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Motivating Example: Tensor PCA

Fix p > 2. Recover signal xo € Sy = v/NS"~! from noisy tensor observation
T =3P+ G, G® ¢ (RV)®” has i.i.d. N(0,1) entries

@ Eg x§? € RV*N is a matrix with (i, /) entry xix;.
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@ Applications to topic modelling (Anandkumar-Ge-Hsu-Kakade-Telgarsky 12),
collaborative filtering, hypergraph matching (Duchenne-Bach-Kwon-Ponce 09)
@ Max-likelihood estimator is non-convex, random optimization problem:
xME = arg max(T, x*?)
xeSy

@ xME NP-hard even to approximate in worst case (Hillar-Lim 13)
@ Convex relaxations suboptimal by N(°~2)/4 factor (Montanari-Richard 14,
Hopkins-Shi-Steurer 15)
@ Existing frameworks leave incomplete understanding of computational limits.
What are the basic computational limits of random optimization problems?

@ Null model MLE is precisely optimization of a spin glass:

I
x™" = arg max(G
XESy
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Mean Field Spin Glasses

Polynomials Hy : RV — R with random coefficients, e.g. random cubic

N
E gi1,/2,i3 : 0/10i20-/3 g"1¢"2;’.3 . r\(/i N(O’ 1)
1.1.d.

i1,i2,i3=1

HN(O') ==
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Mean Field Spin Glasses

Polynomials Hy : RV — R with random coefficients, e.g. random cubic

N
1 1
HN(U) = N Z 8ir,ia,iz " 0in Tin Oy = N<G(3)’ U®3> 8is,iz,iz 1:\21 N(O’ 1)

i ia,is=1
More generally, mix different degrees. For 72,73,... >0,
P /
Hu(o) =Y 2 (6P, o%r)  GP e (RM)®P iid. N(0,1)s

-1)/2
= N(p—1)/
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Polynomials Hy : RV — R with random coefficients, e.g. random cubic

N
1 1
HN(U) = N Z 8ir,ia,iz " 0in Tin Oy = N<G(3)’ U®3> 8is,iz,iz 1:\21 N(O’ 1)

i1,i2,i3=1

More generally, mix different degrees. For 72,73,... >0

P

Y ..
Hu(o) =Y N(Tpl)/zm(m, a®)  GP e (RM)®Piid. N(0,1)s
p=2

Gaussian process on RV with covariance

P
E[Hn(o)Hu(p)] = NE((a, p) /), &(q) = Y 75d°

p=2
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Polynomials Hy : RV — R with random coefficients, e.g. random cubic
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P ,
— P (P) 5® (p) N\®p ;
Hy (o) = Z; vz (G %) G e RY)FPiid. N(0,1)s
p:

Gaussian process on RV with covariance
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Mean Field Spin Glasses

Polynomials Hy : RV — R with random coefficients, e.g. random cubic

N
1 1
Hy(o) = N D> B 00RO, = N<G(3)’U®3> Bizis ) N(0,1)
i ia,is=1 o
More generally, mix different degrees. For 72,73,... >0,
P ,
— P (P) 5® (p) N\®p ;
Hy (o) = Z; vz (G %) G e RY)FPiid. N(0,1)s
p:

Gaussian process on RV with covariance
P
_ _ 2 _p
ElHn(o)Hu(p)] = NE((@,p)/N),  E(a) = 224

¢ mixture function, determines model. Cubic above: £(q) = ¢3
Goal: optimize Hy over sphere Sy = v/ NSV—1
ALG for Multi-Species Spin Glasses 3/35
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@ Origin: diluted magnetic alloys (Sherrington-Kirkpatrick 75)
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Motivations and Connections

@ Origin: diluted magnetic alloys (Sherrington-Kirkpatrick 75)
o Natural high-dimensional, non-convex random optimization problem

@ MLE for tensor PCA log-likelihood in null model (Ben Arous-Mei-Montanari-Nica 17)

@ Random MaxCut and MaxSAT with many constraints (Dembo-Montanari-Sen 17,
Panchenko 18)

@ Neural networks, high-dimensional statistics (Hopfield 82, Gardner-Derrida 87/88,
Talagrand 00/02, Choromanska-Henaff-Mathieu-Ben Arous-LeCun 15, Ding-Sun 18,
Fan-Mei-Montanari 21)
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The maximum of Hy

Two basic questions for any random optimization problem:
@ OPT: maximum value that exists?

@ ALG: maximum value found by efficient algorithm?
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The maximum of Hy

Two basic questions for any random optimization problem:
@ OPT: maximum value that exists?

@ ALG: maximum value found by efficient algorithm?

