

An efficient algorithm finds σ such that

1
N
HN(σ) ≥ ALG ≡

∫ 1

0
ξ′′(q)1/2dq.

Theorem (Huang-S 21)

If ξ even, no O(1)-Lipschitz algorithm beats ALG with probability e−cN .

Tight answer for even models, but brittle proof using Guerra’s interpolation

Theorem (Huang-S 23+)

For all ξ, no O(1)-Lipschitz algorithm beats ALG with probability e−cN .

New proof avoids Guerra’s interpolation

Same method works for multi-species spin glasses (described later)
In these models, OPT not always known! (Because Guerra’s interpolation fails)
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Subag’s Algorithm (Hessian Ascent)

For δ = 1/D constant, x0 = 0 ∈ RN :

1 Take v t the top eigenvector of tangential Hessian ∇2HN(x t)|(x t)⊥

2 Explore with small orthogonal steps: x t+1 = x t ±
√
δNv t .

(Since v t ⊥ x t , we have ‖x t‖22 = tδN)

3 Output σ = xD ∈ SN

Can be implemented as O(1)-Lipschitz algorithm (El Alaoui-Montanari-Sellke 20)
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Analysis of Subag’s Algorithm

If ‖x‖2 =
√
qN, tangential Hessian ∇2HN(x)x⊥ has law ξ′′(q)1/2 × GOEN−1

λmax(GOE ) ≈ 2, so step t gains

HN(x t+1)− HN(x t)

N
≈ δξ′′(tδ)1/2

Summing over t = 1, . . . ,D and taking δ → 0,

1
N
HN(xD) ≈

∫ 1

0
ξ′′(q)1/2dq = ALG

Although x t depends on HN , ok by uniform lower bound on λmax(HN(x)x⊥)
for all ‖x‖2 =

√
qN
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Connection to Physics Theory

Approximate maxima of HN are ultrametric, i.e. isometric to a tree

Subag’s algorithm attains OPT iff branching occurs at all depths
Intuition: algorithm traces root-to-leaf path of tree
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Branching OGP

Subag’s algorithm reaches ALG. We next see how to show hardness beyond ALG

Mark Sellke ALG for Multi-Species Spin Glasses 19 / 35



Hierarchically Correlated Hamiltonians

Generate tree of Hamiltonians (Hu
N)u∈[k]D

k-ary
depth D

H111
N H112

N H121
N H122

N H211
N H212

N H221
N H222

N

p0

p1

p2

p3

Correlation p2 Correlation p1Correlation p0

k,D ∈ N large, 0 ≤ p0 < p1 < · · · < pD = 1

Vocab: “(Hu
N)u∈[k]D has correlation ~p = (p0, . . . , pD)"
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Lipschitz Algorithms to Ultrametric Trees

Let A be O(1)-Lipschitz

H11
N H12

N H21
N H22

N

A(Hu
N)=σu

=⇒

p0

p1

p2 σ11 σ12 σ21 σ22

q0

q1

q2

(σu)u∈[k]D is approximately ultrametric

Vocab: “(σu)u∈[k]D has geometry ~q = (q0, . . . , qD)"

χ continuous. Can choose ~p to achieve any 0 ≤ q0 < · · · < qD = 1

Mark Sellke ALG for Multi-Species Spin Glasses 21 / 35



Lipschitz Algorithms to Ultrametric Trees

Let A be O(1)-Lipschitz

Correlation p0

H11
N H12

N H21
N H22

N

A(Hu
N)=σu

=⇒

p0

p1

p2

Gaussian concentration (using A Lipschitz)

Overlap ≈ E[Overlap] = χ(p0) = q0

σ11 σ12 σ21 σ22

q0

q1

q2

(σu)u∈[k]D is approximately ultrametric

Vocab: “(σu)u∈[k]D has geometry ~q = (q0, . . . , qD)"

χ continuous. Can choose ~p to achieve any 0 ≤ q0 < · · · < qD = 1

Mark Sellke ALG for Multi-Species Spin Glasses 21 / 35



Lipschitz Algorithms to Ultrametric Trees
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Lipschitz Algorithms to Ultrametric Trees

q0

q1

q2

p0

p1

p2

Suppose Lipschitz A reaches E . Then, for any target ~q,

Exists ~p and (σu)u∈[k]D with geometry ~q, so that

1
N
Hu

N(σu) ≥ E for all u ∈ [k]D

For some ~p, there is a tree constellation with value E and geometry ~q
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The value BOGP

H11
N H12

N H21
N H22

N

Correlations ~p = (p0, . . . , pD)

