Algorithmic Threshold for Multi-Species Spin Glasses

Mark Sellke

University of Waterloo Statistics and Actuarial Science Seminar Joint work with Brice Huang (MIT)

Motivating Example: Tensor PCA

Fix $p \geq 2$. Recover signal $x_{0} \in S_{N}=\sqrt{N} \mathbb{S}^{N-1}$ from noisy tensor observation

$$
\boldsymbol{T}=\lambda x_{0}^{\otimes p}+\boldsymbol{G}^{(p)}, \quad \boldsymbol{G}^{(p)} \in\left(\mathbb{R}^{N}\right)^{\otimes p} \text { has i.i.d. } \mathcal{N}(0,1) \text { entries }
$$

- E.g. $x_{0}^{\otimes 2} \in \mathbb{R}^{N \times N}$ is a matrix with (i, j) entry $x_{i} x_{j}$.

Motivating Example: Tensor PCA

Fix $p \geq 2$. Recover signal $x_{0} \in S_{N}=\sqrt{N} \mathbb{S}^{N-1}$ from noisy tensor observation

$$
\boldsymbol{T}=\lambda x_{0}^{\otimes p}+\boldsymbol{G}^{(p)}, \quad \boldsymbol{G}^{(p)} \in\left(\mathbb{R}^{N}\right)^{\otimes p} \text { has i.i.d. } \mathcal{N}(0,1) \text { entries }
$$

- E.g. $x_{0}^{\otimes 2} \in \mathbb{R}^{N \times N}$ is a matrix with (i, j) entry $x_{i} x_{j}$.
- Applications to topic modelling (Anandkumar-Ge-Hsu-Kakade-Telgarsky 12), collaborative filtering, hypergraph matching (Duchenne-Bach-Kwon-Ponce 09)

Motivating Example: Tensor PCA

Fix $p \geq 2$. Recover signal $x_{0} \in S_{N}=\sqrt{N} \mathbb{S}^{N-1}$ from noisy tensor observation

$$
\boldsymbol{T}=\lambda x_{0}^{\otimes p}+\boldsymbol{G}^{(p)}, \quad \boldsymbol{G}^{(p)} \in\left(\mathbb{R}^{N}\right)^{\otimes p} \text { has i.i.d. } \mathcal{N}(0,1) \text { entries }
$$

- E.g. $x_{0}^{\otimes 2} \in \mathbb{R}^{N \times N}$ is a matrix with (i, j) entry $x_{i} x_{j}$.
- Applications to topic modelling (Anandkumar-Ge-Hsu-Kakade-Telgarsky 12), collaborative filtering, hypergraph matching (Duchenne-Bach-Kwon-Ponce 09)
- Max-likelihood estimator is non-convex, random optimization problem:

$$
\boldsymbol{x}^{M L E}=\underset{\boldsymbol{x} \in S_{N}}{\arg \max }\left\langle\boldsymbol{T}, \boldsymbol{x}^{\otimes p}\right\rangle
$$

Motivating Example: Tensor PCA

Fix $p \geq 2$. Recover signal $x_{0} \in S_{N}=\sqrt{N} \mathbb{S}^{N-1}$ from noisy tensor observation

$$
\boldsymbol{T}=\lambda \boldsymbol{x}_{0}^{\otimes p}+\boldsymbol{G}^{(p)}, \quad \boldsymbol{G}^{(p)} \in\left(\mathbb{R}^{N}\right)^{\otimes p} \text { has i.i.d. } \mathcal{N}(0,1) \text { entries }
$$

- E.g. $x_{0}^{\otimes 2} \in \mathbb{R}^{N \times N}$ is a matrix with (i, j) entry $x_{i} x_{j}$.
- Applications to topic modelling (Anandkumar-Ge-Hsu-Kakade-Telgarsky 12), collaborative filtering, hypergraph matching (Duchenne-Bach-Kwon-Ponce 09)
- Max-likelihood estimator is non-convex, random optimization problem:

$$
\boldsymbol{x}^{M L E}=\underset{\boldsymbol{x} \in S_{N}}{\arg \max }\left\langle\boldsymbol{T}, \boldsymbol{x}^{\otimes p}\right\rangle
$$

- $\boldsymbol{x}^{\text {MLE }}$ NP-hard even to approximate in worst case (Hillar-Lim 13)

Motivating Example: Tensor PCA

Fix $p \geq 2$. Recover signal $x_{0} \in S_{N}=\sqrt{N} \mathbb{S}^{N-1}$ from noisy tensor observation

$$
\boldsymbol{T}=\lambda \boldsymbol{x}_{0}^{\otimes p}+\boldsymbol{G}^{(p)}, \quad \boldsymbol{G}^{(p)} \in\left(\mathbb{R}^{N}\right)^{\otimes p} \text { has i.i.d. } \mathcal{N}(0,1) \text { entries }
$$

- E.g. $\boldsymbol{x}_{0}^{\otimes 2} \in \mathbb{R}^{N \times N}$ is a matrix with (i, j) entry $x_{i} x_{j}$.
- Applications to topic modelling (Anandkumar-Ge-Hsu-Kakade-Telgarsky 12), collaborative filtering, hypergraph matching (Duchenne-Bach-Kwon-Ponce 09)
- Max-likelihood estimator is non-convex, random optimization problem:

$$
\boldsymbol{x}^{M L E}=\underset{\boldsymbol{x} \in S_{N}}{\arg \max }\left\langle\boldsymbol{T}, \boldsymbol{x}^{\otimes p}\right\rangle
$$

- $\boldsymbol{x}^{\text {MLE }}$ NP-hard even to approximate in worst case (Hillar-Lim 13)
- Convex relaxations suboptimal by $N^{(p-2) / 4}$ factor (Montanari-Richard 14, Hopkins-Shi-Steurer 15)

Motivating Example: Tensor PCA

Fix $p \geq 2$. Recover signal $x_{0} \in S_{N}=\sqrt{N} \mathbb{S}^{N-1}$ from noisy tensor observation

$$
\boldsymbol{T}=\lambda \boldsymbol{x}_{0}^{\otimes p}+\boldsymbol{G}^{(p)}, \quad \boldsymbol{G}^{(p)} \in\left(\mathbb{R}^{N}\right)^{\otimes p} \text { has i.i.d. } \mathcal{N}(0,1) \text { entries }
$$

- E.g. $x_{0}^{\otimes 2} \in \mathbb{R}^{N \times N}$ is a matrix with (i, j) entry $x_{i} x_{j}$.
- Applications to topic modelling (Anandkumar-Ge-Hsu-Kakade-Telgarsky 12), collaborative filtering, hypergraph matching (Duchenne-Bach-Kwon-Ponce 09)
- Max-likelihood estimator is non-convex, random optimization problem:

$$
\boldsymbol{x}^{M L E}=\underset{\boldsymbol{x} \in S_{N}}{\arg \max }\left\langle\boldsymbol{T}, \boldsymbol{x}^{\otimes p}\right\rangle
$$

- $x^{M L E}$ NP-hard even to approximate in worst case (Hillar-Lim 13)
- Convex relaxations suboptimal by $N^{(p-2) / 4}$ factor (Montanari-Richard 14, Hopkins-Shi-Steurer 15)
- Existing frameworks leave incomplete understanding of computational limits.

Motivating Example: Tensor PCA

Fix $p \geq 2$. Recover signal $x_{0} \in S_{N}=\sqrt{N} \mathbb{S}^{N-1}$ from noisy tensor observation

$$
\boldsymbol{T}=\lambda \boldsymbol{x}_{0}^{\otimes p}+\boldsymbol{G}^{(p)}, \quad \boldsymbol{G}^{(p)} \in\left(\mathbb{R}^{N}\right)^{\otimes p} \text { has i.i.d. } \mathcal{N}(0,1) \text { entries }
$$

- E.g. $x_{0}^{\otimes 2} \in \mathbb{R}^{N \times N}$ is a matrix with (i, j) entry $x_{i} x_{j}$.
- Applications to topic modelling (Anandkumar-Ge-Hsu-Kakade-Telgarsky 12), collaborative filtering, hypergraph matching (Duchenne-Bach-Kwon-Ponce 09)
- Max-likelihood estimator is non-convex, random optimization problem:

$$
\boldsymbol{x}^{M L E}=\underset{\boldsymbol{x} \in S_{N}}{\arg \max }\left\langle\boldsymbol{T}, \boldsymbol{x}^{\otimes p}\right\rangle
$$

- $x^{M L E}$ NP-hard even to approximate in worst case (Hillar-Lim 13)
- Convex relaxations suboptimal by $N^{(p-2) / 4}$ factor (Montanari-Richard 14, Hopkins-Shi-Steurer 15)
- Existing frameworks leave incomplete understanding of computational limits. What are the basic computational limits of random optimization problems?