Theorem (Parisi 82, Talagrand 06/10, Panchenko 14, Auffinger-Chen 17)

The limiting maximum value

OPT = p-lim L max Hy(o)

N—oo N oesy

exists and is given by the Parisi formula P(¢).
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Efficient Optimization

@ Today's goal: understand power of efficient algorithms A to optimize Hy.
For o = A(Hp), what is max of

1
E = 5 H(o) ?
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Efficient Optimization

@ Today's goal: understand power of efficient algorithms A to optimize Hy.
For o = A(Hp), what is max of

1
E = 5 H(o) ?

o Gradient descent, convex optimization don't cut it @
o Rich landscapes, eV bad local maxima well below OPT (ABAC 13, Subag 17)

o Worst-case lower bounds overly pessimistic ®
o Adversarial Hy: (log® N)-approximation NP-hard (ABHKS 05, BBHKSZ 12)
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Efficient Optimization: Some Approaches

Can study specific algorithms like Langevin/Glauber dynamics

@ Rich literature (Cugliandolo-Kurchen 92, Ben Arous-Dembo-Guionnet 01& 06, Ben
Arous-Gheissari-Jagannath 20)

@ Slow mixing, stuck at threshold energy on short time scales

Can study critical points of Hy

@ Pure p-spin models (p > 3): e’ local maxima appear at value E,, < OPT
(Auffinger-Ben Arous-Cerny 13, Subag 17)

@ Conjectured to obstruct e.g. gradient descent

@ But no rigorous hardness implications
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Informal Result

We determine sharp threshold ALG for a class of Lipschitz algorithms
o A Lipschitz algorithm attains ALG
@ No Lipschitz algorithm surpasses ALG

@ No known efficient algorithm surpasses ALG
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Informal Result

We determine sharp threshold ALG for a class of Lipschitz algorithms
o A Lipschitz algorithm attains ALG
@ No Lipschitz algorithm surpasses ALG

@ No known efficient algorithm surpasses ALG

Result holds for yet more general multi-species spin glasses
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Overlap Gap Property

v solution geometry clustering = rigorous hardness for stable algorithms

Max independent set in random sparse graphs (Gamarnik-Sudan 14, Rahman-Virag
17, Gamarnik-Jagannath-Wein 20, Wein 20)

Random (NAE—)k—SAT (Gamarnik-Sudan 17, Bresler-Huang 21)
Hypergraph maxcut (Chen-Gamarnik-Panchenko-Rahman 19)

Symmetric binary perceptron (Gamarnik-Kizildag-Perkins-Xu 22)

Mean field spin glass (Gamarnik-Jagannath 19, Gamarnik-Jagannath-Wein 20)
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Overlap Gap Property

v solution geometry clustering = rigorous hardness for stable algorithms

Max independent set in random sparse graphs (Gamarnik-Sudan 14, Rahman-Virag
17, Gamarnik-Jagannath-Wein 20, Wein 20)

Random (NAE—)k—SAT (Gamarnik-Sudan 17, Bresler-Huang 21)
Hypergraph maxcut (Chen-Gamarnik-Panchenko-Rahman 19)

Symmetric binary perceptron (Gamarnik-Kizildag-Perkins-Xu 22)

Mean field spin glass (Gamarnik-Jagannath 19, Gamarnik-Jagannath-Wein 20)

Overlap: (o, p)/N € [-1,1]
Overlap gap: no high-value o, p have medium overlap € [v1, 1]

@ Means high-value points are either close together or far apart
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Classic OGP (Gamarnik-Sudan 14)

@ Stable algorithm A reaching E = 2 points of value E with medium overlap

Construct by partially rerandomizing A
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-
Classic OGP (Gamarnik-Sudan 14)

@ Stable algorithm A reaching E = 2 points of value E with medium overlap

Construct by partially rerandomizing A
@ Overlap gap = this pair does not exist. So A cannot reach E

R

@

)
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Classic OGP to Multi-OGP

Easy Hard by Classic OGP | Impossible

ALG D) OPT

N

?
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Classic OGP to Multi-OGP

Easy | | Impossible

I I I 4

ALG O OPT

Hard by Multi-OGP

N

Multi-OGP: more complex forbidden structure

Can we push hardness all the way to ALG?
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Star OGP (Rahman-Virag 17)

For max independent set

@ Stable algorithm A reaching E = constellation of points of value E

@ Such a constellation does not exist. So A cannot reach E

)
@ @ @ @
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Ladder OGP (Wein 20, Bresler-Huang 21)

For max independent set, random k-SAT

@ Stable algorithm A reaching E = constellation of points of value E
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Overview of Main Result (Huang-S 21, 23+)

@ We show that for spin glasses, Branching OGP gives tight hardness
o Matches value ALG of best algorithm
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Overview of Main Result (Huang-S 21, 23+)

@ We show that for spin glasses, Branching OGP gives tight hardness
o Matches value ALG of best algorithm

o Forbidden constellation is densely branching ultrametric tree

o Inspired by ultrametricity of Gibbs measures e®"'W*)dx (Parisi 82, Panchenko 14,
Jagannath 17, Chatterjee-Sloman 21)

O
O o 0 0

g b d o d o d o

© 00 00 OO 6O 0O 0O OO ©
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o Matches value ALG of best algorithm

o Forbidden constellation is densely branching ultrametric tree

o Inspired by ultrametricity of Gibbs measures e®"'W*)dx (Parisi 82, Panchenko 14,
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@ Hardness for O(1)-Lipschitz algorithms
o View A as map from (gi,1,...,8v.n, 81,11, ..) to RV (with L[* distance)
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Overview of Main Result (Huang-S 21, 23+)

