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Preface

This thesis concerns several problems in probability, optimization, and machine learning.

In the first part we study mixing and sampling. We begin by revisiting the riffle shuffle, and

generalizing the classical “seven shuffles suffice” result of Bayer and Diaconis to shuffles with asym-

metric cuts. Our guiding perspective is to pinpoint at what locations and scales the original deck

ordering retains stability. We then turn to our first spin glass model, aiming to sample from the

Sherrington-Kirkpatrick Gibbs measure in the high-temperature phase. We develop a new approach

based not on a Markov Chain, but instead on Eldan’s stochastic localization. Moreover we prove

that no stable algorithm can satisfy the same properties once replica symmetry breaks due to the

phenomenon of disorder chaos.

In the second part we turn to optimization, aiming to find approximate ground states in spin

glass models. This problem is intimately related to their low temperature behavior, and the limiting

ground state energy is given by the Parisi formula at zero temperature. We determine an exact

algorithmic threshold for a natural class of stable algorithms, which is achieved by approximate

message passing algorithms. The broader class of algorithms is defined by its Lipschitz dependence on

the random coefficients of the function to be optimized; it includes general gradient-based algorithms

and Langevin dynamics on dimension-free time scales. Our hardness results stem from a refined

landscape property that we christen the branching overlap gap property.

The third part concerns two problems in high-dimensional machine learning. We first study the

problem of chasing convex bodies, in which one aims to perform stable convex optimization to obtain

robust performance guarantees in changing environments. The solution involves a generalization of

the classical Steiner point in convex geometry and its connections to Lipschitz selection. Finally we

establish the law of robustness, which states that a natural robustness memorization task in high

dimension requires extremely overparametrized machine learning models.
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Chapter 1

Introduction

This introduction surveys the results in this thesis. Its aim is to convey at least roughly the state-

ments and motivations for these results. To this end we have given a brief mention to certain topics

when a more complete and not-overly-long explanation eluded us. The results themselves concern

several quite different problems ranging from mixing times and spin glasses to machine learning.

However common themes such as dimension-free behavior and sharp transitions are present through-

out.

1.1 Cutoff for the Asymmetric Riffle Shuffle

In Chapter 2, we begin with the classical problem of riffle shuffling. In additional to being a

ubiquitous procedure in real life, the riffle shuffle has led to beautiful mathematics. While one can

ask many questions about such a process, the best studied is inarguably:

How many shuffles are needed to randomize the order of the deck?

Repeated riffle shuffling defines a Markov chain, because the distribution for the deck order Xt+1

at time t + 1 given the order Xt at time t is independent of the past. Of course, each Xt lives in

the symmetric group SN , where N is the number of cards in the deck. We assume the deck starts

in a deterministic order X0 (all choices of X0 are equivalent by relabelling the cards). We would

like to know how large t should be as a function of N for the distribution µN,t to become close to

the uniform distribution µN,∞ on SN . The Markov chain is said to mix once this occurs, though of

course the amount of time required might depend on the precise notion of distance used.

As has become customary, we focus on mixing in total variation. Recall that the total variation

1



CHAPTER 1. INTRODUCTION 2

Figure 1.1: A riffle shuffle in progress.

distance dTV

N (µ, ν) between two probability measures on the same space is defined by

dTV

N (µ, ν) = sup
A
|µ(A)− ν(A)|

where the supremum is taken over all measurable sets A. (In our case, A ⊆ SN would be a subset

of the possible N ! permutations.) The total variation distance is a stringent notion. Indeed, a small

total variation distance dTV

N (µ, ν) ≤ ε is equivalent to the existence of a coupling (x, y) such that

x ∼ µ, y ∼ ν, and P[x = y] ≥ 1− ε.

The total variation mixing time of the standard riffle shuffle was analyzed in [BD92], where it

was shown that
(

3
2 log(2) ± o(1)

)
log(N) shuffles are necessary and sufficient to mix an N card deck.

[BD92] focused on the Gilbert-Shannon-Reeds (GSR) model of the riffle shuffle. In this model the

N -card deck is first cut into parts of size A and N −A, for A ∼ Bin(N, 1/2) drawn from a binomial

distribution. In particular the deck is cut “roughly in half”. Next, the cards are “riffled” together

by generating a uniformly random interleaving of the two piles from the
(
N
A

)
choices.

As above, given an arbitrary deterministic initial ordering for the cards, let µN,K denote the

distribution for the state of the deck after K shuffles and µN,∞ the uniform distribution on all N !

permutations. Then [BD92] showed the following result.

Theorem 1 ([BD92]). Fix ε > 0. If the sequence (KN )N≥1 satisfies KN ≤
(

3
2 log(2) − ε

)
log(N),
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then the GSR shuffle satisfies

lim
N→∞

dTV

N (µN,KN , µN,∞) = 1.

On the other hand, if KN ≥
(

3
2 log(2) + ε

)
log(N), then

lim
N→∞

dTV

N (µN,KN , µN,∞) = 0.

The above result establishes a sharp threshold at 3 logN
2 log(2) shuffles. At this time, the deck quickly

transitions from unmixed to fully mixed. This behavior is known as “cutoff” and is surprisingly

common in Markov chain theory. Setting N = 52 in Theorem 1 led to the moniker “seven shuffles

suffice”. In fact [BD92] showed even more precisely that cutoff occurs within a constant size window
3 logN
2 log(2) ±O(1).

Our new contribution in Chapter 2, based on [Sel22], is to analyze an asymmetric generalization

in which A ∼ Bin(N, p) for general p ∈ (0, 1). In this p-shuffle model, the riffling is identical to

the GSR shuffle with p = 1/2, but the cuts are biased by p. This seemingly innocent modification

destroys symmetry properties used in [BD92] and requires a completely new analysis. We establish

cutoff at (Cp ± o(1)) logN shuffles for an explicit constant Cp (see Figure 1.2). As expected, Cp is

symmetric and minimized at p = 1/2. Thus, asymmetry can only slow mixing.

Some foundational ideas for our work, including most of lower bound on the mixing time, were

previously introduced in [Lal00]. Moreover (as with Theorem 1), our result below extends to “multi-

nomial” shuffles in which the deck is cut into more than 2 parts. We denote by µN,K,p the distribution

of the deck after p-shuffling K times.

Theorem 2 ([Sel22]). There exists a constant Cp such that the following holds. Fix ε > 0. If the

sequence (KN )N≥1 satisfies KN ≤
(
Cp − ε

)
log(N), then the p-shuffle satisfies

lim
N→∞

dTV

N (µN,KN ,p, µN,∞) = 1.

On the other hand, if KN ≥
(
Cp + ε

)
log(N), then

lim
N→∞

dTV

N (µN,KN ,p, µN,∞) = 0.