Motivating Example: Tensor PCA

Fix $p \geq 2$. Recover signal $x_{0} \in S_{N}=\sqrt{N} \mathbb{S}^{N-1}$ from noisy tensor observation

$$
\boldsymbol{T}=\lambda \boldsymbol{x}_{0}^{\otimes p}+\boldsymbol{G}^{(p)}, \quad \boldsymbol{G}^{(p)} \in\left(\mathbb{R}^{N}\right)^{\otimes p} \text { has i.i.d. } \mathcal{N}(0,1) \text { entries }
$$

- E.g. $x_{0}^{\otimes 2} \in \mathbb{R}^{N \times N}$ is a matrix with (i, j) entry $x_{i} x_{j}$.
- Applications to topic modelling (Anandkumar-Ge-Hsu-Kakade-Telgarsky 12), collaborative filtering, hypergraph matching (Duchenne-Bach-Kwon-Ponce 09)
- Max-likelihood estimator is non-convex, random optimization problem:

$$
\boldsymbol{x}^{M L E}=\underset{\boldsymbol{x} \in S_{N}}{\arg \max }\left\langle\boldsymbol{T}, \boldsymbol{x}^{\otimes p}\right\rangle
$$

- $x^{M L E}$ NP-hard even to approximate in worst case (Hillar-Lim 13)
- Convex relaxations suboptimal by $N^{(p-2) / 4}$ factor (Montanari-Richard 14, Hopkins-Shi-Steurer 15)
- Existing frameworks leave incomplete understanding of computational limits. What are the basic computational limits of random optimization problems?
- Null model MLE is precisely optimization of a spin glass:

$$
\boldsymbol{x}^{\text {null }}=\underset{\boldsymbol{x} \in S_{N}}{\arg \max }\left\langle\boldsymbol{G}^{(p)}, \boldsymbol{x}^{\otimes p}\right\rangle
$$

Mean Field Spin Glasses

Polynomials $H_{N}: \mathbb{R}^{N} \rightarrow \mathbb{R}$ with random coefficients, e.g. random cubic

$$
H_{N}(\boldsymbol{\sigma})=\frac{1}{N} \sum_{i_{1}, i_{2}, i_{3}=1}^{N} g_{i_{1}, i_{2}, i_{3}} \cdot \sigma_{i_{1}} \sigma_{i_{2}} \sigma_{i_{3}}
$$

$$
g_{i_{1}, i_{2}, i_{3}} \underset{\text { i.i.d. }}{\sim} \mathcal{N}(0,1)
$$

Mean Field Spin Glasses

Polynomials $H_{N}: \mathbb{R}^{N} \rightarrow \mathbb{R}$ with random coefficients, e.g. random cubic

$$
H_{N}(\boldsymbol{\sigma})=\frac{1}{N} \sum_{i_{1}, i_{2}, i_{3}=1}^{N} g_{i_{1}, i_{2}, i_{3}} \cdot \sigma_{i_{1}} \sigma_{i_{2}} \sigma_{i_{3}}=\frac{1}{N}\left\langle\boldsymbol{G}^{(3)}, \boldsymbol{\sigma}^{\otimes 3}\right\rangle \quad g_{i_{1}, i_{2}, i_{3}} \underset{\text { i.i.d. }}{\sim} \mathcal{N}(0,1)
$$

Mean Field Spin Glasses

Polynomials $H_{N}: \mathbb{R}^{N} \rightarrow \mathbb{R}$ with random coefficients, e.g. random cubic

$$
H_{N}(\boldsymbol{\sigma})=\frac{1}{N} \sum_{i_{1}, i_{2}, i_{3}=1}^{N} g_{i_{1}, i_{2}, i_{3}} \cdot \sigma_{i_{1}} \sigma_{i_{2}} \sigma_{i_{3}}=\frac{1}{N}\left\langle\boldsymbol{G}^{(3)}, \boldsymbol{\sigma}^{\otimes 3}\right\rangle \quad g_{i_{1}, i_{2}, i_{3}} \underset{\text { i.i.d. }}{\sim} \mathcal{N}(0,1)
$$

More generally, mix different degrees. For $\gamma_{2}, \gamma_{3}, \ldots \geq 0$,

$$
H_{N}(\boldsymbol{\sigma})=\sum_{p=2}^{P} \frac{\gamma_{p}}{N^{(p-1) / 2}}\left\langle\boldsymbol{G}^{(p)}, \boldsymbol{\sigma}^{\otimes p}\right\rangle \quad \boldsymbol{G}^{(p)} \in\left(\mathbb{R}^{N}\right)^{\otimes p} \text { i.i.d. } \mathcal{N}(0,1) \mathrm{s}
$$

Mean Field Spin Glasses

Polynomials $H_{N}: \mathbb{R}^{N} \rightarrow \mathbb{R}$ with random coefficients, e.g. random cubic

$$
H_{N}(\boldsymbol{\sigma})=\frac{1}{N} \sum_{i_{1}, i_{2}, i_{3}=1}^{N} g_{i_{1}, i_{2}, i_{3}} \cdot \sigma_{i_{1}} \sigma_{i_{2}} \sigma_{i_{3}}=\frac{1}{N}\left\langle\boldsymbol{G}^{(3)}, \boldsymbol{\sigma}^{\otimes 3}\right\rangle \quad g_{i_{1}, i_{2}, i_{3}} \sim \mathcal{\text { i.i.d. }} \sim \mathcal{N}(0,1)
$$

More generally, mix different degrees. For $\gamma_{2}, \gamma_{3}, \ldots \geq 0$,

$$
H_{N}(\boldsymbol{\sigma})=\sum_{p=2}^{P} \frac{\gamma_{p}}{N^{(p-1) / 2}}\left\langle\boldsymbol{G}^{(p)}, \boldsymbol{\sigma}^{\otimes p}\right\rangle \quad \boldsymbol{G}^{(p)} \in\left(\mathbb{R}^{N}\right)^{\otimes p} \text { i.i.d. } \mathcal{N}(0,1) \mathrm{s}
$$

Gaussian process on \mathbb{R}^{N} with covariance

$$
\mathbb{E}\left[H_{N}(\boldsymbol{\sigma}) H_{N}(\boldsymbol{\rho})\right]=N \xi(\langle\boldsymbol{\sigma}, \boldsymbol{\rho}\rangle / N), \quad \xi(q)=\sum_{p=2}^{P} \gamma_{p}^{2} q^{p}
$$

Mean Field Spin Glasses

Polynomials $H_{N}: \mathbb{R}^{N} \rightarrow \mathbb{R}$ with random coefficients, e.g. random cubic

$$
H_{N}(\boldsymbol{\sigma})=\frac{1}{N} \sum_{i_{1}, i_{2}, i_{3}=1}^{N} g_{i_{1}, i_{2}, i_{3}} \cdot \sigma_{i_{1}} \sigma_{i_{2}} \sigma_{i_{3}}=\frac{1}{N}\left\langle\boldsymbol{G}^{(3)}, \boldsymbol{\sigma}^{\otimes 3}\right\rangle \quad g_{i_{1}, i_{2}, i_{3}} \underset{\text { i.i.d. }}{\sim} \mathcal{N}(0,1)
$$

More generally, mix different degrees. For $\gamma_{2}, \gamma_{3}, \ldots \geq 0$,

$$
H_{N}(\boldsymbol{\sigma})=\sum_{p=2}^{P} \frac{\gamma_{p}}{N^{(p-1) / 2}}\left\langle\boldsymbol{G}^{(p)}, \boldsymbol{\sigma}^{\otimes p}\right\rangle \quad \boldsymbol{G}^{(p)} \in\left(\mathbb{R}^{N}\right)^{\otimes p} \text { i.i.d. } \mathcal{N}(0,1) \mathrm{s}
$$

Gaussian process on \mathbb{R}^{N} with covariance

$$
\mathbb{E}\left[H_{N}(\boldsymbol{\sigma}) H_{N}(\boldsymbol{\rho})\right]=N \xi(\langle\boldsymbol{\sigma}, \boldsymbol{\rho}\rangle / N), \quad \xi(q)=\sum_{p=2}^{P} \gamma_{p}^{2} q^{p}
$$

ξ mixture function, determines model. Cubic above: $\xi(q)=q^{3}$

Mean Field Spin Glasses

Polynomials $H_{N}: \mathbb{R}^{N} \rightarrow \mathbb{R}$ with random coefficients, e.g. random cubic

$$
H_{N}(\boldsymbol{\sigma})=\frac{1}{N} \sum_{i_{1}, i_{2}, i_{3}=1}^{N} g_{i_{1}, i_{2}, i_{3}} \cdot \sigma_{i_{1}} \sigma_{i_{2}} \sigma_{i_{3}}=\frac{1}{N}\left\langle\boldsymbol{G}^{(3)}, \boldsymbol{\sigma}^{\otimes 3}\right\rangle \quad g_{i_{1}, i_{2}, i_{3}} \underset{\text { i.i.d. }}{\sim} \mathcal{N}(0,1)
$$

More generally, mix different degrees. For $\gamma_{2}, \gamma_{3}, \ldots \geq 0$,

$$
H_{N}(\boldsymbol{\sigma})=\sum_{p=2}^{P} \frac{\gamma_{p}}{N^{(p-1) / 2}}\left\langle\boldsymbol{G}^{(p)}, \boldsymbol{\sigma}^{\otimes p}\right\rangle \quad \boldsymbol{G}^{(p)} \in\left(\mathbb{R}^{N}\right)^{\otimes p} \text { i.i.d. } \mathcal{N}(0,1) \mathrm{s}
$$

Gaussian process on \mathbb{R}^{N} with covariance

$$
\mathbb{E}\left[H_{N}(\boldsymbol{\sigma}) H_{N}(\boldsymbol{\rho})\right]=N \xi(\langle\boldsymbol{\sigma}, \boldsymbol{\rho}\rangle / N), \quad \xi(q)=\sum_{p=2}^{P} \gamma_{p}^{2} q^{p}
$$

ξ mixture function, determines model. Cubic above: $\xi(q)=q^{3}$
Goal: optimize H_{N} over sphere $S_{N}=\sqrt{N} S^{N-1}$

Motivations and Connections

- Origin: diluted magnetic alloys (Sherrington-Kirkpatrick 75)

Motivations and Connections

- Origin: diluted magnetic alloys (Sherrington-Kirkpatrick 75)
- Natural high-dimensional, non-convex random optimization problem

Motivations and Connections

- Origin: diluted magnetic alloys (Sherrington-Kirkpatrick 75)
- Natural high-dimensional, non-convex random optimization problem
- MLE for tensor PCA log-likelihood in null model (Ben Arous-Mei-Montanari-Nica 17)

Motivations and Connections

- Origin: diluted magnetic alloys (Sherrington-Kirkpatrick 75)
- Natural high-dimensional, non-convex random optimization problem
- MLE for tensor PCA log-likelihood in null model (Ben Arous-Mei-Montanari-Nica 17)
- Random MaxCut and MaxSAT with many constraints (Dembo-Montanari-Sen 17, Panchenko 18)

Motivations and Connections

- Origin: diluted magnetic alloys (Sherrington-Kirkpatrick 75)
- Natural high-dimensional, non-convex random optimization problem
- MLE for tensor PCA log-likelihood in null model (Ben Arous-Mei-Montanari-Nica 17)
- Random MaxCut and MaxSAT with many constraints (Dembo-Montanari-Sen 17, Panchenko 18)
- Neural networks, high-dimensional statistics (Hopfield 82, Gardner-Derrida 87/88, Talagrand 00/02, Choromanska-Henaff-Mathieu-Ben Arous-LeCun 15, Ding-Sun 18, Fan-Mei-Montanari 21)

The maximum of H_{N}

Two basic questions for any random optimization problem:

- OPT: maximum value that exists?
- ALG: maximum value found by efficient algorithm?