@ We show that for spin glasses, Branching OGP gives tight hardness
o Matches value ALG of best algorithm

o Forbidden constellation is densely branching ultrametric tree

o Inspired by ultrametricity of Gibbs measures e®"'W*)dx (Parisi 82, Panchenko 14,
Jagannath 17, Chatterjee-Sloman 21)

O
O o 0 0

g o d o d o d o

© 00 00 OO 6O 0O 0O OO ©

@ Hardness for O(1)-Lipschitz algorithms
o View A as map from (g1,1,...,8v.n, 81,11, -.) to RY (with L? distance)
o Includes:

@ O(1) rounds of gradient descent or any constant order method
o Langevin dynamics for e/ for O(1) time
@ The algorithm attaining ALG
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Branching OGP (Huang-S 21)

@ O(1)-Lipschitz algorithm A reaching E = ultrametric of points of value E

O
o o 0 0

g b ¢ b g v 9 0
O 00 0O OO OO 0O 0O 0O ©

Construct from correlated Hamiltonian ensemble (more later)
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Branching OGP (Huang-S 21)

@ O(1)-Lipschitz algorithm A reaching E = ultrametric of points of value E

O
o o 0 0

g o ¢ v 9 o ¢ b
O 00 0O OO OO 0O 0O 0O ©

Construct from correlated Hamiltonian ensemble (more later)

@ Constellation does not exist for E = ALG + . So A cannot beat ALG
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The Algorithmic Threshold

Theorem (Subag 18)
An efficient algorithm finds o such that

1
%HN(U) > ALG = / ¢ (q)"/2dg.
0
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Theorem (Huang-S 21)

If € even, no O(1)-Lipschitz algorithm beats ALG with probability e~V

Tight answer for even models, but brittle proof using Guerra’s interpolation
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1
%HN(U) > ALG = / ¢ (q)"/2dg.
0

Theorem (Huang-S 21)

If € even, no O(1)-Lipschitz algorithm beats ALG with probability e~V

Tight answer for even models, but brittle proof using Guerra’s interpolation

Theorem (Huang-S 23+)

For all £, no O(1)-Lipschitz algorithm beats ALG with probability e=<".

@ New proof avoids Guerra’s interpolation
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The Algorithmic Threshold

Theorem (Subag 18)
An efficient algorithm finds o such that

1
%HN(U) > ALG = / ¢ (q)"/2dg.
0

Theorem (Huang-S 21)

If € even, no O(1)-Lipschitz algorithm beats ALG with probability e~V

Tight answer for even models, but brittle proof using Guerra’s interpolation

Theorem (Huang-S 23+)

For all £, no O(1)-Lipschitz algorithm beats ALG with probability e=<".

@ New proof avoids Guerra’s interpolation
@ Same method works for multi-species spin glasses (described later)

o In these models, OPT not always known! (Because Guerra's interpolation fails)
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Subag's Algorithm (Hessian Ascent)

For 6 = 1/D constant, x =0 ¢ RN:
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Subag's Algorithm (Hessian Ascent)

For 6 = 1/D constant, x =0 ¢ RN:
© Take v' the top eigenvector of tangential Hessian V2 Hp(x*)|xt)-

© Explore with small orthogonal steps: x*! = xt £ /6 Nv*.
(Since v' L x*, we have ||xtH§ = téN)
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Subag's Algorithm (Hessian Ascent)

For 6 = 1/D constant, x =0 ¢ RN:
© Take v' the top eigenvector of tangential Hessian V2 Hp(x*)|xt)-

© Explore with small orthogonal steps: x*! = xt £ /6 Nv*.
(Since v' L x*, we have ||xtH§ = téN)

@ Output o = xP € Sy
Can be implemented as O(1)-Lipschitz algorithm (EI Alacui-Montanari-Sellke 20)
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Analysis of Subag's Algorithm

o If |x||, = /N, tangential Hessian V2Hp(x),+ has law £”(q)/? x GOEn_1
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Analysis of Subag's Algorithm

o If |x||, = /N, tangential Hessian V2Hp(x),+ has law £”(q)/? x GOEn_1
@ Amax(GOE) = 2, so step t gains

HN(Xt+1) — HN(Xt)

~ §5& 1/2
. 5¢" (£6)
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o If |x||, = /N, tangential Hessian V2Hp(x),+ has law £”(q)/? x GOEn_1
@ Amax(GOE) = 2, so step t gains

HN(Xt+1) — HN(Xt)
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@ Summing over t = 1,...,D and taking § — 0,

1
T~ [ (@) g = ALG
0
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Analysis of Subag's Algorithm

o If |x||, = /N, tangential Hessian V2Hp(x),+ has law £”(q)/? x GOEn_1
@ Amax(GOE) = 2, so step t gains

HN(Xt+1) — HN(Xt)