Prior to our work [Sel22], several interesting results were known for the asymmetric riffle shuffle.

[ADS12] determined the mixing time in the more stringent separation and L∞ senses with O(1) cutoff

window. The papers [Sta01, BD98b, BHR99] established connections to quasisymmetric functions

and hyperplane arrangements, showing that the eigenvalues of the chain are all real despite its

irreversibility. While these papers rely on exact identities, our approach does not and instead

directly analyzes the time t distribution of the chain.
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Figure 1.2: The values Cp are shown. The color-change points indicate non-smoothness of Cp at
approximately p ≈ 0.28 and p ≈ 0.72.

Other aspects of riffle shuffles are surveyed in [Dia03], and several other choices for the interleaving

process have been studied [Tho73, Mor09, Mor13, JM15]. Many seeming basic open problems remain,

for example to generalize these results to non-binomial cuts.

Of course, the subject of Markov chain mixing extends far beyond riffle shuffling. First, many

other interesting walks on the symmetric group have been thoroughly studied including random

transpositions [DS81, Sch05], adjacent transpositions [Lac16] and random-to-random [BN19]. Other

important distributions that can be efficiently sampled from via Markov chains include graph color-

ings [DG98, CDM+19], the hardcore model, uniform spanning trees [Bro89, Ald90, Wil96, ALGV19],

contingency tables [DG95], and log-concave measures [FKP94, SL19, LST20]. Several other random-

ized estimation algorithms employ Markov chain sampling as a fundamental primitive. For example,

prominent algorithmis to estimate the volume of a convex body [LS93, LV06, JLLV21] or the number

of perfect matchings in a graph [JS89] use such a strategy.

In the case of symmetric group, it is of course easy to sample a uniformly random permuta-

tion π directly by choosing π(1), π(2), . . . , π(N) sequentially and enforcing distinctness throughout.

However for many examples mentioned above, a rapidly mixing Markov chain is indispensable for

efficient sampling. For example as explained in [DV13], Markov chain sampling enables randomized

algorithms to approximate the volume of a d-dimensional convex body K by evaluating the function
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1x∈K a polynomial (in d) number of times. This task requires exponentially many queries for a

deterministic algorithm.

1.2 Algorithmic Stochastic Localization for the Sherrington-

Kirkpatrick Model

Chapter 3 is the first of three chapters on spin glasses and is based on joint work [AMS22] with

Ahmed El Alaoui and Andrea Montanari. We begin with the Sherrington-Kirkpatrick model, the

probability measure on the Boolean cube {−1,+1}N defined for an inverse temperature parameter

β > 0 by

µβ,A(σ) = e
β
2 〈σ,Aσ〉dσ.

We sample the N ×N symmetric matrix A from the Gaussian Orthogonal Ensemble, which means

A has independent entries (except that Aij = Aji) with distribution

Aii ∼ N (0, 2/N);

Aij ∼ N (0, 1/N), i 6= j.

The Sherrington-Kirkpatrick (SK) model was introduced in [SK75] to understand diluted mag-

netic materials such as CuMn and ZnO. It is a mean-field model because it ignores the 3-dimensional

structure of physical space in favor of greater mathematical tractability. Indeed to view this model

as a physical system, one considers N atoms such that the entry Aij describes the interaction be-

tween atoms i and j; thus the SK model describes a “fully connected” system. In Chapter 3 we

consider the high-temperature regime of the SK model with β small. We focus on the problem of

sampling from this Gibbs measure using an efficient algorithm, e.g. one requiring time growing at

most polynomially in the dimension N .

The Sherrington-Kirkpatrick model is known to exhibit a phase transition at β = 1. For β < 1,

the behavior is known to be “replica symmetric” while for β > 1 replica symmetry breaking begins.

This phase transition has a number of interpretations, but perhaps the simplest is that when β < 1,

an i.i.d. pair σ1,σ2 ∼ µβ,A of Gibbs samples satisfy

lim
N→∞

P
[∣∣∣∣ 〈σ1,σ2〉

N

∣∣∣∣ ≤ ε] = 1

for any constant ε > 0. Here the probability is taken over the randomness of A as well as (σ1,σ2).

However once replica symmetry breaks, the distribution of the overlap 〈σ1,σ2〉
N becomes highly non-

trivial and the Gibbs measure exhibits certain “hierarchical clustering” behavior.
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In accordance with this, it is natural to believe that simple Markov chains should mix quickly in

the replica-symmetric phase β < 1. The most prominent such chain is the Glauber dynamics: from

deterministic initialization x0 ∈ {−1,+1}N , one repeatedly chooses a uniformly random index i ∈
[N ] and resamples the coordinate xti from the desired Gibbs measure conditioned on the other N−1

coordinates of xt. Unfortunately, classical techniques to upper bound the mixing time of Glauber

dynamics such as the Dobrushin condition [AH87] only imply polynomial mixing at extremely high

temerature β−1 ≥ Ω(N1/2).

Rigorous progress on this problem has been achieved only recently. It was shown in [AJK+21]

that for β < 1/4, the Glauber dynamics mixes in O(N logN) time based on a modified log-Sobolev

inequality. This result followed [EKZ21] which showed an O(N2) mixing time also for β < 1/4 by

establishing a spectral gap. Conversely it is shown in [BAJ18] that mixing is exponentially slow in

spin glass models satisfying a certain overlap gap condition (which is actually not expected to hold

for the SK model).

We take a very different approach to efficient sampling based on Eldan’s stochastic localization.

This idea was introduced in [Eld13] and further developed in many works including [Eld16, LV17,

LV18a, Eld20, Che21, KP21], see also the ICM survey [Eld22]. Following the approach of [EAM22],

the stochastic localization process can be described as follows. Let µ be a compactly supported

probability measure on RN , and let Bt be a standard RN -valued Brownian motion. Consider the

diffusion defined by

dXt = xdt+ dBt, X0 = 0, x ∼ µ. (1.2.1)

One may view Xt as a way to gradually reveal the point x. Indeed x is almost surely determined

by the full path (Xt)t∈[0,∞) since the law of large numbers implies that

P
[

lim
t→∞

Xt

t
= x

]
= 1. (1.2.2)

At a finite time t, the conditional law of x given Xt is a random measure µt. Moreover the probability

µt(S) is a martingale for any Borel set S, and thus (µt)t≥0 can be said to define a martingale on the

space of probability measures on RN .

A key and non-obvious property is that the measures µt localize. For instance at time t = ∞,

(1.2.2) implies that one has µ∞ = δx for µ∞ = limt→∞ µt. This suggests that for large finite t, the

measures µt should concentrate tightly. In fact, it is possible to make this quantitative and prove

that the expected covariance matrix of µt is bounded above by 1
t · IN .