The maximum of H_{N}

Two basic questions for any random optimization problem:

- OPT: maximum value that exists?
- ALG: maximum value found by efficient algorithm?

Theorem (Parisi 82, Talagrand 06/10, Panchenko 14, Auffinger-Chen 17)
The limiting maximum value

$$
\mathrm{OPT}=\mathrm{p}-\lim \frac{1}{N \rightarrow \infty} \max _{\sigma \in S_{N}} H_{N}(\sigma)
$$

exists and is given by the Parisi formula $\mathrm{P}(\xi)$.

Efficient Optimization

- Today's goal: understand power of efficient algorithms \mathcal{A} to optimize H_{N}. For $\sigma=\mathcal{A}\left(H_{N}\right)$, what is max of

$$
E=\frac{1}{N} H_{N}(\sigma) ?
$$

Efficient Optimization

- Today's goal: understand power of efficient algorithms \mathcal{A} to optimize H_{N}. For $\sigma=\mathcal{A}\left(H_{N}\right)$, what is max of

$$
E=\frac{1}{N} H_{N}(\sigma) ?
$$

- Gradient descent, convex optimization don't cut it \because
- Rich landscapes, $e^{c N}$ bad local maxima well below OPT (ABAČ 13, Subag 17)

Efficient Optimization

- Today's goal: understand power of efficient algorithms \mathcal{A} to optimize H_{N}. For $\sigma=\mathcal{A}\left(H_{N}\right)$, what is max of

$$
E=\frac{1}{N} H_{N}(\sigma) ?
$$

- Gradient descent, convex optimization don't cut it \because
- Rich landscapes, $e^{c N}$ bad local maxima well below OPT (ABAČ 13, Subag 17)

- Worst-case lower bounds overly pessimistic \because
- Adversarial $H_{N}:\left(\log ^{c} N\right)$-approximation NP-hard (ABHKS 05, BBHKSZ 12)

Efficient Optimization: Some Approaches

Can study specific algorithms like Langevin/Glauber dynamics

Efficient Optimization: Some Approaches

Can study specific algorithms like Langevin/Glauber dynamics

- Rich literature (Cugliandolo-Kurchen 92, Ben Arous-Dembo-Guionnet 01\& 06, Ben Arous-Gheissari-Jagannath 20)
- Slow mixing, stuck at threshold energy on short time scales

Efficient Optimization: Some Approaches

Can study specific algorithms like Langevin/Glauber dynamics

- Rich literature (Cugliandolo-Kurchen 92, Ben Arous-Dembo-Guionnet 01\& 06, Ben Arous-Gheissari-Jagannath 20)
- Slow mixing, stuck at threshold energy on short time scales

Can study critical points of H_{N}

Efficient Optimization: Some Approaches

Can study specific algorithms like Langevin/Glauber dynamics

- Rich literature (Cugliandolo-Kurchen 92, Ben Arous-Dembo-Guionnet 01\& 06, Ben Arous-Gheissari-Jagannath 20)
- Slow mixing, stuck at threshold energy on short time scales

Can study critical points of H_{N}

- Pure p-spin models $(p \geq 3): e^{c N}$ local maxima appear at value $E_{\infty}<$ OPT (Auffinger-Ben Arous-Černy 13, Subag 17)
- Conjectured to obstruct e.g. gradient descent
- But no rigorous hardness implications

Informal Result

We determine sharp threshold ALG for a class of Lipschitz algorithms

- A Lipschitz algorithm attains ALG
- No Lipschitz algorithm surpasses ALG
- No known efficient algorithm surpasses ALG

Informal Result

We determine sharp threshold ALG for a class of Lipschitz algorithms

- A Lipschitz algorithm attains ALG
- No Lipschitz algorithm surpasses ALG
- No known efficient algorithm surpasses ALG

Result holds for yet more general multi-species spin glasses

Overlap Gap Property

solution geometry clustering \Rightarrow rigorous hardness for stable algorithms

Overlap Gap Property

solution geometry clustering \Rightarrow rigorous hardness for stable algorithms

- Max independent set in random sparse graphs (Gamarnik-Sudan 14, Rahman-Virág 17, Gamarnik-Jagannath-Wein 20, Wein 20)
- Random (NAE-)k-SAT (Gamarnik-Sudan 17, Bresler-Huang 21)
- Hypergraph maxcut (Chen-Gamarnik-Panchenko-Rahman 19)
- Symmetric binary perceptron (Gamarnik-Kızıldağ-Perkins-Xu 22)
- Mean field spin glass (Gamarnik-Jagannath 19, Gamarnik-Jagannath-Wein 20)

Overlap Gap Property

- solution geometry clustering \Rightarrow rigorous hardness for stable algorithms
- Max independent set in random sparse graphs (Gamarnik-Sudan 14, Rahman-Virág 17, Gamarnik-Jagannath-Wein 20, Wein 20)
- Random (NAE-)k-SAT (Gamarnik-Sudan 17, Bresler-Huang 21)
- Hypergraph maxcut (Chen-Gamarnik-Panchenko-Rahman 19)
- Symmetric binary perceptron (Gamarnik-Kızldağ-Perkins-Xu 22)
- Mean field spin glass (Gamarnik-Jagannath 19, Gamarnik-Jagannath-Wein 20)

Overlap: $\langle\boldsymbol{\sigma}, \boldsymbol{\rho}\rangle / N \in[-1,1]$
Overlap gap: no high-value $\boldsymbol{\sigma}, \boldsymbol{\rho}$ have medium overlap $\in\left[\nu_{1}, \nu_{2}\right]$

- Means high-value points are either close together or far apart

Classic OGP (Gamarnik-Sudan 14)

(1) Stable algorithm \mathcal{A} reaching $E \Rightarrow 2$ points of value E with medium overlap

Construct by partially rerandomizing \mathcal{A}

Classic OGP (Gamarnik-Sudan 14)

(1) Stable algorithm \mathcal{A} reaching $E \Rightarrow 2$ points of value E with medium overlap

Construct by partially rerandomizing \mathcal{A}
(2) Overlap gap \Rightarrow this pair does not exist. So \mathcal{A} cannot reach E

Classic OGP to Multi-OGP

Classic OGP to Multi-OGP

Multi-OGP: more complex forbidden structure

Classic OGP to Multi-OGP

Multi-OGP: more complex forbidden structure

Classic OGP to Multi-OGP

Multi-OGP: more complex forbidden structure
Can we push hardness all the way to ALG?

Star OGP (Rahman-Virág 17)

For max independent set
(1) Stable algorithm \mathcal{A} reaching $E \Rightarrow$ constellation of points of value E

(2) Such a constellation does not exist. So \mathcal{A} cannot reach E

Ladder OGP (Wein 20, Bresler-Huang 21)

For max independent set, random k-SAT
(1) Stable algorithm \mathcal{A} reaching $E \Rightarrow$ constellation of points of value E

(2) Such a constellation does not exist. So \mathcal{A} cannot reach E

Overview of Main Result (Huang-S 21, 23+)

- We show that for spin glasses, Branching OGP gives tight hardness
- Matches value ALG of best algorithm

Overview of Main Result (Huang-S 21, 23+)

- We show that for spin glasses, Branching OGP gives tight hardness
- Matches value ALG of best algorithm
- Forbidden constellation is densely branching ultrametric tree
- Inspired by ultrametricity of Gibbs measures $e^{\beta H_{N}(x)} \mathrm{d} \boldsymbol{x}$ (Parisi 82, Panchenko 14, Jagannath 17, Chatterjee-Sloman 21)

Overview of Main Result (Huang-S 21, 23+)

- We show that for spin glasses, Branching OGP gives tight hardness
- Matches value ALG of best algorithm
- Forbidden constellation is densely branching ultrametric tree
- Inspired by ultrametricity of Gibbs measures $e^{\beta H_{N}(x)} d \boldsymbol{x}$ (Parisi 82, Panchenko 14, Jagannath 17, Chatterjee-Sloman 21)

- Hardness for $O(1)$-Lipschitz algorithms
- View \mathcal{A} as map from ($g_{1,1}, \ldots, g_{N, N}, g_{1,1,1}, \ldots$) to \mathbb{R}^{N} (with L^{2} distance)

Overview of Main Result (Huang-S 21, 23+)

- We show that for spin glasses, Branching OGP gives tight hardness
- Matches value ALG of best algorithm
- Forbidden constellation is densely branching ultrametric tree
- Inspired by ultrametricity of Gibbs measures $e^{\beta H_{N}(x)} d \boldsymbol{x}$ (Parisi 82, Panchenko 14, Jagannath 17, Chatterjee-Sloman 21)

- Hardness for $O(1)$-Lipschitz algorithms
- View \mathcal{A} as map from ($g_{1,1}, \ldots, g_{N, N}, g_{1,1,1}, \ldots$) to \mathbb{R}^{N} (with L^{2} distance)
- Includes:
- $O(1)$ rounds of gradient descent or any constant order method
- Langevin dynamics for $e^{\beta H_{N}}$ for $O(1)$ time
- The algorithm attaining ALG

Branching OGP (Huang-S 21)

(1) O (1)-Lipschitz algorithm \mathcal{A} reaching $E \Rightarrow$ ultrametric of points of value E

Construct from correlated Hamiltonian ensemble (more later)

Branching OGP (Huang-S 21)

(1) O (1)-Lipschitz algorithm \mathcal{A} reaching $E \Rightarrow$ ultrametric of points of value E

Construct from correlated Hamiltonian ensemble (more later)
(2) Constellation does not exist for $E=\mathrm{ALG}+\varepsilon$. So \mathcal{A} cannot beat ALG