~ §5& 1/2
. 5¢" (£6)

@ Summing over t = 1,...,D and taking § — 0,

1
T~ [ (@) g = ALG
0

o Although x* depends on Hy, ok by uniform lower bound on Amax(Hn(X)x1)

for all ||x||, = v/gN
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Connection to Physics Theory

@ Approximate maxima of Hy are ultrametric, i.e. isometric to a tree

A
4 1 A Y
7’ N
’ 1 Y
’ 1 N
4 N
7’ ! A
e c o o
Everywhere branching tree Not everywhere branching tree
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|
Connection to Physics Theory

@ Approximate maxima of Hy are ultrametric, i.e. isometric to a tree

t=0
A
4 1 A Y

7’ N

’ 1 Y

’ 1 N
4 1 N
7’ A
e c o o
Everywhere branching tree Not everywhere branching tree
ALG = OPT ALG z OPT

Subag's algorithm attains OPT iff branching occurs at all depths
o Intuition: algorithm traces root-to-leaf path of tree

Mark Sellke ALG for Multi-Species Spin Glasses 18 /35



Branching OGP

Subag’s algorithm reaches ALG. We next see how to show hardness beyond ALG

o}
o o 0 0

g o ¢ b ¢ © d 0

© 00 00 0O OO OO 0O VO ©

Mark Sellke

ALG for Multi-Species Spin Glasses

19 /35



Hierarchically Correlated Hamiltonians

Generate tree of Hamiltonians (Hf),cxe
@) O
d:;;:i:yD Q/ \Q O/ \Q

/N NN N
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Generate tree of Hamiltonians (Hf),cxe

/O\ Po

O O p1

N, N,
/N SN N N

OEOOEBEE -
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Hierarchically Correlated Hamiltonians

Generate tree of Hamiltonians (Hf),cxe

/O\ Po

O O p1

N, N,
/N SN N N

OEOOEBEE -

k,DeNlarge, 0<po<p1<---<pp=1
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Hierarchically Correlated Hamiltonians

Generate tree of Hamiltonians (Hf),cxe

/O\ Po

O O p1

N, N,
/N SN N N

OEOOEBEE -

k,DeNlarge, 0<po<p1<---<pp=1

Vocab: “(Hpy),ep has correlation p'= (po,...,pp)"

Mark Sellke ALG for Multi-Species Spin Glasses 20/35



Lipschitz Algorithms to Ultrametric Trees
Let A be O(1)-Lipschitz
/O\ /O\
AN
r @ @ @ &

p1
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Lipschitz Algorithms to Ultrametric Trees
Let A be O(1)-Lipschitz

/O\ /O\

qo

P1
A(Hf))=a"
SN
r @ @ @ @
~—" w
Correlation po Overlap = E[Overlap] = x(po) = go

Gaussian concentration (using A Lipschitz)
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Lipschitz Algorithms to Ultrametric Trees

Let A be O(1)-Lipschitz

Q O 9
o R e LR
AN
P @ @ &) @
Correlatlon p1 Overlap = ]E[Overlap] X(Pl) q1

Gaussian concentration (using A Lipschitz)

Mark Sellke ALG for Multi-Species Spin Glasses

21/385



Lipschitz Algorithms to Ultrametric Trees

Let A be O(1)-Lipschitz

) /O\ /O\ ql

A
m@@@@ @) ) ) D =

qo

Gaussian concentration (using A Lipschitz)
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Lipschitz Algorithms to Ultrametric Trees

Let A be O(1)-Lipschitz

/\ /\

p1 a
.A(H“)—a'

m@@@@ q2

qo

Gaussian concentration (using A Lipschitz)

(0")uepp is approximately ultrametric
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Lipschitz Algorithms to Ultrametric Trees

Let A be O(1)-Lipschitz

/\ /\

p1 a
.A(H“)—a'

m@@@@ q2

qo

Gaussian concentration (using A Lipschitz)

(0")uepp is approximately ultrametric

Vocab: (o), has geometry ¢ = (qo; - - -, qp)"
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Lipschitz Algorithms to Ultrametric Trees

Let A be O(1)-Lipschitz

/\ /\

p1 a
.A(H“)—a'

m@@@@ q2

qo

Gaussian concentration (using A Lipschitz)

(0")uepp is approximately ultrametric

Vocab: (o), has geometry ¢ = (qo; - - -, qp)"
x continuous. Can choose p' to achieveany 0 < gp <---<gp=1
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Lipschitz Algorithms to Ultrametric Trees

4o

Q

< N .
ANA
O0O000 -

@ Suppose Lipschitz A reaches E. Then, for any target g,
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Lipschitz Algorithms to Ultrametric Trees

Po O o

/\ N

P1 O O q1

[N N
m@@@@ OO 00 -

@ Suppose Lipschitz A reaches E. Then, for any target g,
o Exists p
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Lipschitz Algorithms to Ultrametric Trees