Our approach to efficient sampling in Chapter 3 is to simulate (1.2.1) for a large constant amount

of time, and then round the mean of µt to a corner in {−1,+1}N . We show that this procedure

succeeds in sampling from a probability distribution µalg

β,A with o(1) (normalized) Wasserstein dis-

tance W2,N from the true Gibbs distribution µβ,A. This means there exists a coupling (x, y) with
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marginals µβ,A and µalg

β,A such that

1

N
E[‖x− y‖22] ≤ oN→∞(1).

A small Wasserstein distance is of course significantly weaker than a small variation distance. On

the other hand, our algorithm succeeds in sampling for a larger range of temperatures β < 1/2 than

the previous state of the art β < 1/4.

Theorem 3. For any ε > 0 and β < 1/2 there exists a samping algorithm which inputs a random

matrix A and outputs a random point xalg ∈ {−1,+1}n with law µalg

A such that with probability

1− oN (1) over A ∼ GOE(N),

W2,N (µalg

A , µA ) ≤ ε . (1.2.3)

The total complexity of this algorithm is O(N2).

The first key point is that the annealed law of Xt (i.e. averaged over x) is described by

dXt = Ex∼µt [x]dt+ dBt, X0 = 0. (1.2.4)

In other words, one needs only to repeatedly compute the mean of µt rather than understand

the full high-dimensional distribution all at once. The approximate computation of Ex∼µt [x] and

discretization analysis of (1.2.4) are both nontrivial but fall into the wheelhouse of high-dimensional

statistics. They are achieved by combining a contiguity argument, an approximate message passing

algorithm, and local convexity of the so-called TAP free energy.

Finally we complement Theorem 3 with an impossibility result. The sampling algorithm used in

Theorem 3 is stable in the sense that (roughly speaking) it returns a similar output if the inverse

temperature β and/or the matrix A are slightly perturbed. We show that such a stability property

cannot hold for any sampling algorithm once β > 1 by an application of Chatterjee’s theorem on

disorder chaos. Conversely Chatterjee’s theorem combined with the stability of our algorithm implies

the following purely mathematical result for the true Gibbs measure µA,β . LetAs =
√

1− s2A+sA′

for A′ ∼ GOE(N) independent of A. Hence As is another GOE matrix correlated with A, and is

very close to A for small As. Finally let p-lim denote a limit in probability.

Theorem 4. Fix β < 1/2. With high probability Gibbs measure µA,β is Wasserstein-close to small

perturbations µA,β′ and µAs,β in the sense that

1. lims→0 p-limN→∞W2,N (µA,β , µAs,β) = 0.

2. limβ′→β p-limN→∞W2,N (µA,β , µA,β′) = 0.

In fact our use for Chatterjee’s result is essentially to show that Theorem 4 fails when β > 1.



CHAPTER 1. INTRODUCTION 8

We believe that Theorem 4 holds for all β < 1, and that an improved analysis of our algorithm can

be used to establish this.

1.3 Optimizing Mean-Field Spin Glasses: Background

In Chapter 4 we turn from sampling to optimization, again in the context of spin glasses. The results

of this chapter are based on [AMS21] and [Sel21b]. The former is joint work with Ahmed El Alaoui

and Andrea Montanari, and the latter is a follow-up work.

Here we consider the more general even mixed p-spin models. For each p ∈ 2N, let G(p) ∈
(
RN
)⊗p

be an independent p-tensor with i.i.d. N (0, 1) entries. Fix a sequence (γp)p∈2N with γp ≥ 0 and∑
p∈2N 2pγ2

p <∞. The mixed even p-spin Hamiltonian HN is defined by

HN (σ) =
∑
p∈2N

γp
N (p−1)/2

〈G(p),σ⊗p〉.

We consider inputs σ in either the sphere SN = {σ ∈ RN :
∑N
i=1 σ

2
i = N} or the cube ΣN =

{−1, 1}N . These define, respectively, the spherical and Ising mixed p-spin glass models. The

coefficients γp are customarily encoded in the mixture function ξ(x) =
∑
p∈2N γ

2
px

p. Note that H̃N

is equivalently described as the Gaussian process with covariance

E H̃N (σ1)H̃N (σ2) = Nξ(〈σ1,σ2〉/N).

For example the SK model discussed above is an Ising spin glass, in which γ2 = 1/2 and γk = 0 for

k > 2.

Our purpose in Chapter 4 is to shed light on a discrepancy between the asymptotic maximum

values

OPTSp = OPTSp
ξ = p-lim

N→∞

1

N
max
σ∈SN

HN (σ), OPTIs = OPTIs
ξ = p-lim

N→∞

1

N
max
σ∈ΣN

HN (σ)

and the maximum efficiently computable values of HN over the same sets.

The values OPTSp and OPTIs are given by the celebrated Parisi formula [Par79] which was proved

for even models by [Tal06d, Tal06a] and in more generality by [Pan14]. While most often stated as

a formula for the limiting free energy at inverse temperature β, the asymptotic maximum can be

recovered as a β →∞ limit of the Parisi formula. Restricting for concreteness to the Ising case (we

will state the analogous result for the spherical case in Section 5.2), the result can be expressed in

the following form due to Auffinger and Chen [AC17b].
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Define the function space

U =

{
ζ : [0, 1)→ R≥0 : ζ is right-continuous and nondecreasing,

∫ 1

0

ζ(t)dt <∞
}
. (1.3.1)

For ζ ∈ U , define Φζ : [0, 1]× R→ R to be the solution of the following Parisi PDE.

∂tΦζ(t, x) +
1

2
ξ′′(t)

(
∂xxΦζ(t, x) + ζ(t)(∂xΦζ(t, x))2

)
= 0 (1.3.2)

Φζ(1, x) = |x|. (1.3.3)

Existence and uniqueness properties for this PDE are well established and are reviewed in Sub-

section 5.6.1. The Parisi functional PIs = PIs
ξ,h : U → R is given by

PIs(ζ) = Φζ(0, 0)− 1

2

∫ 1

0

tξ′′(t)ζ(t) dt. (1.3.4)

Theorem 5 ([AC17b, CHL18]). The following identity holds.

OPTIs = inf
ζ∈U

PIs(ζ). (1.3.5)

Moreover the infimum is achieved at a unique ζ∗ ∈ U

The minimizer ζ∗ ∈ U can be obtained as an appropriately renormalized zero-temperature

limit of the corresponding minimizers in the positive temperature Parisi formula. These positive

temperature minimizers roughly correspond to cumulative distribution functions for the overlap

〈σ1,σ2〉/N of two independent samples from the Gibbs measure eβHN /ZN (β); this is why the

functions ζ considered in Theorem 5 are nondecreasing.