The Algorithmic Threshold

Theorem (Subag 18)
An efficient algorithm finds σ such that

$$
\frac{1}{N} H_{N}(\sigma) \geq \mathrm{ALG} \equiv \int_{0}^{1} \xi^{\prime \prime}(q)^{1 / 2} \mathrm{~d} q
$$

The Algorithmic Threshold

Theorem (Subag 18)
An efficient algorithm finds σ such that

$$
\frac{1}{N} H_{N}(\sigma) \geq \mathrm{ALG} \equiv \int_{0}^{1} \xi^{\prime \prime}(q)^{1 / 2} \mathrm{~d} q
$$

Theorem (Huang-S 21)
If ξ even, no $O(1)$-Lipschitz algorithm beats ALG with probability $e^{-c N}$.
Tight answer for even models, but brittle proof using Guerra's interpolation

The Algorithmic Threshold

Theorem (Subag 18)
An efficient algorithm finds σ such that

$$
\frac{1}{N} H_{N}(\sigma) \geq \mathrm{ALG} \equiv \int_{0}^{1} \xi^{\prime \prime}(q)^{1 / 2} \mathrm{~d} q .
$$

Theorem (Huang-S 21)

Tight answer for even models, but brittle proof using Guerra's interpolation
Theorem (Huang-S 23+)

- New proof avoids Guerra's interpolation

The Algorithmic Threshold

Theorem (Subag 18)
An efficient algorithm finds σ such that

$$
\frac{1}{N} H_{N}(\sigma) \geq \mathrm{ALG} \equiv \int_{0}^{1} \xi^{\prime \prime}(q)^{1 / 2} \mathrm{~d} q .
$$

Theorem (Huang-S 21)

Tight answer for even models, but brittle proof using Guerra's interpolation
Theorem (Huang-S 23+)

- New proof avoids Guerra's interpolation
- Same method works for multi-species spin glasses (described later)
- In these models, OPT not always known! (Because Guerra's interpolation fails)

Subag's Algorithm (Hessian Ascent)

For $\delta=1 / D$ constant, $\boldsymbol{x}^{0}=\mathbf{0} \in \mathbb{R}^{N}$:

Subag's Algorithm (Hessian Ascent)

For $\delta=1 / D$ constant, $\boldsymbol{x}^{0}=\mathbf{0} \in \mathbb{R}^{N}$:
(3) Take \boldsymbol{v}^{t} the top eigenvector of tangential Hessian $\left.\nabla^{2} H_{N}\left(\boldsymbol{x}^{t}\right)\right|_{\left(\boldsymbol{x}^{t}\right) \perp}$

Subag's Algorithm (Hessian Ascent)

For $\delta=1 / D$ constant, $\boldsymbol{x}^{0}=\mathbf{0} \in \mathbb{R}^{N}$:
(3) Take \boldsymbol{v}^{t} the top eigenvector of tangential Hessian $\left.\nabla^{2} H_{N}\left(\boldsymbol{x}^{t}\right)\right|_{\left(\boldsymbol{x}^{t}\right) \perp}$
(2) Explore with small orthogonal steps: $\boldsymbol{x}^{t+1}=\boldsymbol{x}^{t} \pm \sqrt{\delta N} \boldsymbol{v}^{t}$. (Since $\boldsymbol{v}^{t} \perp \boldsymbol{x}^{t}$, we have $\left\|\boldsymbol{x}^{t}\right\|_{2}^{2}=t \delta N$)

Subag's Algorithm (Hessian Ascent)

For $\delta=1 / D$ constant, $\boldsymbol{x}^{0}=\mathbf{0} \in \mathbb{R}^{N}$:
(3) Take \boldsymbol{v}^{t} the top eigenvector of tangential Hessian $\left.\nabla^{2} H_{N}\left(\boldsymbol{x}^{t}\right)\right|_{\left(\boldsymbol{x}^{t}\right) \perp}$
(2) Explore with small orthogonal steps: $\boldsymbol{x}^{t+1}=\boldsymbol{x}^{t} \pm \sqrt{\delta \boldsymbol{N}} \boldsymbol{v}^{t}$. (Since $\boldsymbol{v}^{t} \perp \boldsymbol{x}^{t}$, we have $\left\|\boldsymbol{x}^{t}\right\|_{2}^{2}=t \delta N$)

(3) Output $\sigma=x^{D} \in S_{N}$

Subag's Algorithm (Hessian Ascent)

For $\delta=1 / D$ constant, $\boldsymbol{x}^{0}=\mathbf{0} \in \mathbb{R}^{N}$:
(3) Take \boldsymbol{v}^{t} the top eigenvector of tangential Hessian $\left.\nabla^{2} H_{N}\left(\boldsymbol{x}^{t}\right)\right|_{\left(\boldsymbol{x}^{t}\right) \perp}$
(2) Explore with small orthogonal steps: $\boldsymbol{x}^{t+1}=\boldsymbol{x}^{t} \pm \sqrt{\delta N} \boldsymbol{v}^{t}$. (Since $\boldsymbol{v}^{t} \perp \boldsymbol{x}^{t}$, we have $\left\|\boldsymbol{x}^{t}\right\|_{2}^{2}=t \delta N$)

(3) Output $\sigma=\boldsymbol{x}^{D} \in S_{N}$

Can be implemented as O (1)-Lipschitz algorithm (El Alaoui-Montanari-Sellke 20)

Analysis of Subag's Algorithm

- If $\|\boldsymbol{x}\|_{2}=\sqrt{q N}$, tangential Hessian $\nabla^{2} H_{N}(\boldsymbol{x})_{x^{\perp}}$ has law $\xi^{\prime \prime}(q)^{1 / 2} \times G O E_{N-1}$

Analysis of Subag's Algorithm

- If $\|\boldsymbol{x}\|_{2}=\sqrt{q N}$, tangential Hessian $\nabla^{2} H_{N}(\boldsymbol{x})_{x^{\perp}}$ has law $\xi^{\prime \prime}(q)^{1 / 2} \times G O E_{N-1}$
- $\lambda_{\max }(G O E) \approx 2$, so step t gains

$$
\frac{H_{N}\left(\boldsymbol{x}^{t+1}\right)-H_{N}\left(\boldsymbol{x}^{t}\right)}{N} \approx \delta \xi^{\prime \prime}(t \delta)^{1 / 2}
$$

Analysis of Subag's Algorithm

- If $\|\boldsymbol{x}\|_{2}=\sqrt{q N}$, tangential Hessian $\nabla^{2} H_{N}(\boldsymbol{x})_{x^{\perp}}$ has law $\xi^{\prime \prime}(q)^{1 / 2} \times G O E_{N-1}$
- $\lambda_{\max }(G O E) \approx 2$, so step t gains

$$
\frac{H_{N}\left(\boldsymbol{x}^{t+1}\right)-H_{N}\left(\boldsymbol{x}^{t}\right)}{N} \approx \delta \xi^{\prime \prime}(t \delta)^{1 / 2}
$$

- Summing over $t=1, \ldots, D$ and taking $\delta \rightarrow 0$,

$$
\frac{1}{N} H_{N}\left(\boldsymbol{x}^{D}\right) \approx \int_{0}^{1} \xi^{\prime \prime}(q)^{1 / 2} \mathrm{~d} q=\mathrm{ALG}
$$

Analysis of Subag's Algorithm

- If $\|\boldsymbol{x}\|_{2}=\sqrt{q N}$, tangential Hessian $\nabla^{2} H_{N}(\boldsymbol{x})_{x^{\perp}}$ has law $\xi^{\prime \prime}(q)^{1 / 2} \times G O E_{N-1}$
- $\lambda_{\max }(G O E) \approx 2$, so step t gains

$$
\frac{H_{N}\left(\boldsymbol{x}^{t+1}\right)-H_{N}\left(\boldsymbol{x}^{t}\right)}{N} \approx \delta \xi^{\prime \prime}(t \delta)^{1 / 2}
$$

- Summing over $t=1, \ldots, D$ and taking $\delta \rightarrow 0$,

$$
\frac{1}{N} H_{N}\left(\boldsymbol{x}^{D}\right) \approx \int_{0}^{1} \xi^{\prime \prime}(q)^{1 / 2} \mathrm{~d} q=\mathrm{ALG}
$$

- Although \boldsymbol{x}^{t} depends on H_{N}, ok by uniform lower bound on $\lambda_{\max }\left(H_{N}(\boldsymbol{x})_{\boldsymbol{x}^{\perp}}\right)$ for all $\|\boldsymbol{x}\|_{2}=\sqrt{q N}$

Connection to Physics Theory

- Approximate maxima of H_{N} are ultrametric, i.e. isometric to a tree

Connection to Physics Theory

- Approximate maxima of H_{N} are ultrametric, i.e. isometric to a tree

Subag's algorithm attains OPT iff branching occurs at all depths

- Intuition: algorithm traces root-to-leaf path of tree

Branching OGP

Subag's algorithm reaches ALG. We next see how to show hardness beyond ALG

Hierarchically Correlated Hamiltonians

Generate tree of Hamiltonians $\left(H_{N}^{u}\right)_{u \in[k]^{D}}$

Hierarchically Correlated Hamiltonians

Generate tree of Hamiltonians $\left(H_{N}^{u}\right)_{u \in[k]^{D}}$

Hierarchically Correlated Hamiltonians

Generate tree of Hamiltonians $\left(H_{N}^{u}\right)_{u \in[k]^{D}}$

$$
k, D \in \mathbb{N} \text { large, } 0 \leq p_{0}<p_{1}<\cdots<p_{D}=1
$$

Hierarchically Correlated Hamiltonians

Generate tree of Hamiltonians $\left(H_{N}^{u}\right)_{u \in[k]^{D}}$

$$
k, D \in \mathbb{N} \text { large, } 0 \leq p_{0}<p_{1}<\cdots<p_{D}=1
$$

Vocab: " $\left(H_{N}^{u}\right)_{u \in[k]^{D}}$ has correlation $\vec{p}=\left(p_{0}, \ldots, p_{D}\right)$ "