Po O o

/\ e /\

p1 q1
.A(H” )=o"

m@@@@ ) €9 ) &) =

@ Suppose Lipschitz A reaches E. Then, for any target g,
e Exists p and (0"),cp with geometry ¢, so that
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Lipschitz Algorithms to Ultrametric Trees

Po O o

/\ e /\

p1 q1
.A(H” )=o"

m@@@@ ) €9 ) &) =

@ Suppose Lipschitz A reaches E. Then, for any target g,
e Exists p and (0"),cp with geometry ¢, so that

%H,‘\’,(U”) >E for all u € [k]P
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Lipschitz Algorithms to Ultrametric Trees

Po O o

/\ e /\

p1 a1
A(HU )

m@@@@

@ Suppose Lipschitz A reaches E. Then, for any target g,

Q
N

e Exists p and (0"),cp with geometry ¢, so that

%H,‘\’,(U”) >E for all u € [k]P

o For some p, there is a tree constellation with value E and geometry q
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The value BOGP

Q Q
< NG < N4
JANEIVA ANVA
&) @ & 6

Correlations g = (po, .. ., PD) Geometry § = (qo, - - -, gp) = (0,6, ..., 1)
§=1/D

Mark Sellke ALG for Multi-Species Spin Glasses 23/35



The value BOGP

Q Q
< NG < N4
JANEIVA ANVA
&) @ & 6

Correlations g = (po, .. ., PD) Geometry § = (qo, - - -, gp) = (0,6, ..., 1)
§=1/D

1 1

TreeValue(p) = p-lim  max —5 Z ~Hu(o")
N—oo (o )uE[k]Dﬂ uelk]P N

geometry §
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Q Q
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JANEIVA ANVA
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Correlations g = (po, .. ., PD) Geometry § = (qo, - - -, qp) = (0,6,...,1)
§=1/D

1 1

TreeValue(p) = p-lim  max —5 Z ~Hu(o")
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geometry §

BOGP = max TreeValue(p)
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The value BOGP

Q Q
< NG < N4
JANEIVA ANVA
&) @ & 6

Correlations g = (po, ..., PD) Geometry § = (qo,..-,qp) = (0,0,...,1)
§=1/D

1 1

TreeValue(p) = p-lim  max —5 Z ~Hu(o")
N—oo (o )uE[k]Dﬂ uelk]P N

geometry §

BOGP = max TreeValue(p)
p

e For any p, there is no tree constellation with value BOGP + ¢ and geometry ¢
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The value BOGP

Q Q
< NG < N4
JANEIVA ANVA
&) @ & 6

Correlations g = (po, ..., PD) Geometry § = (qo,..-,qp) = (0,0,...,1)
§=1/D

1 1

TreeValue(p) = p-lim  max —5 Z ~Hu(o")
N—oo (o )uE[k]Dﬂ uelk]P N

geometry §

BOGP = max TreeValue(p)
p

e For any p, there is no tree constellation with value BOGP + ¢ and geometry ¢
e = No O(1)-Lipschitz algorithm attains BOGP + ¢
ALG for Multi-Species Spin Glasses 23/35



|
New Proof Idea: Greedy is Best

Remains to upper bound BOGP (by ALG)
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|
New Proof Idea: Greedy is Best

Remains to upper bound BOGP (by ALG)
@ Can branch Subag’s algorithm by taking top k eigenvectors
@ This is a multi-valued algorithm. All outputs ~ ALG by same analysis

@ This tree is built in a greedy way
@ Main claim: best way to construct tree is greedy

e “Can't plan ahead so that my gain at 20th level is unusually big"
e Proved by uniform concentration

Mark Sellke ALG for Multi-Species Spin Glasses 24 /35



Uniform Concentration

Configuration x, x*, ..., x*:
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Uniform Concentration

Configuration x, x*, ..., x*:

Radius:

X[l = VaN
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Increment orthogonality:
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Uniform Concentration

Configuration x, x*, ..., x*:

k

Fi = max, -0 > (Hu(x) — H(x)

1...,x )

“Improvement in Hy from x to its children"

Radius:

X[l = VaN
Ix'lly = v/a'N

Increment orthogonality:

x'—x L x—x1Lx
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Uniform Concentration

Configuration x, x*, ..., x*:

k

Fi = max, -0 > (Hu(x) — H(x)

1...x )

“Improvement in Hy from x to its children"

Lemma (Uniform Concentration, cf. Subag 18)

For any n > 0, for sufficiently large k > ko(n),

Radius: P [|F(x) —EF(x)] < n Vx|, = \/qN] >1—e <N
lIx[l; = v aN
Ix'll, = Va'N

Increment orthogonality:

x'—x L x—x1Lx
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Uniform Concentration

Configuration x, x*, ..., x*:

k

Fi = max, -0 > (Hu(x) — H(x)

1...x )

“Improvement in Hy from x to its children"

Lemma (Uniform Concentration, cf. Subag 18)

For any n > 0, for sufficiently large k > ko(n),

Radius: P [|F(x) —EF(x)] < n Vx|, = \/qN] >1—e <N
lIx[l; = v aN
Ix'll, = Va'N

Increment orthogonality:

No ||x||, = +/qN is unusually good for building
a tree, so might as well be greedy.

x'—x L x—x1Lx
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Upper Bounding the Tree Value

Let interior o be recursive barycenters:

u__ 1 k ui
ol=3>i0

9o O
u O/ \Q

A
ASNSHSNS
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Upper Bounding the Tree Value

Let interior o be recursive barycenters:

u__ 1 k ui
ol=3>i0

9o O

u /\
/\ /\

2 ) ) )
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Upper Bounding the Tree Value

Let interior o be recursive barycenters:

u__ 1 k ui
ol=3>i0

qo

u /\
/\ /\
2D 9 &) D
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|
Upper Bounding the Tree Value

Let interior o be recursive barycenters:

u_ 1 k ui
o'=32i.0

qo

W /\
/\ /\
2D 9 &) D

Satisfy orthogonality relations
approximately if k large:

llo“lly = \/qpu N

o' —o" lo¥ —o" L o"

Mark Sellke ALG for Multi-Species Spin Glasses 26 /35



|
Upper Bounding the Tree Value

Let interior o be recursive barycenters:  Suppose first all H} identical. (5= 1)
o' = %Z,‘kzl o Want to upper bound tree value:

’ /\ leu%D;vH”(”"’
@

JANA
® @) @) &)

Satisfy orthogonality relations
approximately if k large:

llo“lly = \/qpu N

o' —o" lo¥ —o" L o"
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|
Upper Bounding the Tree Value

Let interior o be recursive barycenters:  Suppose first all H} identical. (5= 1)
" ;
o'=1>r, 0" Want to upper bound tree value:

1 1

Y fHN(O'u)
o /\ kD UGZM;D N
a Write as sum of claw increments

ANEA )
q2 @ @ @ @ %Z(HN(UM)_HN(GU))

Satisfy orthogonality relations
approximately if k large:

lo“lly = \/qu N

o' —o' lo¥ —o" L o"
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Upper Bounding the Tree Value

Let interior o be recursive barycenters:  Suppose first all H} identical. (5= 1)
" ;
o'=1>r, 0" Want to upper bound tree value:

1 1

- fHN(O'u)
qo /\ kD u%{) N
q Write as sum of claw increments

ANEVAS )
q2 @ @ @ @ %Z(HN(UM)_HN(GU))

Satisfy orthogonality relations
approximately if k large:

lo“lly = \/qu N

o' —o' lo¥ —o" L o"
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|
Upper Bounding the Tree Value

Let interior o be recursive barycenters:  Suppose first all H} identical. (5= 1)
" ;
o'=1>r, 0" Want to upper bound tree value:

1 1 u
% @ 2 @)

uc[k]P

VRN
a1 Write as sum of claw increments
R L
q2 ui u
i ; (HN(U ) — Hu(o ))

Satisfy orthogonality relations
approximately if k large:

llo“lly = \/qu N

o' —o' lo¥ —o" L o"
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|
Upper Bounding the Tree Value

Let interior o be recursive barycenters:  Suppose first all H} identical. (5= 1)
o' = %Z,‘kzl o Want to upper bound tree value:

1 1
0 5 Z ~Hn(a")
q /\ KD L N

qm Write as sum of claw increments

2 ) ) &) & %Z (HN(a“") - HN(a“)) < F(a")

Satisfy orthogonality relations
approximately if k large:

llo“lly = \/qpu N

o' —o" lo¥ —o" L o"
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Upper Bounding the Tree Value

Let interior o be recursive barycenters:  Suppose first all H} identical. (5= 1)
o' = %Z,‘kzl o Want to upper bound tree value:

1 1
o D Z ~ Hn(a")
q /\ KD L N

qm Write as sum of claw increments

2 ) ) &) & %Z (HN(a“") - HN(a“)) < F(a")

Satisfy orthogonality relations F(o") ~ EF(o") by uniform concentration!
approximately if k large:

llo“lly = \/qpu N

o' —o" lo¥ —o" L o"
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Upper Bounding the Tree Value

Let interior o be recursive barycenters:  Suppose first all H} identical. (5= 1)
o' = %Z,‘kzl o Want to upper bound tree value:

1 1
o D Z ~ Hn(a")
q /\ KD L N

qm Write as sum of claw increments

2 ) ) &) & %Z (HN(a“") - HN(a“)) < F(a")

Satisfy orthogonality relations F(o") =~ EF(o") by uniform concentration!
approximately if k large:
u Level-d increments match Subag's algorithm
lo“lly = y/aju N

o' —o" lo¥ —o" L o"
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|
Upper Bounding the Tree Value

Let interior o be recursive barycenters:  Suppose first all H} identical. (5= 1)
o' = %Z,‘kzl o Want to upper bound tree value:

1 1
o D Z ~ Hn(a")
q /\ KD L N

qm Write as sum of claw increments

2 ) ) &) & %Z (HN(a“") - HN(a“)) < F(a")