Efficient algorithms to find an input σ achieving a large objective have recently emerged in a line

of work initiated by [Sub21]. We reproduce a lightly modified version of his marvelous optimization

algorithm for the spherical setting below.

The existence of a suitable vk comes from the fact that for ‖σ‖22 = q, the Hessian ∇2HN (σ)

restricted to the subspace σ⊥k has the law of a GOE(N − 1) matrix scaled by
√
ξ′′(q), which has

maximum eigenvalue roughly 2
√
ξ′′(q) with high probability. This would show that such a vk exists

with high probability if σk were independent of HN . Of course this is not the case. However by

a famous result of [AG97], a GOE(N − 1) matrix has maximum eigenvalue at least 2
√
ξ′′(q) − η

with probability at least 1− e−c(η)N2

. Thanks to the N2 in the exponent, one can show by a union

bound over an ε-net of the radius
√
qN sphere that such a vk always exists with high probability.

This argument circumvents the dependence of σk on HN .

By summing the energy gain accumulated at each step and taking δ → 0, it follows that Subag’s
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Input: Input tensors G(k), accuracy parameter ε > 0.
Output: A point σ ∈ RN with L2 norm ‖σ‖2 =

√
N such that HN (σ)/N ≥ ALGSp

ξ − ε.
1 Initialize σ1 = (

√
Nδ, 0, . . . , 0) ∈ RN for k = 1, · · · ,K do

2 Find a unit vector vk ⊥ σk such that

〈vk,∇2HN (σk)vk〉 ≥ 2ξ′′(kδ)1/2 − δε;
〈vk,∇HN (σk)〉 ≥ 0.

σk+1 = σk +
√
Nδvk.

3 end
4 return σK

algorithm succeeds in fiding σ on the sphere of radius
√
N such that HN (σ)/N ≥ ALGSp

ξ − ε, for

ALGSp
ξ =

∫ 1

0

ξ′′(q)1/2dq.

This value turns out to coincide with the asymptotic ground state energy in some cases. In fact:

Proposition 1.3.1. The following are equivalent:

1. ALGSp
ξ = OPTSp

ξ .

2. ξ′′(q)−1/2 is concave on (0, 1].

Qualitatively, the above conditions are also known to coincide with the model having no overlap

gap, a phenomenon discussed further below. Shortly after, Montanari [Mon21] gave a more com-

plicated approximate message passing algorithm for the Sherrington-Kirkpatrick model on the cube

under an assumption of no overlap gap. In the next section we discuss this and subsequent works,

as well as results suggesting that these algorithms are best possible.

1.4 A Brief Description of Approximate Message Passing

Here we review the general class of approximate message passing (AMP) algorithms. AMP algo-

rithms are a flexible class of efficient algorithms based on a random matrix or, in our setting, mixed

tensor. AMP was introduced in the setting of Gaussian random matrices in [Bol14, BM11b]; we will

rely on extensions of these results to tensors.

We begin with an elementary fact. Given a GOE(N) random matrix A and vectors x,y ∈ RN

independent of A, one has

E〈Ax,Ay〉 = 〈x,y〉 (1.4.1)
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and in fact 〈Ax,Ay〉 is within a 1 ± oN (1) factor of its expectation with 1 − oN (1) probability.

Moreover the individual coordinate entries of Ax are essentially given by i.i.d. Gaussians. In

the more general setting of a mixed p-spin glass Hamiltonian HN with mixture function ξ, one

analogously has

E〈∇HN (x),∇HN (y)〉 = ξ′(〈x,y〉).

It is natural to ask what happens if one iterates these operations. For instance, does

〈A2x,A2y〉
?
≈ 〈x,y〉 (1.4.2)

also hold with high probability? In fact (1.4.2) is not true. For instance, we cannot apply (1.4.1)

to (Ax,Ay) because both vectors are dependent on A. The idea of AMP is to explicitly account for

the dependence causing (1.4.2) to fail. Conditioned on the product Ax, the conditional law of A has

“most of its randomness” left, and can be analyzed directly. The result is a precise description for the

behavior of rather general iterative algorithms which consist of a constant number of multiplications-

by-A, or evaluations of ∇HN (·). In fact this description applies even when a non-linear function is

applied coordinatewise between these gradient evaluations.

To specify an AMP algorithm, we fix a probability distribution p0 on R with finite second moment

and a sequence f0, f1, . . . of Lipschitz functions f` : R`+1 → R, with f−1 = 0. The functions f`

will often be referred to as non-linearities. We begin by taking z0 ∈ RN to have i.i.d. coordinates

(z0
i )i∈[N ] ∼ p0. Then we recursively define z1, z2, . . . via

z`+1 = ∇H̃N (f`(z
0, . . . ,z`))−

∑̀
j=1

d`,jfj−1(z0, . . . ,zj−1), (1.4.3)

d`,j = ξ′′
(〈
f`(z

0, . . . ,z`)fj−1(z0, . . . ,zj−1)
〉
N

)
· E
[
∂f`
∂Zj

(Z0, . . . , Z`)

]
. (1.4.4)

Here Z0 ∼ p0 while (Z`)`≥1 is an independent centered Gaussian process with covariance Q`,j =

E[Z`Zj ] defined recursively by

Q`+1,j+1 = ξ′
(
E
[
f`
(
Z0, · · · , Z`

)
fj
(
Z0, · · · , Zj

)])
, `, j ≥ 0. (1.4.5)

The key property of AMP, stated below in Proposition 4.2.3, is that for any ` the empirical

distribution of the N sequences (z0
i , z

1
i , z

2
i , . . . ,z

`
i)i∈[N ] converges in distribution to the Gaussian

process (Z0, Z1, . . . , Z`) as N →∞. This is called state evolution.

Definition 1.4.1. For non-negative integers n,m the function ψ : Rn → Rm is pseudo-Lipschitz if
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for some constant L and any x, y ∈ Rn,

||ψ(x)− ψ(y)|| ≤ L(1 + ||x||+ ||y||)||x− y||.

Proposition 1.4.2 ([AMS21, Proposition 3.1]). For any pseudo-Lipschitz ψ : R`+1 → R, the AMP

iterates satisfy

p-lim
N→∞

1

N

N∑
i=1

ψ
(
z0
i , · · · , z`i

)
= E

[
ψ
(
Z0, · · · , Z`

)]
. (1.4.6)

An early motivation for AMP was to give an analog of belief propagation, which is best suited for

trees (or at least graphs with no short cycles) to the setting of dense graphs. The basic connection is

that a random symmetric matrix can be viewed as the adjacency matrix of a weighted graph. This

point of view is explained in [DMM10].