Lipschitz Algorithms to Ultrametric Trees

Let \mathcal{A} be $O(1)$-Lipschitz

Lipschitz Algorithms to Ultrametric Trees

Let \mathcal{A} be $O(1)$-Lipschitz

Lipschitz Algorithms to Ultrametric Trees

Let \mathcal{A} be $O(1)$-Lipschitz

Lipschitz Algorithms to Ultrametric Trees

Let \mathcal{A} be $O(1)$-Lipschitz

Lipschitz Algorithms to Ultrametric Trees

Let \mathcal{A} be $O(1)$-Lipschitz

Lipschitz Algorithms to Ultrametric Trees

Let \mathcal{A} be $O(1)$-Lipschitz

Vocab: " $\left(\sigma^{u}\right)_{u \in[k]^{D}}$ has geometry $\vec{q}=\left(q_{0}, \ldots, q_{D}\right)$ "

Lipschitz Algorithms to Ultrametric Trees

Let \mathcal{A} be $O(1)$-Lipschitz

Vocab: " $\left(\sigma^{u}\right)_{u \in[k]^{D}}$ has geometry $\vec{q}=\left(q_{0}, \ldots, q_{D}\right)$ "
χ continuous. Can choose \vec{p} to achieve any $0 \leq q_{0}<\cdots<q_{D}=1$

Lipschitz Algorithms to Ultrametric Trees

- Suppose Lipschitz \mathcal{A} reaches E. Then, for any target \vec{q},

Lipschitz Algorithms to Ultrametric Trees

- Suppose Lipschitz \mathcal{A} reaches E. Then, for any target \vec{q},
- Exists \vec{p}

Lipschitz Algorithms to Ultrametric Trees

- Suppose Lipschitz \mathcal{A} reaches E. Then, for any target \vec{q},
- Exists \vec{p} and $\left(\sigma^{u}\right)_{u \in[k]}$ with geometry \vec{q}, so that

Lipschitz Algorithms to Ultrametric Trees

- Suppose Lipschitz \mathcal{A} reaches E. Then, for any target \vec{q},
- Exists \vec{p} and $\left(\sigma^{u}\right)_{u \in[k] D}$ with geometry \vec{q}, so that

$$
\frac{1}{N} H_{N}^{u}\left(\sigma^{u}\right) \geq E \quad \text { for all } u \in[k]^{D}
$$

Lipschitz Algorithms to Ultrametric Trees

- Suppose Lipschitz \mathcal{A} reaches E. Then, for any target \vec{q},
- Exists \vec{p} and $\left(\sigma^{u}\right)_{u \in[k]}$ with geometry \vec{q}, so that

$$
\frac{1}{N} H_{N}^{u}\left(\sigma^{u}\right) \geq E \quad \text { for all } u \in[k]^{D}
$$

- For some \vec{p}, there is a tree constellation with value E and geometry \vec{q}

The value BOGP

Correlations $\vec{p}=\left(p_{0}, \ldots, p_{D}\right) \quad$ Geometry $\vec{q}=\left(q_{0}, \ldots, q_{D}\right)=(0, \delta, \ldots, 1)$

The value BOGP

Correlations $\vec{p}=\left(p_{0}, \ldots, p_{D}\right) \quad$ Geometry $\vec{q}=\left(q_{0}, \ldots, q_{D}\right)=(0, \delta, \ldots, 1)$

The value BOGP

Correlations $\vec{p}=\left(p_{0}, \ldots, p_{D}\right) \quad$ Geometry $\vec{q}=\left(q_{0}, \ldots, q_{D}\right)=(0, \delta, \ldots, 1)$

$$
\text { TreeValue }(\vec{p})=\underset{\substack{\mathrm{p} \rightarrow \infty \\ \underset{N}{\left(\sigma^{u}\right)_{u \in[k]}^{D}} \\ \text { geometry } \vec{q}}}{ } \frac{1}{k^{D}} \sum_{u \in[k]^{D}} \frac{1}{N} H_{N}^{u}\left(\sigma^{u}\right)
$$

$$
\mathrm{BOGP}=\max _{\vec{p}} \operatorname{TreeValue}(\vec{p})
$$

The value BOGP

Correlations $\vec{p}=\left(p_{0}, \ldots, p_{D}\right) \quad$ Geometry $\vec{q}=\left(q_{0}, \ldots, q_{D}\right)=(0, \delta, \ldots, 1)$

$$
\begin{aligned}
\operatorname{TreeValue}(\vec{p}) & =\underset{N \rightarrow \infty}{\mathrm{p}-\lim } \max _{\substack{\left(\sigma^{u}\right)_{u \in[k]^{D}} \\
\operatorname{geometry}^{q}}} \frac{1}{k^{D}} \sum_{u \in[k]^{D}} \frac{1}{N} H_{N}^{u}\left(\sigma^{u}\right) \\
\text { BOGP } & =\max _{\vec{p}} \operatorname{TreeValue}(\vec{p})
\end{aligned}
$$

- For any \vec{p}, there is no tree constellation with value BOGP $+\varepsilon$ and geometry \vec{q}

The value BOGP

Correlations $\vec{p}=\left(p_{0}, \ldots, p_{D}\right) \quad$ Geometry $\vec{q}=\left(q_{0}, \ldots, q_{D}\right)=(0, \delta, \ldots, 1)$

$$
\begin{aligned}
\operatorname{TreeValue}(\vec{p}) & =\underset{N \rightarrow \infty}{\mathrm{p}-\lim } \max _{\substack{\left(\sigma^{u}\right)_{u \in[k]^{D}} \\
\operatorname{geometry}^{q}}} \frac{1}{k^{D}} \sum_{u \in[k]^{D}} \frac{1}{N} H_{N}^{u}\left(\sigma^{u}\right) \\
\text { BOGP } & =\max _{\vec{p}} \operatorname{TreeValue}(\vec{p})
\end{aligned}
$$

- For any \vec{p}, there is no tree constellation with value BOGP $+\varepsilon$ and geometry \vec{q}
- \Rightarrow No $O(1)$-Lipschitz algorithm attains BOGP $+\varepsilon$

New Proof Idea: Greedy is Best

Remains to upper bound BOGP (by ALG)

New Proof Idea: Greedy is Best

Remains to upper bound BOGP (by ALG)

- Can branch Subag's algorithm by taking top k eigenvectors
- This is a multi-valued algorithm. All outputs \approx ALG by same analysis

New Proof Idea: Greedy is Best

Remains to upper bound BOGP (by ALG)

- Can branch Subag's algorithm by taking top k eigenvectors
- This is a multi-valued algorithm. All outputs \approx ALG by same analysis

- This tree is built in a greedy way

New Proof Idea: Greedy is Best

Remains to upper bound BOGP (by ALG)

- Can branch Subag's algorithm by taking top k eigenvectors
- This is a multi-valued algorithm. All outputs \approx ALG by same analysis

- This tree is built in a greedy way
- Main claim: best way to construct tree is greedy
- "Can't plan ahead so that my gain at 20th level is unusually big"
- Proved by uniform concentration

Uniform Concentration

Configuration x, x^{1}, \ldots, x^{k} :

Uniform Concentration

Configuration x, x^{1}, \ldots, x^{k} :

Radius:

$$
\|x\|_{2}=\sqrt{q N}
$$

Uniform Concentration

Configuration x, x^{1}, \ldots, x^{k} :

Radius:

$$
\begin{aligned}
\|x\|_{2} & =\sqrt{q N} \\
\left\|x^{i}\right\|_{2} & =\sqrt{q^{\prime} N}
\end{aligned}
$$

Uniform Concentration

Configuration x, x^{1}, \ldots, x^{k} :

Radius:

$$
\begin{aligned}
\|x\|_{2} & =\sqrt{q N} \\
\left\|x^{i}\right\|_{2} & =\sqrt{q^{\prime} N}
\end{aligned}
$$

Increment orthogonality:

$$
x^{i}-x \perp x^{j}-x \perp x
$$

Uniform Concentration

Configuration x, x^{1}, \ldots, x^{k} :

$$
F(x)=\max _{x^{1}, \ldots, x^{k}} \frac{1}{k N} \sum_{i=1}^{k}\left(H_{N}\left(x^{i}\right)-H_{N}(x)\right)
$$

"Improvement in H_{N} from \boldsymbol{x} to its children"

Radius:

$$
\begin{aligned}
\|x\|_{2} & =\sqrt{q N} \\
\left\|x^{i}\right\|_{2} & =\sqrt{q^{\prime} N}
\end{aligned}
$$

Increment orthogonality:

$$
x^{i}-x \perp x^{j}-x \perp x
$$

Uniform Concentration

Configuration x, x^{1}, \ldots, x^{k} :

Radius:

$$
\begin{aligned}
\|x\|_{2} & =\sqrt{q N} \\
\left\|x^{i}\right\|_{2} & =\sqrt{q^{\prime} N}
\end{aligned}
$$

Increment orthogonality:

$$
x^{i}-x \perp x^{j}-x \perp x
$$

$$
F(x)=\max _{x^{1}, \ldots, x^{k}} \frac{1}{k N} \sum_{i=1}^{k}\left(H_{N}\left(x^{i}\right)-H_{N}(x)\right)
$$

"Improvement in H_{N} from \boldsymbol{x} to its children"

Lemma (Uniform Concentration, cf. Subag 18)
For any $\eta>0$, for sufficiently large $k \geq k_{0}(\eta)$,

$$
\mathbb{P}\left[|F(\boldsymbol{x})-\mathbb{E} F(\boldsymbol{x})| \leq \eta \forall\|\boldsymbol{x}\|_{2}=\sqrt{q N}\right] \geq 1-e^{-c N}
$$

Uniform Concentration

Configuration x, x^{1}, \ldots, x^{k} :

Radius:

$$
\begin{aligned}
\|x\|_{2} & =\sqrt{q N} \\
\left\|x^{i}\right\|_{2} & =\sqrt{q^{\prime} N}
\end{aligned}
$$

Increment orthogonality:

$$
F(x)=\max _{x^{1}, \ldots, x^{k}} \frac{1}{k N} \sum_{i=1}^{k}\left(H_{N}\left(x^{i}\right)-H_{N}(x)\right)
$$