Satisfy orthogonality relations F(o") =~ EF(o") by uniform concentration!
approximately if k large:
u Level-d increments match Subag's algorithm
le“ll2 = /ajuN
o' — o' lo¥ —o! Lo General p: similarly bound

1 : ui ui u u
0 2 (™) = Hi(o")
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Branching OGP is Necessary for Tight Hardness

Easy Hard by Branching OGP

ALG OPT

Impossible

AN

7
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|
Branching OGP is Necessary for Tight Hardness

Easy | Hard by Branching OGP Impossible

ALG OPT

AN
A 4

Theorem (Huang-S 21)

If an ultrametric constellation is forbidden at value ALG + ¢, it must contain a
complete binary subtree of diverging depth as ¢ — 0.
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@ Up to now: polynomials in variables xi, ..., xy that all look alike
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|
Multi-Species Spin Glasses

@ Up to now: polynomials in variables xi, ..., xy that all look alike
@ Multi-species models: multiple “variable types" x;, y;, z;, . . .
o Coefficients of xjx;, xiyj, xiy;z«x have different variances

@ Example: bipartite SK model

Hy(x,y) = \%N<Gx,y>, G c RVV iid. N(0,1) entries

or higher-order polynomials

1 1
Hn(x,y) = N<G’X®3> + N<G/,X®y®2>7 G,G' e (R")®
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Multi-Species Spin Glasses

@ Formally, each coordinate part of a species s € . = {1,...,r}

N|=TyU---UZ,,  |[Ts| = AN
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Multi-Species Spin Glasses

@ Formally, each coordinate part of a species s € . = {1,...,r}

N|=TyU---UZ,,  |[Ts| = AN

o Interaction weights 72,73, ... NOW (Vs,.5)s1.526.55 (Vs1.52.53 )sa,52,53€.75 - - -

e ¢ now multivariate polynomial in (g1,...,q;)

@ Goal: optimize Hy over product of spheres

Ty = {0' cRN: H0'|zs||§ =N Vse 5”}
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Multi-Species Spin Glasses

@ Formally, each coordinate part of a species s € . = {1,...,r}
IN|l=Z, U---UZ, |Zs| = AsN

@ Interaction weights 72,73, ... NOW (Vs; 5, )s1,50€.5 (Vs1,50.55 )51,52,55€.5» - - -

e ¢ now multivariate polynomial in (g1,...,q;)

Goal: optimize Hy over product of spheres

Ty = {0' cRN: H0'|zs||§ =N Vse 5”}

@ OPT known for convex or pure £ (Panchenko 15, Subag 21, Bates-Sohn 22)
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|
Multi-Species Spin Glasses

@ Formally, each coordinate part of a species s € . = {1,...,r}
IN|l=Z, U---UZ, |Zs| = AsN

@ Interaction weights 72,73, ... NOW (Vs; 5, )s1,50€.5 (Vs1,50.55 )51,52,55€.5» - - -

e ¢ now multivariate polynomial in (g1,...,q;)

Goal: optimize Hy over product of spheres

Ty = {0' cRN: H0'|zs||§ =N Vse 5”}

@ OPT known for convex or pure £ (Panchenko 15, Subag 21, Bates-Sohn 22)

@ ALG has richer behavior than in one species
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Multi-Species Algorithms

@ Optimizing on product of spheres = track radius for each species
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Multi-Species Algorithms

@ Optimizing on product of spheres = track radius for each species
e 2 species: radius schedule is up-right path from (0,0) to (1,1)

00 02 04 06 08 10
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Multi-Species Algorithms

@ Optimizing on product of spheres = track radius for each species
e 2 species: radius schedule is up-right path from (0,0) to (1,1)

00 02 04 06 08 10

e In general, radius schedule is coordinate-increasing @ : [0,1] — [0, 1]
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|
Multi-Species Algorithms

@ Optimizing on product of spheres = track radius for each species
e 2 species: radius schedule is up-right path from (0,0) to (1,1)

00 02 04 06 08 10

e In general, radius schedule is coordinate-increasing @ : [0,1] — [0, 1]

@ Each ® gives algorithm taking small orthogonal steps in each species
o Algorithm value

40)= 30 [ /000 9)(@)0l(a) da

ses
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Multi-Species Algorithmic Threshold

Theorem (Huang-S 23+)
Define

1
AG= s S [ @ag0 o)) da
®:[0,1]=[0,1]7 e 0
increasing, differentiable
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Multi-Species Algorithmic Threshold

Theorem (Huang-S 23+)
Define

®:[0,1]—[0,1]”
increasing, differentiable

1
AG= s A [ oageor(@ela da
se 0

o An explicit O(1)-Lipschitz algorithm achieves ALG w.h.p.
e No O(1)-Lipschitz algorithm beats ALG with probability e=<.
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Theorem (Huang-S 23+)
Define

1
MG= s Y [ oagooy(@0(a) da
®:[0,1]=[0,1]7 e 0
increasing, differentiable

o An explicit O(1)-Lipschitz algorithm achieves ALG w.h.p.
e No O(1)-Lipschitz algorithm beats ALG with probability e=<.
(More general threshold with external fields too)
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|
Multi-Species Algorithmic Threshold