The majority of the AMP literature has focused on the matrix case. The state evolution result

above for tensors was suggested in [RM14] and established in [AMS21]; we give the proof in the

Appendix of this thesis. In the past decade, state evolution results have been established for many

situations such as orthogonally invariant random matrices, semirandom matrices, matrices with i.i.d.

sub-Gaussian entries, and more [JM13, BLM15, BMN19, CL21, Fan22]. Notably, the matrix A can

include a signal, e.g. be of the form

A = G(2) + x⊗2
0

for G(2) ∼ GOE(N). This extension is crucially used in Chapter 3. Because state evolution holds

for essentially arbitrary non-linearities f`, it allows a great deal of flexibility in solving problems

involving random matrices or tensors.

We close this discussion with a brief comparison of two different flavors of AMP algorithm. The

first involves a simple fixed-point iteration using the same memory-free non-linearity f`(Z
0, . . . , Z`) =

f(Z`) at all times. In such a case, one can often prove that the (abstract) state evolution iterates

Z` converge to a limit (with Gaussian law) as `→∞. This implies a similar convergence result for

the true iterates z` on time-scales which grow very slowly with N . Such an AMP algorithm is an

important ingredient in Chapter 3, and serves as the first phase of the algorithm of Chapter 4 below.

On the other hand, [Mon21] introduced an incremental AMP (IAMP) algorithm of a very differ-

ent flavor. The rough idea here is to simulate a Brownian motion by making the iterate Z` behave

like the increment B(`+1)δ − B`δ of a Brownian motion Bt, where δ > 0 is a small constant. One

can then define auxilliary functions of this discretized Brownian motion which correspond to diffu-

sions driven by Bt. Such an IAMP procedure comprises the second phase of the main algorithm in

Chapter 4. IAMP behaves quite differently from the fixed-point iteration above. For example we

show in Chapter 4 that IAMP algorithms can be branched to output many far apart solutions of

essentially the same quality.
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1.5 Optimizing Mean-Field Spin Glasses: New Results

The main result of Chapter 4 in the Ising case can be described as follows. For a function f : R→ R
and interval J , let ‖f‖TV(J) denote the total variation of f on J , expressed as the supremum over

partitions:

‖f‖TV(J) = sup
n

sup
t0<t1<···<tn,ti∈J

n∑
i=1

|f(ti)− f(ti−1)|.

Let L ⊇ U denote the set of functions given by

L =


ζ : [0, 1)→ R≥0 : ζ right-continuous, ‖ξ′′ · ζ‖TV[0,t] <∞ for all t ∈ [0, 1),∫ 1

0

ξ′′(t)ζ(t) dt <∞

 . (1.5.1)

It turns out (see Subsection 5.6.1) that the definition of PIs above extends from U to L . Therefore

we may define ALGIs = ALGIs
ξ,h by

ALGIs = inf
ζ∈L

PIs(ζ). (1.5.2)

Note that ALGIs ≤ OPTIs trivially holds. We have ALGIs = OPTIs if the infimum in (5.1.9) is

attained by some ζ ∈ U , and otherwise ALGIs < OPTIs. The following result is proved in Chapter 4

and is from [AMS21, Sel21b]. Below the “efficient AMP algorithms” considered use a constant (N -

independent) number of steps. This results in computation time linear in the description length of

HN when ξ is a polynomial, assuming oracle access to the minimizer ζL
∗ ∈ L and corresponding

solution ΦζL
∗

to (5.1.6).

Theorem 6. Assume there exists ζL
∗ ∈ L such that PIs(ζL

∗ ) = ALGIs. Then for any ε > 0, there

exists an efficient AMP algorithm A : HN → [−1, 1]N such that

P[HN (A(HN ))/N ≥ ALGIs − ε] ≥ 1− e−cN , c = c(ε) > 0.

In fact, fix also a finite ultrametric space (X, dX) with diameter at most
√

2. Then there exists a

|X|-tuple of efficient AMP algorithms outputting points {σx|x ∈ X} in [−1, 1]N such that

HN (σx)

N
∈ [P(γ∗)− ε,P(γ∗) + ε] , x ∈ X, (1.5.3)

||σx − σy||√
N

∈ [dX(x, y)− ε, dX(x, y) + ε] , x, y ∈ X (1.5.4)

with probability 1− e−cN .

The non-equality ALGIs < OPTIs has a natural interpretation in terms of the optimizer ζ∗

of (5.1.7). Namely, it implies that ζ∗ ∈ U is not strictly increasing (see Chapter 4 for a more



CHAPTER 1. INTRODUCTION 14

precise condition). Thus, in the case that ζ∗ is strictly increasing, the above result implies that

ALGIs = OPTIs; this was the condition assumed in [Mon21].

The construction of ultrametric configurations rather than single solutions in Theorem 6 is related

to the overlap gap property discussed below. Indeed as we will see, the existence of such ultramet-

ric configurations can be taken a posteriori as a purely geometric definition for the algorithmic

thresholds ALGIs and ALGSp.

As discussed already, it is natural to ask what the best algorithms for optimizing the random

function HN are. Of course it seems difficult to establish any limitations on the power of general

polynomial-time algorithms for such a task as this would require essentially resolving at least RP

vs NP. However one might still hope to characterize the power of natural classes of algorithms that

include gradient descent and approximate message passing. To this end, we define the following

distance on the space HN of Hamiltonians HN . We identify HN with its disorder coefficients

(G(p))p∈2N, which we concatenate (in an arbitrary but fixed order) into an infinite vector g(HN ).

We equip HN with the (possibly infinite) distance

‖HN −H ′N‖2 = ‖g(HN )− g(H ′N )‖2.

A consequence of our results in Chapter 5 (obtained in [HS22] in collaboration with Brice Huang)

is that no suitably Lipschitz function A : HN → [−1, 1]N can surpass the asymptotic value ALGIs.

Theorem 7 ([HS22]). Let τ, ε > 0 be constants. For N sufficiently large, any τ -Lipschitz A : HN →
[−1, 1]N satisfies

P
[
HN (A(HN ))/N ≥ ALGIs + ε

]
≤ exp(−cN), c = c(ξ, ε, τ) > 0.