"Improvement in H_{N} from \boldsymbol{x} to its children"

Lemma (Uniform Concentration, cf. Subag 18)
For any $\eta>0$, for sufficiently large $k \geq k_{0}(\eta)$,

$$
\mathbb{P}\left[|F(\boldsymbol{x})-\mathbb{E} F(\boldsymbol{x})| \leq \eta \forall\|\boldsymbol{x}\|_{2}=\sqrt{q N}\right] \geq 1-e^{-c N}
$$

No $\|\boldsymbol{x}\|_{2}=\sqrt{q N}$ is unusually good for building a tree, so might as well be greedy.

$$
x^{i}-x \perp x^{j}-x \perp x
$$

Upper Bounding the Tree Value

Let interior σ^{u} be recursive barycenters:
$\sigma^{u}=\frac{1}{k} \sum_{i=1}^{k} \sigma^{u i}$

Upper Bounding the Tree Value

Let interior σ^{u} be recursive barycenters:
$\sigma^{u}=\frac{1}{k} \sum_{i=1}^{k} \sigma^{u i}$

Upper Bounding the Tree Value

Let interior σ^{u} be recursive barycenters:
$\sigma^{u}=\frac{1}{k} \sum_{i=1}^{k} \sigma^{u i}$

Upper Bounding the Tree Value

Let interior σ^{u} be recursive barycenters:
$\sigma^{u}=\frac{1}{k} \sum_{i=1}^{k} \sigma^{u i}$

Satisfy orthogonality relations approximately if k large:

$$
\begin{gathered}
\left\|\sigma^{u}\right\|_{2} \approx \sqrt{q_{|u|} N} \\
\sigma^{u i}-\sigma^{u} \perp \sigma^{u j}-\sigma^{u} \perp \sigma^{u}
\end{gathered}
$$

Upper Bounding the Tree Value

Let interior σ^{u} be recursive barycenters: $\sigma^{u}=\frac{1}{k} \sum_{i=1}^{k} \sigma^{u i}$

Suppose first all H_{N}^{u} identical. $(\vec{p}=\overrightarrow{1})$ Want to upper bound tree value:

$$
\frac{1}{k^{D}} \sum_{u \in[k]^{D}} \frac{1}{N} H_{N}\left(\sigma^{u}\right)
$$

Satisfy orthogonality relations approximately if k large:

$$
\begin{gathered}
\left\|\sigma^{u}\right\|_{2} \approx \sqrt{q_{|u|} N} \\
\sigma^{u i}-\sigma^{u} \perp \sigma^{u j}-\sigma^{u} \perp \sigma^{u}
\end{gathered}
$$

Upper Bounding the Tree Value

Let interior σ^{u} be recursive barycenters: $\sigma^{u}=\frac{1}{k} \sum_{i=1}^{k} \sigma^{u i}$

Suppose first all H_{N}^{u} identical. $(\vec{p}=\overrightarrow{1})$ Want to upper bound tree value:

$$
\frac{1}{k^{D}} \sum_{u \in[k]^{D}} \frac{1}{N} H_{N}\left(\sigma^{u}\right)
$$

Write as sum of claw increments

$$
\frac{1}{k N} \sum_{i=1}^{k}\left(H_{N}\left(\sigma^{u i}\right)-H_{N}\left(\sigma^{u}\right)\right)
$$

Satisfy orthogonality relations approximately if k large:

$$
\begin{gathered}
\left\|\sigma^{u}\right\|_{2} \approx \sqrt{q_{|u|} N} \\
\sigma^{u i}-\sigma^{u} \perp \sigma^{u j}-\sigma^{u} \perp \sigma^{u}
\end{gathered}
$$

Upper Bounding the Tree Value

Let interior σ^{u} be recursive barycenters: $\sigma^{u}=\frac{1}{k} \sum_{i=1}^{k} \sigma^{u i}$

Suppose first all H_{N}^{u} identical. $(\vec{p}=\overrightarrow{1})$ Want to upper bound tree value:

$$
\frac{1}{k^{D}} \sum_{u \in[k]^{D}} \frac{1}{N} H_{N}\left(\sigma^{u}\right)
$$

Write as sum of claw increments

$$
\frac{1}{k N} \sum_{i=1}^{k}\left(H_{N}\left(\sigma^{u i}\right)-H_{N}\left(\sigma^{u}\right)\right)
$$

Satisfy orthogonality relations approximately if k large:

$$
\begin{gathered}
\left\|\sigma^{u}\right\|_{2} \approx \sqrt{q_{|u|} N} \\
\sigma^{u i}-\sigma^{u} \perp \sigma^{u j}-\sigma^{u} \perp \sigma^{u}
\end{gathered}
$$

Upper Bounding the Tree Value

Let interior σ^{u} be recursive barycenters: $\sigma^{u}=\frac{1}{k} \sum_{i=1}^{k} \sigma^{u i}$

Suppose first all H_{N}^{u} identical. $(\vec{p}=\overrightarrow{1})$ Want to upper bound tree value:

$$
\frac{1}{k^{D}} \sum_{u \in[k]^{D}} \frac{1}{N} H_{N}\left(\sigma^{u}\right)
$$

Write as sum of claw increments

$$
\frac{1}{k N} \sum_{i=1}^{k}\left(H_{N}\left(\sigma^{u i}\right)-H_{N}\left(\sigma^{u}\right)\right)
$$

Satisfy orthogonality relations approximately if k large:

$$
\begin{gathered}
\left\|\sigma^{u}\right\|_{2} \approx \sqrt{q_{|u|} N} \\
\sigma^{u i}-\sigma^{u} \perp \sigma^{u j}-\sigma^{u} \perp \sigma^{u}
\end{gathered}
$$

Upper Bounding the Tree Value

Let interior σ^{u} be recursive barycenters: $\sigma^{u}=\frac{1}{k} \sum_{i=1}^{k} \sigma^{u i}$

Suppose first all H_{N}^{u} identical. $(\vec{p}=\overrightarrow{1})$ Want to upper bound tree value:

$$
\frac{1}{k^{D}} \sum_{u \in[k]^{D}} \frac{1}{N} H_{N}\left(\sigma^{u}\right)
$$

Write as sum of claw increments

$$
\frac{1}{k N} \sum_{i=1}^{k}\left(H_{N}\left(\sigma^{u i}\right)-H_{N}\left(\sigma^{u}\right)\right) \leq F\left(\sigma^{u}\right)
$$

Satisfy orthogonality relations approximately if k large:

$$
\begin{gathered}
\left\|\sigma^{u}\right\|_{2} \approx \sqrt{q_{|u|} N} \\
\sigma^{u i}-\sigma^{u} \perp \sigma^{u j}-\sigma^{u} \perp \sigma^{u}
\end{gathered}
$$

Upper Bounding the Tree Value

Let interior σ^{u} be recursive barycenters: $\sigma^{u}=\frac{1}{k} \sum_{i=1}^{k} \sigma^{u i}$

Satisfy orthogonality relations approximately if k large:

$$
\begin{gathered}
\left\|\sigma^{u}\right\|_{2} \approx \sqrt{q_{|u|} N} \\
\sigma^{u i}-\sigma^{u} \perp \sigma^{u j}-\sigma^{u} \perp \sigma^{u}
\end{gathered}
$$

Suppose first all H_{N}^{u} identical. $(\vec{p}=\overrightarrow{1})$ Want to upper bound tree value:

$$
\frac{1}{k^{D}} \sum_{u \in[k]^{D}} \frac{1}{N} H_{N}\left(\sigma^{u}\right)
$$

Write as sum of claw increments

$$
\frac{1}{k N} \sum_{i=1}^{k}\left(H_{N}\left(\sigma^{u i}\right)-H_{N}\left(\sigma^{u}\right)\right) \leq F\left(\sigma^{u}\right)
$$

$F\left(\sigma^{u}\right) \approx \mathbb{E} F\left(\sigma^{u}\right)$ by uniform concentration!

Upper Bounding the Tree Value

Let interior σ^{u} be recursive barycenters: $\sigma^{u}=\frac{1}{k} \sum_{i=1}^{k} \sigma^{u i}$

Satisfy orthogonality relations approximately if k large:

$$
\begin{gathered}
\left\|\sigma^{u}\right\|_{2} \approx \sqrt{q_{|u|} N} \\
\sigma^{u i}-\sigma^{u} \perp \sigma^{u j}-\sigma^{u} \perp \sigma^{u}
\end{gathered}
$$

Suppose first all H_{N}^{u} identical. $(\vec{p}=\overrightarrow{1})$ Want to upper bound tree value:

$$
\frac{1}{k^{D}} \sum_{u \in[k]^{D}} \frac{1}{N} H_{N}\left(\sigma^{u}\right)
$$

Write as sum of claw increments

$$
\frac{1}{k N} \sum_{i=1}^{k}\left(H_{N}\left(\sigma^{u i}\right)-H_{N}\left(\sigma^{u}\right)\right) \leq F\left(\sigma^{u}\right)
$$

$F\left(\sigma^{u}\right) \approx \mathbb{E} F\left(\sigma^{u}\right)$ by uniform concentration!
Level-d increments match Subag's algorithm

Upper Bounding the Tree Value

Let interior σ^{u} be recursive barycenters: $\sigma^{u}=\frac{1}{k} \sum_{i=1}^{k} \sigma^{u i}$

Satisfy orthogonality relations approximately if k large:

$$
\begin{gathered}
\left\|\sigma^{u}\right\|_{2} \approx \sqrt{q_{|u|} N} \\
\sigma^{u i}-\sigma^{u} \perp \sigma^{u j}-\sigma^{u} \perp \sigma^{u}
\end{gathered}
$$

Suppose first all H_{N}^{u} identical. $(\vec{p}=\overrightarrow{1})$ Want to upper bound tree value:

$$
\frac{1}{k^{D}} \sum_{u \in[k]^{D}} \frac{1}{N} H_{N}\left(\sigma^{u}\right)
$$

Write as sum of claw increments

$$
\frac{1}{k N} \sum_{i=1}^{k}\left(H_{N}\left(\sigma^{u i}\right)-H_{N}\left(\sigma^{u}\right)\right) \leq F\left(\sigma^{u}\right)
$$

$F\left(\sigma^{u}\right) \approx \mathbb{E} F\left(\sigma^{u}\right)$ by uniform concentration!
Level-d increments match Subag's algorithm

General \vec{p} : similarly bound

$$
\frac{1}{k N} \sum_{i=1}^{k}\left(H_{N}^{u i}\left(\sigma^{u i}\right)-H_{N}^{u}\left(\sigma^{u}\right)\right)
$$

Branching OGP is Necessary for Tight Hardness

Branching OGP is Necessary for Tight Hardness

Theorem (Huang-S 21)
If an ultrametric constellation is forbidden at value ALG $+\varepsilon$, it must contain a complete binary subtree of diverging depth as $\varepsilon \rightarrow 0$.