σ11 σ12 σ21 σ22

Geometry ~q = (q0, . . . , qD) = (0, δ, . . . , 1)

δ = 1/D

TreeValue(~p) = p-lim
N→∞

max
(σu)

u∈[k]D

geometry ~q

1
kD

∑
u∈[k]D

1
N
Hu

N(σu)

BOGP = max
~p

TreeValue(~p)

For any ~p, there is no tree constellation with value BOGP+ ε and geometry ~q
⇒ No O(1)-Lipschitz algorithm attains BOGP + ε
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New Proof Idea: Greedy is Best

Remains to upper bound BOGP (by ALG)

Can branch Subag’s algorithm by taking top k eigenvectors
This is a multi-valued algorithm. All outputs ≈ ALG by same analysis

This tree is built in a greedy way
Main claim: best way to construct tree is greedy

“Can’t plan ahead so that my gain at 20th level is unusually big"
Proved by uniform concentration
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Uniform Concentration

Configuration x , x1, . . . , xk :

√
qN

√
q′N

√
N

Radius:

‖x‖2 =
√

qN

‖x i‖2 =
√

q′N

Increment orthogonality:

x i − x ⊥ x j − x ⊥ x

F (x) = max
x1,...,xk

1
kN

k∑
i=1

(HN(x i )− HN(x))

“Improvement in HN from x to its children"

Lemma (Uniform Concentration, cf. Subag 18)

For any η > 0, for sufficiently large k ≥ k0(η),

P
[
|F (x)− EF (x)| ≤ η ∀‖x‖2 =

√
qN

]
≥ 1− e−cN

No ‖x‖2 =
√
qN is unusually good for building

a tree, so might as well be greedy.
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Upper Bounding the Tree Value

Let interior σu be recursive barycenters:
σu = 1

k

∑k
i=1 σ

ui

σ11 σ12 σ21 σ22

σ1 σ2

σ∅q0

q1

q2

Satisfy orthogonality relations
approximately if k large:

‖σu‖2 ≈
√

q|u|N

σui − σu ⊥σuj − σu ⊥ σu

Suppose first all Hu
N identical. (~p = ~1)

Want to upper bound tree value:

1
kD

∑
u∈[k]D

1
N
HN(σ

u)

Write as sum of claw increments

1
kN

k∑
i=1

(
HN(σ

ui )− HN(σ
u)
)
≤ F (σu)

F (σu) ≈ EF (σu) by uniform concentration!

Level-d increments match Subag’s algorithm

General ~p: similarly bound

1
kN

k∑
i=1

(Hui
N (σui )− Hu

N(σ
u))
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Branching OGP is Necessary for Tight Hardness

Easy Impossible

ALG OPT

Hard by Branching OGP

Theorem (Huang-S 21)

If an ultrametric constellation is forbidden at value ALG + ε, it must contain a
complete binary subtree of diverging depth as ε→ 0.
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Multi-Species Spin Glasses

Up to now: polynomials in variables x1, . . . , xN that all look alike

Multi-species models: multiple “variable types" xi , yi , zi , . . .

Coefficients of xixj , xiyj , xiyjzk have different variances

Example: bipartite SK model

HN(x , y) =
1√
N
〈Gx , y〉, G ∈ RN×N i.i.d. N (0, 1) entries

or higher-order polynomials

HN(x , y) =
1
N
〈G , x⊗3〉+

1
N
〈G ′, x ⊗ y⊗2〉, G ,G ′ ∈ (RN)⊗3
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Multi-Species Spin Glasses

Formally, each coordinate part of a species s ∈ S = {1, . . . , r}

[N] = I1 ∪ · · · ∪ Ir , |Is | = λsN

Interaction weights γ2, γ3, . . . now (γs1,s2)s1,s2∈S , (γs1,s2,s3)s1,s2,s3∈S , . . .

ξ now multivariate polynomial in (q1, . . . , qr )

Goal: optimize HN over product of spheres

TN =
{
σ ∈ RN : ‖σ|Is‖

2
2 = λsN ∀s ∈ S

}

OPT known for convex or pure ξ (Panchenko 15, Subag 21, Bates-Sohn 22)

ALG has richer behavior than in one species
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Multi-Species Algorithms

Optimizing on product of spheres ⇒ track radius for each species

2 species: radius schedule is up-right path from (0, 0) to (1, 1)

In general, radius schedule is coordinate-increasing Φ : [0, 1]→ [0, 1]S

Each Φ gives algorithm taking small orthogonal steps in each species
Algorithm value

A(Φ) ≡
∑
s∈S

λs

∫ 1

0

√
(∂qs ξ ◦ Φ)′(q)Φ′s(q) dq
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Multi-Species Algorithmic Threshold

Theorem (Huang-S 23+)

Define

ALG = sup
Φ:[0,1]→[0,1]S

increasing, differentiable

∑
s∈S

λs

∫ 1

0

√
(∂qs ξ ◦ Φ)′(q)Φ′s(q) dq

An explicit O(1)-Lipschitz algorithm achieves ALG w.h.p.
No O(1)-Lipschitz algorithm beats ALG with probability e−cN .