The algorithms of Theorem 6, as well as general gradient based algorithms on dimension-free

time scales, are O(1)-Lipschitz in this sense. While the approach of [Sub21] is not Lipschitz, its

performance is captured by AMP as explained in [AMS21, Remark 2.2].1 Hence in tandem with

these constructive results, Theorem 7 identifies the exact asymptotic value achievable by Lipschitz

algorithms A : HN → [−1, 1]N (assuming the existence of a minimizer ζ∗ ∈ L as required in

Theorem 6). We also give analogous algorithms and impossibility results for spherical spin glasses,

in which there is no question of existence of a minimizer ζL
∗ on the algorithmic side. Let us finally

remark that the rate e−cN in Theorem 7 is best possible up to the value of c, being achieved even

for the trivial algorithm A(HN ) = (1, 1, . . . , 1) which ignores the disorder tensors G(k) entirely.

1We also outline a similar impossibility result for a family of variants of [Sub21] in Subsection 5.3.7.
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1.6 The Branching Overlap Gap Property

Theorem 7 states that the objective value ALG achieved in Theorem 6 is best possible within the

class of algorithms with dimension-free Lipschitz dependence on the entries of the tensors G(k). In

particular, this condition is verified by standard optimization algorithms such as gradient descent,

Langevin dynamics, and approximate message passing on dimension-free time scales. Here we discuss

the main construction used in the proof.

First, it is worth mentioning the high-level heuristic that algorithmic hardness in a random

optimization problem ought to be linked with the geometry of the solution space. One version of

this connection was proposed in [ACO08, COE15] based on a shattering phase transition: at large

constraint density the solution space breaks into exponentially many small components, for suitable

random instances of k-SAT, q-coloring, and maximum independent set. Intuitively, shattering seems

to pose a problem for algorithms, especially those based on local search. Other predictions based on

the clustering, condensation [KMRT+07] and freezing [ZK07] transitions have also been suggested.

Our approach is based on an extension of the overlap gap property (OGP). In the past several

years, a line of such works [GS14, RV17a, GS17, CGPR19, GJ21, GJW20a, Wei22, GK21a, BH21,

GJW21] have developed the OGP framework, turning properties of the solution space geomtry into

rigorous algorithmic hardness results against restricted families of algorithms.

An overlap gap property argument typically considers pairs of points (σ0,σ1) with medium

overlap and large energy as “forbidden structures”. One aims to show that such configurations do

not exist at all. If fact in most cases, one needs to consider an ensemble of many correlated instances

H0
N , H

1
N , . . . of the optimization problem and show that points (σ0,σ1) with medium overlap cannot

be good solutions to any pair Hi
N , H

j
N of problems in this ensemble. If this stronger property can

be established, one gradually deforms the Hamiltonian HN and argues that a “stable” algorithm

will trace a continuous path, hence constructing such a forbidden configuration and obtaining a

contradiction. The main technical difficulty in such an argument is to prove that such forbidden

structures are completely absent with high probability.

In Chapter 4 we introduce a much richer type of forbidden structure. Namely, we consider

arbitrary ultrametric trees of solutions with diameter at most
√

2N . We call this the Branching

OGP. The definition involves an ensemble of “ultrametrically correlated” Hamiltonians Hu
N for

indices u = u1u2 . . . uD ∈ [k]D corresponding to the leaves of a k-ary tree with depth D, such that

Hu
N andHv

N are pd correlated if ui = vi for i ∈ [d] but not i = d+1, where 0 = p0 ≤ p1 ≤ · · · ≤ pD = 1

is a finite increasing sequence. We consider a separate input σu for each Hu
N .

We show using concentration of measure that a Lipschitz algorithm A : HN → [−1, 1]N applied

to such an ensemble constructs with high probability an approximate ultrametric space of outputs
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Figure 1.3: A cartoon overlap gap property argument. By a discrete-time version of the intermediate
value theorem, one shows that a “stable” algorithm must produce an output σt at medium distance
qOGP from a previous output σ0. Hence if one can prove that no pair of good solutions can be at
this medium distance from each other (thus establishing an OGP), one can rule out certain classes
of algorithms from solving the random optimization problem well.

σalg
u = A(Hu

N ). This is because by Gaussian concentration of measure, if Hu
N and Hv

N have pd-

correlated disorder, then the overlap

R(A(Hu
N ),A(Hv

N ))

concentrates with high probability. More precisely,

P[R(A(Hu
N ),A(Hv

N )) ∈ [qd − η, qd + η] ≥ 1− e−cN

for a number qd = χA(pd), arbitrarily small η > 0, and a constant c(ξ,A, η) > 0 independent of pd.

In other words, a Lipschitz algorithm turns an ultrametric ensemble of Hamiltonians into an approx-

imate ultrametric of outputs (σalg
u )u∈[k]D . Using an extension of the Guerra-Talagrand interpolation,

we upper-bound the total energy on any configuration (σalg
u )u∈[k]D with such an ultrametric overlap

structure. This upper bound turns out to be smaller than ALG + ε once the ultrametric tree has

sufficiently large depth D = D(ε), with the choices δ = 1/D and qd = dδ.

Finally we prove that our methods are in some necessary to identify the threshold ALG within

the overlap gap property framework, at least for spherical spin glasses. More precisely we consider

the result of an overlap gap property that can only use (arbitrary, possibly highly non-symmetric)

ultrametric forbidden structures whose corresponding rooted trees can only contain full binary trees

of bounded size at most D. We show that whenever ALGSp < OPTSp, the corresponding OGP-

based threshold is bounded below by ALGSp + εD for εD depending only on D and ξ. Thus, to

establish ALGSp as the exact threshold via an OGP, one essentially must use the full power of the

branching OGP. Several intermediate-strength OGPs were used in previous work, as summarized in

Figure 1.4.
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(a) Classic OGP: σ1,σ2 have medium overlap. (b) Star OGP: many solutions, medium overlaps.

(c) Ladder OGP: medium “multi-
overlaps” between σi and {σ1, . . . ,σi−1}.

(d) Branching OGP: many solutions in an ultrametric tree.

Figure 1.4: Schematics of forbidden structures in overlap gap property arguments. The classic, star,
and ladder OGPs have been used in several works to prove algorithmic hardness results in random
optimization problems. The results of Chapter 5 are obtained by the branching overlap gap property.

1.7 Chasing Convex Bodies

We now turn our attention away from spin glasses and to a problem in real-time or online decision

making. Let X be a d-dimensional normed space and K1,K2, . . . ,KT ⊆ X a finite sequence of

convex bodies. In the chasing convex bodies problem, a player starting at x0 = 0 ∈ X learns the

sets Kt one at a time, and after observing Kt moves to a point xt ∈ Kt. The player’s cost is the

total path length

cost(x1, . . . , xT ) =

T∑
t=1

||xt − xt−1||. (1.7.1)

Denote the smallest cost (in hind-sight) among all such sequences by

cost(K1, . . . ,KT ) = min
(yt∈Kt)t≤T

T∑
t=1

||yt − yt−1||.
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The player’s goal is to ensure that

cost(x1, . . . , xT ) ≤ αd · cost(K1, . . . ,KT ) (1.7.2)

holds for any sequence K1, . . . ,KN , where the competitive ratio αd is as small as possible and is

independent of N . We make no assumptions on the sets Kt and in fact allow them to be chosen

adversarially, even possibly depending on the algorithm’s previous choices.