Multi-Species Spin Glasses

- Up to now: polynomials in variables x_{1}, \ldots, x_{N} that all look alike

Multi-Species Spin Glasses

- Up to now: polynomials in variables x_{1}, \ldots, x_{N} that all look alike
- Multi-species models: multiple "variable types" $x_{i}, y_{i}, z_{i}, \ldots$
- Coefficients of $x_{i} x_{j}, x_{i} y_{j}, x_{i} y_{j} z_{k}$ have different variances

Multi-Species Spin Glasses

- Up to now: polynomials in variables x_{1}, \ldots, x_{N} that all look alike
- Multi-species models: multiple "variable types" $x_{i}, y_{i}, z_{i}, \ldots$
- Coefficients of $x_{i} x_{j}, x_{i} y_{j}, x_{i} y_{j} z_{k}$ have different variances
- Example: bipartite SK model

$$
H_{N}(\boldsymbol{x}, \boldsymbol{y})=\frac{1}{\sqrt{N}}\langle\boldsymbol{G} \boldsymbol{x}, \boldsymbol{y}\rangle, \quad \boldsymbol{G} \in \mathbb{R}^{N \times N} \text { i.i.d. } \mathcal{N}(0,1) \text { entries }
$$

or higher-order polynomials

$$
H_{N}(\boldsymbol{x}, \boldsymbol{y})=\frac{1}{N}\left\langle\boldsymbol{G}, \boldsymbol{x}^{\otimes 3}\right\rangle+\frac{1}{N}\left\langle\boldsymbol{G}^{\prime}, \boldsymbol{x} \otimes \boldsymbol{y}^{\otimes 2}\right\rangle, \quad \boldsymbol{G}, \boldsymbol{G}^{\prime} \in\left(\mathbb{R}^{N}\right)^{\otimes 3}
$$

Multi-Species Spin Glasses

- Formally, each coordinate part of a species $s \in \mathscr{S}=\{1, \ldots, r\}$

$$
[N]=\mathcal{I}_{1} \cup \cdots \cup \mathcal{I}_{r}, \quad\left|\mathcal{I}_{s}\right|=\lambda_{s} N
$$

Multi-Species Spin Glasses

- Formally, each coordinate part of a species $s \in \mathscr{S}=\{1, \ldots, r\}$

$$
[N]=\mathcal{I}_{1} \cup \cdots \cup \mathcal{I}_{r}, \quad\left|\mathcal{I}_{s}\right|=\lambda_{s} N
$$

- Interaction weights $\gamma_{2}, \gamma_{3}, \ldots$ now $\left(\gamma_{s_{1}, s_{2}}\right)_{s_{1}, s_{2} \in \mathscr{S}},\left(\gamma_{s_{1}, s_{2}, s_{3}}\right)_{s_{1}, s_{2}, s_{3} \in \mathscr{S}}, \ldots$

Multi-Species Spin Glasses

- Formally, each coordinate part of a species $s \in \mathscr{S}=\{1, \ldots, r\}$

$$
[N]=\mathcal{I}_{1} \cup \cdots \cup \mathcal{I}_{r}, \quad\left|\mathcal{I}_{s}\right|=\lambda_{s} N
$$

- Interaction weights $\gamma_{2}, \gamma_{3}, \ldots$ now $\left(\gamma_{s_{1}, s_{2}}\right)_{s_{1}, s_{2} \in \mathscr{S}},\left(\gamma_{s_{1}, s_{2}, s_{3}}\right)_{s_{1}, s_{2}, s_{3} \in \mathscr{S}}, \ldots$
- ξ now multivariate polynomial in $\left(q_{1}, \ldots, q_{r}\right)$

Multi-Species Spin Glasses

- Formally, each coordinate part of a species $s \in \mathscr{S}=\{1, \ldots, r\}$

$$
[N]=\mathcal{I}_{1} \cup \cdots \cup \mathcal{I}_{r}, \quad\left|\mathcal{I}_{s}\right|=\lambda_{s} N
$$

- Interaction weights $\gamma_{2}, \gamma_{3}, \ldots$ now $\left(\gamma_{s_{1}, s_{2}}\right)_{s_{1}, s_{2} \in \mathscr{S}},\left(\gamma_{s_{1}, s_{2}, s_{3}}\right)_{s_{1}, s_{2}, s_{3} \in \mathscr{S}}, \ldots$
- ξ now multivariate polynomial in $\left(q_{1}, \ldots, q_{r}\right)$
- Goal: optimize H_{N} over product of spheres

$$
\mathbb{T}_{N}=\left\{\sigma \in \mathbb{R}^{N}:\left\|\boldsymbol{\sigma}_{\mid \mathcal{I}_{s}}\right\|_{2}^{2}=\lambda_{s} N \quad \forall s \in \mathscr{S}\right\}
$$

Multi-Species Spin Glasses

- Formally, each coordinate part of a species $s \in \mathscr{S}=\{1, \ldots, r\}$

$$
[N]=\mathcal{I}_{1} \cup \cdots \cup \mathcal{I}_{r}, \quad\left|\mathcal{I}_{s}\right|=\lambda_{s} N
$$

- Interaction weights $\gamma_{2}, \gamma_{3}, \ldots$ now $\left(\gamma_{s_{1}, s_{2}}\right)_{s_{1}, s_{2} \in \mathscr{S}},\left(\gamma_{s_{1}, s_{2}, s_{3}}\right)_{s_{1}, s_{2}, s_{3} \in \mathscr{S}}, \ldots$
- ξ now multivariate polynomial in $\left(q_{1}, \ldots, q_{r}\right)$
- Goal: optimize H_{N} over product of spheres

$$
\mathbb{T}_{N}=\left\{\sigma \in \mathbb{R}^{N}:\left\|\sigma_{\mid \mathcal{I}_{s}}\right\|_{2}^{2}=\lambda_{s} N \quad \forall s \in \mathscr{S}\right\}
$$

- OPT known for convex or pure ξ (Panchenko 15, Subag 21, Bates-Sohn 22)

Multi-Species Spin Glasses

- Formally, each coordinate part of a species $s \in \mathscr{S}=\{1, \ldots, r\}$

$$
[N]=\mathcal{I}_{1} \cup \cdots \cup \mathcal{I}_{r}, \quad\left|\mathcal{I}_{s}\right|=\lambda_{s} N
$$

- Interaction weights $\gamma_{2}, \gamma_{3}, \ldots$ now $\left(\gamma_{s_{1}, s_{2}}\right)_{s_{1}, s_{2} \in \mathscr{S}},\left(\gamma_{s_{1}, s_{2}, s_{3}}\right)_{s_{1}, s_{2}, s_{3} \in \mathscr{S}}, \ldots$
- ξ now multivariate polynomial in $\left(q_{1}, \ldots, q_{r}\right)$
- Goal: optimize H_{N} over product of spheres

$$
\mathbb{T}_{N}=\left\{\sigma \in \mathbb{R}^{N}:\left\|\sigma_{\mid \mathcal{I}_{s}}\right\|_{2}^{2}=\lambda_{s} N \quad \forall s \in \mathscr{S}\right\}
$$

- OPT known for convex or pure ξ (Panchenko 15, Subag 21, Bates-Sohn 22)
- ALG has richer behavior than in one species

Multi-Species Algorithms

- Optimizing on product of spheres \Rightarrow track radius for each species

Multi-Species Algorithms

- Optimizing on product of spheres \Rightarrow track radius for each species
- 2 species: radius schedule is up-right path from $(0,0)$ to $(1,1)$

Multi-Species Algorithms

- Optimizing on product of spheres \Rightarrow track radius for each species
- 2 species: radius schedule is up-right path from $(0,0)$ to $(1,1)$

- In general, radius schedule is coordinate-increasing $\Phi:[0,1] \rightarrow[0,1]^{\mathscr{S}}$

Multi-Species Algorithms

- Optimizing on product of spheres \Rightarrow track radius for each species
- 2 species: radius schedule is up-right path from $(0,0)$ to $(1,1)$

- In general, radius schedule is coordinate-increasing $\Phi:[0,1] \rightarrow[0,1]^{\mathscr{S}}$
- Each Φ gives algorithm taking small orthogonal steps in each species
- Algorithm value

$$
\mathbb{A}(\Phi) \equiv \sum_{s \in \mathscr{S}} \lambda_{s} \int_{0}^{1} \sqrt{\left(\partial_{q_{s}} \xi \circ \phi\right)^{\prime}(q) \Phi_{s}^{\prime}(q)} \mathrm{d} q
$$

Multi-Species Algorithmic Threshold

Theorem (Huang-S 23+)
Define

$$
\mathrm{ALG}=\sup _{\substack{\Phi:[0,1] \rightarrow[0,1]^{\mathscr{S}} \\ \text { increasing, differentiable }}} \sum_{s \in \mathscr{S}} \lambda_{s} \int_{0}^{1} \sqrt{\left(\partial_{q_{s}} \xi \circ \Phi\right)^{\prime}(q) \Phi_{s}^{\prime}(q)} \mathrm{d} q
$$

Multi-Species Algorithmic Threshold

Theorem (Huang-S 23+)
Define

$$
\text { ALG }=\sup _{\substack{\text { Q:[0,1] }[0,1]^{\Phi} \\ \text { increasing, differentiable }}} \sum_{s \in \mathscr{S}} \lambda_{s} \int_{0}^{1} \sqrt{\left(\partial_{q_{s}} \xi \circ \Phi\right)^{\prime}(q) \Phi_{s}^{\prime}(q)} d q
$$

- An explicit $O(1)$-Lipschitz algorithm achieves ALG w.h.p.
- No $O(1)$-Lipschitz algorithm beats ALG with probability $e^{-c N}$.