Theorem (Huang-S 23+)
Define

1
MG= s Y [ oagooy(@0(a) da
®:[0,1]=[0,1]7 e 0
increasing, differentiable

o An explicit O(1)-Lipschitz algorithm achieves ALG w.h.p.
e No O(1)-Lipschitz algorithm beats ALG with probability e=<.
(More general threshold with external fields too)

Theorem (Huang-S 23+)

The variational formula has a maximizer ®, which solves an explicit ODE.
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Variational Problem Example

Consider (A1, A2) = (1/3,2/3) and

£(q1, a2) = (Mq1)” + (Ma1)(Deq) + (Aeq1)® + (A1q1)* + (Ma1) (A2q2)?

%80 0.2 0.4 0.6 0.8 1.0
®1(q)

Some ODE solutions. Optimal ¢ : [0,1] — [0, 1]? in bold
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Algorithmic Symmetry Breaking

Optimal ® may be asymmetric, even when model is symmetric!

A=) = % (g1, 92) = (3q1)* + (3q1)(392) + (362)* + (3q1)* + (3¢2)*

080 02 04 06 08 10
®1(q)

The plot thickens...
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Pure Multi-Species Models

@ Models where
a1 . az a,

&lqr, .- ar) =a*q3% - q;
o Example: bipartite SK £(q1, g2) = q1¢2
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Pure Multi-Species Models

Models where

a1 a2

&laqr,---.a)) =q1*q3* - g
o Example: bipartite SK £(q1, g2) = q1¢2

Optimal ¢ is polynomial

In this case, ALG = E,, has explicit non-variational formula.

Langevin dynamics is believed to reach the same threshold!
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Summary

@ We determine algorithmic threshold of O(1)-Lipschitz algorithms for
optimizing multi-species spherical spin glasses
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Summary

@ We determine algorithmic threshold of O(1)-Lipschitz algorithms for
optimizing multi-species spherical spin glasses

@ Branching OGP matches Subag algorithm for generic reason

@ Geometric description of ALG: largest value whose super-level set contains
densely-branching ultrametric tree

e Optimal algorithms climb this tree
e Absence of this tree implies hardness by BOGP

o Comparison with OPT ultrametricity: ALG trees must branch continuously,
OPT trees may not

Thank you!
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Models with Linear Terms

Suppose model has 1-spin interaction (external field)

HN(O') = Z

p=1

Then

P
"
N(Tpl)/z<6(p)70®p> &a)=>_nd

ALG = BOGP = / vV (pE)'(q) dg

Mark Sellke

b0l o0,
increasing, differentiable

0.0 0.2 0.4 0.6 0.8 1.0
a

Optimal p for £(q) = q* + ¢
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Multi-Species Algorithmic Threshold with Linear Terms

Theorem (Huang-S 23+)
Define

1
I
MG= sp S [\l dugo o) (a)oia) da
p:[0,1]—[0,1] s 0
®:[0,1]—[0,1]”
increasing, differentiable

o An explicit O(1)-Lipschitz algorithm achieves ALG w.h.p.
e No O(1)-Lipschitz algorithm beats ALG with probability e=<N

Theorem (Huang-S 23+)

This variational problem has a maximizer (p, ®).

@ The maximizer solves an explicit ODE.

e If & has no 1-spin interactions, then p = 1.
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Variational Problem Example: No Linear Term

Consider (A1, A2) =(1/3,2/3)

£(q1, a2) = (M1q1)” + (Ma1)(ear) + (A2q1)® + (A1q1)* + (Ma1) (A2q2)?

1.0
038
06/
C]
[=%
0.4
02|
%80 02 04 o6 o8 10 8o 02 04 06 08 1.0
q oi(q)
Optimal p : [0,1] — [0,1] Image of optimal ® : [0,1] — [0,1]? in bold
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Variational Problem Example: Small Linear Term
Consider (A1, A2) =(1/3,2/3)

(a1, @) = (\aa1)® + (\agn)(Qoqr) + (oar)® + (aar)* + (Aar)(Aag2)?
4 0.05(A1q1) + 0.5(A2q2)

1.0
0.8
0.6
z
Q
0.4
02
%80 02 04 06 08 10 08% 02 04 06 08 10
q ®:(q)
Optimal p : [0,1] — [0,1] Image of optimal ® : [0,1] — [0,1]? in bold
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Variational Problem Example: Large Linear Term

Consider (A1, A2) =(1/3,2/3)

&(q1:a2) = (Ma1)® + (Ma)(A2q1) + (A201)? + (M1g1)* + (A1g1) (h2g2)°?
—+ 0.2()\1(71) + 1.8()\2CI2)

10 12
1.0
0.8
0.8
0.6
z Zos
o &
0.4
0.4
02 02
080 02 04 06 08 10 %80 02 04 06 08 10 12
q a(q)
Optimal p : [0,1] — [0,1] Image of optimal ¢ : [0,1] — [0,1]2
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