We remark that unlike the algorithmic questions considered in the previous chapters, the issue

of computational efficiency is now of secondary importance. Rather, the core difficulty is that the

points xn = xn(K1, . . . ,Kn) must depend only on the sets revealed so far, i.e. the decisions must

be made in real time. An online algorithm achieving (6.1.1) for some finite αd is said to be αd-

competitive, and the smallest possible αd among all online algorithms is the competitive ratio of the

chasing convex bodies problem. The literature on competitive ratios for algorithmic problems is vast

and includes scheduling [Gra66], self-organizing lists [ST85], efficient covering [AAA03], safely using

machine-learned advice [BB00, KPS18, LV18b, WZ20], and the famous k-server problem [MMS90,

Gro91, KP95, BBMN15].

The finiteness of the competitive ratio for convex body chasing was first posed in [FL93], which

proved the case d = 2. In the past few years, the problem has seen renewed interest thanks to

several applications such as efficiently powering data centers. The basic idea is that a point x ∈ Rd

represents the state of (in this case) a data center. The data center receives a time-varying demand

and meets this demand using resources of different types. Thus Kt represents the feasible region of

server configurations which meet the demand at time t. If turning servers on and off is costly, then

minimizing the objective in (1.7.1) is a natural goal. In fact one may consider the seemingly more

general problem of chasing convex functions with cost

cost(x1, . . . , xT ) =

T∑
t=1

||xt − xt−1||+ ft(xt)

for convex functions fn : Rd → R+. This problem gives a lot of flexibility in modelling for instance,

the time-t energy cost from leaving a server on.

In a prior work with Bubeck, Lee, and Li [BLLS19] we resolved this problem, showing that

αd ≤ 2O(d) for all d ≥ 1. In Chapter 6, which is based on [Sel20], we give a d-competitive algorithm

for chasing convex bodies in any normed space. This is an exponential improvement over the

aforementioned result, and the competitive ratio of d is exactly optimal in the `∞ norm. (Indeed

for random requests Kt = {x : xt = εi} for t ∈ [d] with i.i.d. Rademacher variables εi ∈ {±1}, no

algorithm can be better than d-competitive in the `∞ norm even in expectation.) In the Euclidean

norm, our algorithm is O(
√
d log T ) competitive after T steps, nearly matching a

√
d lower bound
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(proved by the same construction) for moderately sized T . Moreover the algorithm generalizes to

chasing convex functions: the competitive ratio min(d,
√
d log T ) simply increases by 1.

Our improved algorithm is based on the Steiner point, a classical object in convex geometry first

defined in 1840 [Ste40]. Given a convex body K in a finite-dimensional normed space X, its Steiner

point s(K) ∈ K is an interior point whose definition we will not present here. Our idea is to follow

the functional Steiner point of a suitable convex function. The function Wt : Rd → R+ used is the

work function

Wt(x) ≡ min
(x1,...,xt):

xs∈Ks ∀s∈[t]

(
‖x− xt‖+

t∑
s=1

‖xs − xs−1‖

)
.

This work function essentially encodes the “effective total cost” of the sets K1, . . . ,Kt seen so far

(and has an analogous definition for chasing convex functions).

In another previous work [BKL+20], we used the ordinary Steiner point to solve a special “nested”

case of chasing convex bodies, together with Bubeck, Klartag, Lee, and Li. Concurrently with the

main result presented in Chapter 6, a related algorithm for chasing convex bodies with O(d) com-

petitive ratio in the Euclidean norm was obtained in [AGGT21]. In fact we explain their algorithm

at the end of Chapter 6 and show in a precise sense that it is almost the same as the functional

Steiner point.

1.8 A Universal Law of Robustness via Isoperimetry

Chapter 7 is based on joint work [BS21] with Sébastien Bubeck. The motivation is the massive

scale of modern machine learning, which often employs models with 100 times as many trainable

parameters as examples. This is quite different from what most statistics and learning theory

predicts, and moreover deep learning models are believed (and in some regimes, proved) to memorize

essentially arbitrary labelled data.

We present a model for memorizing in high-dimension in which a surprisingly large number of

parameters are required in order to memorize using a function with a small Lipschitz constant. The

Lipschitz constant of a predictor is a natural proxy for its vulnerability to small adversarial input

perturbations, which are a major concern in applications such as computer vision. An informal

statement of our main result is as follows. Below, poly(n, d) denotes a quantity at most (1 +n+ d)c

for some constant c.

Let F be a class of functions from Rd → R and let (xi, yi)
n
i=1 be i.i.d. input-output pairs in

Rd × [−1, 1]. Assume that:

1. F admits a poly(n, d)-Lipschitz parametrization by p real parameters, each of size at most

poly(n, d).
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2. The distribution µ of the covariates xi has log-Sobolev constant Ω(d) (e.g. is uniform on the

d-dimensional unit sphere), or is a mixture of n0.99 such distributions.

3. The expected conditional variance of the output (i.e., the “noise level”) is strictly positive,

denoted σ2 ≡ Eµ[V ar[y|x]] > 0.

Then, with high probability over the sampling of the data, one has simultaneously for all f ∈ F :

1

n

n∑
i=1

(f(xi)− yi)2 ≤ σ2 − ε ⇒ Lip(f) ≥ Ω̃

(
ε

σ

√
nd

p

)
.

Here Ω̃ indicates a lower bound up to logarithmic factors.
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Mixing and Sampling
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Chapter 2

Cutoff for the Asymmetric Riffle

Shuffle

2.1 Introduction

The riffle shuffle is among the most common methods to randomize a deck of cards. We study a

parameterized model for riffle shuffles called p-shuffles, defined as follows for any p ∈ (0, 1). From

a sorted deck of N cards, first remove the top Bin(N, p) cards to create a top and a bottom pile.

Next, interleave the two piles according to the following rule. If the piles currently have sizes A and

B, the next card is dropped from the first pile with probability A
A+B . Conditioned on the pile sizes,

this rule gives a uniformly random interleaving.