Multi-Species Algorithmic Threshold

Theorem (Huang-S 23+)
Define

$$
\mathrm{ALG}=\sup _{\substack{\Phi:[0,1] \rightarrow[0,1]^{\Phi} \\ \text { increasing, differentiable }}} \sum_{s \in \mathscr{S}} \lambda_{s} \int_{0}^{1} \sqrt{\left(\partial_{q_{s}} \xi \circ \Phi\right)^{\prime}(q) \Phi_{s}^{\prime}(q)} d q
$$

- An explicit $O(1)-L i p s c h i t z ~ a l g o r i t h m ~ a c h i e v e s ~ A L G ~ w . h . p . ~$
- No $O(1)$-Lipschitz algorithm beats ALG with probability $e^{-c N}$. (More general threshold with external fields too)

Multi-Species Algorithmic Threshold

Theorem (Huang-S 23+)
Define

$$
\text { ALG }=\sup _{\substack{\text { Q:[0,1] }[0,1]^{\Phi} \\ \text { increasing, differentiable }}} \sum_{s \in \mathscr{S}} \lambda_{s} \int_{0}^{1} \sqrt{\left(\partial_{q_{s}} \xi \circ \Phi\right)^{\prime}(q) \Phi_{s}^{\prime}(q)} d q
$$

- An explicit $O(1)$-Lipschitz algorithm achieves ALG w.h.p.
- No O(1)-Lipschitz algorithm beats ALG with probability $e^{-c N}$. (More general threshold with external fields too)

Theorem (Huang-S 23+)
The variational formula has a maximizer Φ, which solves an explicit ODE.

Variational Problem Example

Consider $\left(\lambda_{1}, \lambda_{2}\right)=(1 / 3,2 / 3)$ and

$$
\xi\left(q_{1}, q_{2}\right)=\left(\lambda_{1} q_{1}\right)^{2}+\left(\lambda_{1} q_{1}\right)\left(\lambda_{2} q_{1}\right)+\left(\lambda_{2} q_{1}\right)^{2}+\left(\lambda_{1} q_{1}\right)^{4}+\left(\lambda_{1} q_{1}\right)\left(\lambda_{2} q_{2}\right)^{3}
$$

Some ODE solutions. Optimal $\Phi:[0,1] \rightarrow[0,1]^{2}$ in bold

Algorithmic Symmetry Breaking

Optimal Φ may be asymmetric, even when model is symmetric!

$$
\lambda_{1}=\lambda_{2}=\frac{1}{2}, \quad \xi\left(q_{1}, q_{2}\right)=\left(3 q_{1}\right)^{2}+\left(3 q_{1}\right)\left(3 q_{2}\right)+\left(3 q_{2}\right)^{2}+\left(3 q_{1}\right)^{4}+\left(3 q_{2}\right)^{4}
$$

The plot thickens...

Pure Multi-Species Models

- Models where

$$
\xi\left(q_{1}, \ldots, q_{r}\right)=q_{1}^{a_{1}} q_{2}^{a_{2}} \cdots q_{r}^{a_{r}}
$$

- Example: bipartite $\operatorname{SK} \xi\left(q_{1}, q_{2}\right)=q_{1} q_{2}$

Pure Multi-Species Models

- Models where

$$
\xi\left(q_{1}, \ldots, q_{r}\right)=q_{1}^{a_{1}} q_{2}^{a_{2}} \cdots q_{r}^{a_{r}}
$$

- Example: bipartite $\operatorname{SK} \xi\left(q_{1}, q_{2}\right)=q_{1} q_{2}$
- Optimal Φ is polynomial

$$
\Phi(q)=\left(q^{b_{1}}, \ldots, q^{b_{r}}\right)
$$

- In this case, $\mathrm{ALG}=E_{\infty}$ has explicit non-variational formula.
- Langevin dynamics is believed to reach the same threshold!

Summary

- We determine algorithmic threshold of $O(1)$-Lipschitz algorithms for optimizing multi-species spherical spin glasses

Summary

- We determine algorithmic threshold of $O(1)$-Lipschitz algorithms for optimizing multi-species spherical spin glasses
- Branching OGP matches Subag algorithm for generic reason

Summary

- We determine algorithmic threshold of $O(1)$-Lipschitz algorithms for optimizing multi-species spherical spin glasses
- Branching OGP matches Subag algorithm for generic reason
- Geometric description of ALG: largest value whose super-level set contains densely-branching ultrametric tree
- Optimal algorithms climb this tree
- Absence of this tree implies hardness by BOGP

Summary

- We determine algorithmic threshold of $O(1)$-Lipschitz algorithms for optimizing multi-species spherical spin glasses
- Branching OGP matches Subag algorithm for generic reason
- Geometric description of ALG: largest value whose super-level set contains densely-branching ultrametric tree
- Optimal algorithms climb this tree
- Absence of this tree implies hardness by BOGP
- Comparison with OPT ultrametricity: ALG trees must branch continuously, OPT trees may not

Summary

- We determine algorithmic threshold of $O(1)$-Lipschitz algorithms for optimizing multi-species spherical spin glasses
- Branching OGP matches Subag algorithm for generic reason
- Geometric description of ALG: largest value whose super-level set contains densely-branching ultrametric tree
- Optimal algorithms climb this tree
- Absence of this tree implies hardness by BOGP
- Comparison with OPT ultrametricity: ALG trees must branch continuously, OPT trees may not

Thank you!

Models with Linear Terms

Suppose model has 1-spin interaction (external field)

$$
H_{N}(\boldsymbol{\sigma})=\sum_{p=1}^{P} \frac{\gamma_{p}}{N^{(p-1) / 2}}\left\langle\boldsymbol{G}^{(p)}, \boldsymbol{\sigma}^{\otimes p}\right\rangle \quad \xi(q)=\sum_{p=1}^{P} \gamma_{p}^{2} q^{p}
$$

Then

$$
\mathrm{ALG}=\mathrm{BOGP}=\sup _{\substack{p:[0,1] \rightarrow[0,1] \\ \text { increasing, differentiable }}} \int_{0}^{1} \sqrt{\left(p \xi^{\prime}\right)^{\prime}(q)} \mathrm{d} q
$$

Optimal p for $\xi(q)=q^{4}+q$

Multi-Species Algorithmic Threshold with Linear Terms

Theorem (Huang-S 23+)
Define

$$
\text { ALG }=\sup _{\substack{p:[0,1] \rightarrow[0,1] \\ \text { i:[0,1] } \rightarrow[0,1]^{\Phi} \\ \text { increasing, differentiable }}} \sum_{s \in \mathscr{S}} \lambda_{s} \int_{0}^{1} \sqrt{\left(p \times \partial_{q_{s}} \xi \circ \Phi\right)^{\prime}(q) \Phi_{s}^{\prime}(q)} \mathrm{d} q
$$

- An explicit $O(1)$-Lipschitz algorithm achieves ALG w.h.p.
- No O(1)-Lipschitz algorithm beats ALG with probability $e^{-c N}$

Theorem (Huang-S 23+)
This variational problem has a maximizer (p, Φ).

- The maximizer solves an explicit ODE.
- If ξ has no 1 -spin interactions, then $p \equiv 1$.

Variational Problem Example: No Linear Term

Consider $\left(\lambda_{1}, \lambda_{2}\right)=(1 / 3,2 / 3)$

$$
\xi\left(q_{1}, q_{2}\right)=\left(\lambda_{1} q_{1}\right)^{2}+\left(\lambda_{1} q_{1}\right)\left(\lambda_{2} q_{1}\right)+\left(\lambda_{2} q_{1}\right)^{2}+\left(\lambda_{1} q_{1}\right)^{4}+\left(\lambda_{1} q_{1}\right)\left(\lambda_{2} q_{2}\right)^{3}
$$

Optimal $p:[0,1] \rightarrow[0,1]$

Image of optimal $\Phi:[0,1] \rightarrow[0,1]^{2}$ in bold

Variational Problem Example: Small Linear Term

Consider $\left(\lambda_{1}, \lambda_{2}\right)=(1 / 3,2 / 3)$

$$
\begin{aligned}
\xi\left(q_{1}, q_{2}\right)= & \left(\lambda_{1} q_{1}\right)^{2}+\left(\lambda_{1} q_{1}\right)\left(\lambda_{2} q_{1}\right)+\left(\lambda_{2} q_{1}\right)^{2}+\left(\lambda_{1} q_{1}\right)^{4}+\left(\lambda_{1} q_{1}\right)\left(\lambda_{2} q_{2}\right)^{3} \\
& +0.05\left(\lambda_{1} q_{1}\right)+0.5\left(\lambda_{2} q_{2}\right)
\end{aligned}
$$

Optimal $p:[0,1] \rightarrow[0,1]$

Image of optimal $\Phi:[0,1] \rightarrow[0,1]^{2}$ in bold

Variational Problem Example: Large Linear Term

Consider $\left(\lambda_{1}, \lambda_{2}\right)=(1 / 3,2 / 3)$

$$
\begin{aligned}
\xi\left(q_{1}, q_{2}\right)= & \left(\lambda_{1} q_{1}\right)^{2}+\left(\lambda_{1} q_{1}\right)\left(\lambda_{2} q_{1}\right)+\left(\lambda_{2} q_{1}\right)^{2}+\left(\lambda_{1} q_{1}\right)^{4}+\left(\lambda_{1} q_{1}\right)\left(\lambda_{2} q_{2}\right)^{3} \\
& +0.2\left(\lambda_{1} q_{1}\right)+1.8\left(\lambda_{2} q_{2}\right)
\end{aligned}
$$

Optimal $p:[0,1] \rightarrow[0,1]$

Image of optimal $\Phi:[0,1] \rightarrow[0,1]^{2}$