(More general threshold with external fields too)

Theorem (Huang-S 23+)

The variational formula has a maximizer Φ, which solves an explicit ODE.
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Variational Problem Example

Consider (λ1, λ2) = (1/3, 2/3) and

ξ(q1, q2) = (λ1q1)2 + (λ1q1)(λ2q1) + (λ2q1)2 + (λ1q1)4 + (λ1q1)(λ2q2)3

Some ODE solutions. Optimal Φ : [0, 1]→ [0, 1]2 in bold
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Algorithmic Symmetry Breaking

Optimal Φ may be asymmetric, even when model is symmetric!

λ1 = λ2 =
1
2
, ξ(q1, q2) = (3q1)2 + (3q1)(3q2) + (3q2)2 + (3q1)4 + (3q2)4

The plot thickens...
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Pure Multi-Species Models

Models where
ξ(q1, . . . , qr ) = qa1

1 qa2
2 · · · q

ar
r

Example: bipartite SK ξ(q1, q2) = q1q2

Optimal Φ is polynomial

Φ(q) = (qb1 , . . . , qbr )

In this case, ALG = E∞ has explicit non-variational formula.
Langevin dynamics is believed to reach the same threshold!
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Summary

We determine algorithmic threshold of O(1)-Lipschitz algorithms for
optimizing multi-species spherical spin glasses

Branching OGP matches Subag algorithm for generic reason

Geometric description of ALG: largest value whose super-level set contains
densely-branching ultrametric tree

Optimal algorithms climb this tree
Absence of this tree implies hardness by BOGP

Comparison with OPT ultrametricity: ALG trees must branch continuously,
OPT trees may not

Thank you!
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Models with Linear Terms

Suppose model has 1-spin interaction (external field)

HN(σ) =
P∑

p=1

γp
N(p−1)/2 〈G

(p),σ⊗p〉 ξ(q) =
P∑

p=1

γ2pq
p

Then

ALG = BOGP = sup
p:[0,1]→[0,1]

increasing, differentiable

∫ 1

0

√
(pξ′)′(q) dq

Optimal p for ξ(q) = q4 + q
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Multi-Species Algorithmic Threshold with Linear Terms

Theorem (Huang-S 23+)

Define

ALG = sup
p:[0,1]→[0,1]

Φ:[0,1]→[0,1]S

increasing, differentiable

∑
s∈S

λs

∫ 1

0

√
(p × ∂qs ξ ◦ Φ)′(q)Φ′s(q) dq

An explicit O(1)-Lipschitz algorithm achieves ALG w.h.p.
No O(1)-Lipschitz algorithm beats ALG with probability e−cN

Theorem (Huang-S 23+)

This variational problem has a maximizer (p,Φ).
The maximizer solves an explicit ODE.
If ξ has no 1-spin interactions, then p ≡ 1.
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Variational Problem Example: No Linear Term

Consider (λ1, λ2) = (1/3, 2/3)

ξ(q1, q2) = (λ1q1)2 + (λ1q1)(λ2q1) + (λ2q1)2 + (λ1q1)4 + (λ1q1)(λ2q2)3

Optimal p : [0, 1]→ [0, 1] Image of optimal Φ : [0, 1]→ [0, 1]2 in bold
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Variational Problem Example: Small Linear Term

Consider (λ1, λ2) = (1/3, 2/3)

ξ(q1, q2) = (λ1q1)2 + (λ1q1)(λ2q1) + (λ2q1)2 + (λ1q1)4 + (λ1q1)(λ2q2)3

+ 0.05(λ1q1) + 0.5(λ2q2)

Optimal p : [0, 1]→ [0, 1] Image of optimal Φ : [0, 1]→ [0, 1]2 in bold
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Variational Problem Example: Large Linear Term

Consider (λ1, λ2) = (1/3, 2/3)

ξ(q1, q2) = (λ1q1)2 + (λ1q1)(λ2q1) + (λ2q1)2 + (λ1q1)4 + (λ1q1)(λ2q2)3

+ 0.2(λ1q1) + 1.8(λ2q2)

Optimal p : [0, 1]→ [0, 1] Image of optimal Φ : [0, 1]→ [0, 1]2
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