The case p = 1
2 , known as the Gilbert-Shannon-Reeds (GSR) shuffle, is perhaps the most natural

model for riffle shuffling. It was analyzed by Bayer and Diaconis in [BD92] following work of

Aldous ([Ald83, Example 4.17]); they proved that
(

3
2 log(2) ± o(1)

)
log(N) shuffles are necessary

and sufficient to randomize a deck. More precisely for any ε > 0, as N → ∞ the total variation

distance of the deck from a uniform permutation tends to 1 after
⌊(

3
2 log(2) − ε

)
log(N)

⌋
shuffles,

and tends to 0 after
⌊(

3
2 log(2) + ε

)
log(N)

⌋
shuffles. In fact they showed that the total variation

distance decays exponentially in C after 3 log(N)
2 log(2) + C shuffles.

By contrast, determining the mixing time for general p-shuffles has remained open. This dis-

crepancy is because of a special property underpining the analysis in [BD92]: the deck order after

a fixed number of GSR shuffles is uniformly random conditioned on its number of rising sequences.

Therefore to understand the mixing time it suffices to understand how the number of rising se-

quences is distributed. This distribution turns out to admit a simple closed form, which enables

22
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explicit analysis and a sharp understanding of the rate of convergence. When p 6= 1
2 this conditional

uniformity no longer holds and the problem becomes more complicated.

p-shuffles were introduced in [DFP92, Example 7] and further studied in [Lal96, Ful98, Lal00].

These works established upper and lower bounds of order log(N) on the mixing time, but with

differing constant factors. Interestingly the eigenvalues of the p-shuffle chain are given explicitly by

certain power sum symmetric functions. This follows from general results regarding random walks

on hyperplane arrangements — see [BHR99, BD98b, Sta01] or the survey [Zha09].

Several aspects of riffle shuffles are surveyed in [Dia03]. Other interesting models arise from

modifying the interleaving probabilities, such as the Thorpe shuffle [Tho73, Mor09, Mor13] and

clumpy shuffle [JM15].

2.1.1 Main Result

The main result of this chapter is that all p-shuffles exhibit cutoff. More generally, let p =

(p0, . . . , pk−1) be a discrete probability distribution with pi > 0 for each i. We show cutoff for

the more general p-shuffles, which were also introduced in [DFP92]. To define such a shuffle, one

first generates a multinomial (N,p) vector (n0, . . . , nk−1) so that each ni has marginal distribution

ni ∼ Bin(N, pi) and
∑k−1
i=0 ni = N holds almost surely. One then splits the N cards into k piles by

taking the top n0 cards off the top to form the first pile, the next n1 cards to form the second pile,

and so on.

Interleaving the k piles into a single pile is done similarly to the k = 2 case. Namely, if the current

remaining pile sizes are A0, . . . , Ak−1, then the next card is dropped from pile i with probability

Ai
A0 +A1 + · · ·+Ak−1

. (2.1.1)

This latter phase is again equivalent to interleaving the k piles uniformly at random conditioned

on their sizes. Note that the asymmetry of p appears only in the first phase to determine the pile

sizes and does not directly enter the second phase. When p =
(

1
k ,

1
k , . . . ,

1
k

)
, we recover the k-shuffle

which is the k-partite analog of the GSR shuffle. k-shuffles exhibit cutoff after 3 log(N)
2 log k ±O(1) steps

by the same rising sequence analysis as in the k = 2 case ([BD92]).

To state our main result for general p-shuffles, we must define several constants. With arbitrary

tie-breaking, set imax = arg maxi∈{0,1,...,k−1}(pi) and pmax = pimax . Similarly define imin and pmin.

Define the functions

φp(t) =

k−1∑
i=0

pti, ψp(t) = − log φp(t).
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Define the positive constant θp by the identity ψp(θp) = 2ψp(2), i.e.

φp(θp) =

k−1∑
i=0

p
θp
i =

(
k−1∑
i=0

p2
i

)2

= φp(2)2.

This uniquely determines θp because φp and ψp are strictly monotone. Finally define the constants

Cp, C̃p, and Cp as follows.

Cp =
3 + θp
4ψp(2)

=
3 + θp

2ψp(θp)
,

C̃p =
1

log(1/pmax)
,

Cp = max(C̃p, Cp).

We can now state our main result.

Theorem 8. The p-shuffles undergo total variation cutoff after Cp log(N) steps. That is, for any

ε > 0,

lim
N→∞

dTV

N (b(1− ε)Cp log(N)c) = 1, (2.1.2)

lim
N→∞

dTV

N (b(1 + ε)Cp log(N)c) = 0. (2.1.3)

Here dTV

N (K) denotes the total variation distance from uniform after p-shuffling K times.

It is easy to see that Cp is symmetric and continuous in the entries of p. In the next proposition

we show that for any k, the fastest possible mixing for any p = (p0, . . . , pk−1) occurs in the symmetric

case p =
(

1
k ,

1
k , . . . ,

1
k

)
.

Proposition 2.1.1. For any k, Cp has minimum value 3
2 log k achieved uniquely at p =

(
1
k ,

1
k , . . . ,

1
k

)
.

Moreover for any p,

Cp ∈
[

3

2ψp(2)
,

7

4ψp(2)

)
and C̃p ∈

[
1

ψp(2)
,

2

ψp(2)

)
.

It also follows from Proposition 2.1.1 that for any p, cutoff occurs in total variation occurs strictly

sooner than in the L∞ and separation distances. Quite precise results for these alternative notions

of mixing are shown in [ADS12] by different methods, for the same asymmetric riffle shuffles that

we study. In particular, cutoff occurs in both of these distances after 2 log(N)
ψp(2) ±O(1) shuffles. Recall

that separation and L∞ distance always upper-bound total variation distance, so only the strictness

of the resulting inequality
2

ψp(2)
> Cp
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between mixing time growth rates is non-trivial.

Proof of Proposition 2.1.1. When p =
(

1
k ,

1
k , . . . ,

1
k

)
it is easy to see that θp = 3 and φp(2) = 1

k .

Therefore

Cp =
3

2 log k
>

1

log k
= C̃p.

The value φp(2) is symmetric and strictly convex in p, hence achieves unique minimum at p =(
1
k ,

1
k , . . . ,

1
k

)
. Moreover θp ≥ 3 always holds as Cauchy–Schwarz implies

φp(2)2 =

(
k−1∑
i=0

p2
i

)2

≤

(
k−1∑
i=0

p3
i

)
·

(
k−1∑
i=0

pi

)
=

k−1∑
i=0

p3
i = φp(3).

Therefore Cp achieves unique minimum at p =
(

1
k ,

1
k , . . . ,

1
k

)
, hence the first result. Moreover θp < 4

also holds because

φp(2)2 =

(
k−1∑
i=0

p2
i

)2

>

k−1∑
i=0

p4
i = φp(4).

This shows that Cp ∈
[

3
2ψp(2) ,

7
4ψp(2)

)
. It remains to estimate C̃p, and the claimed bounds amount

to showing

k−1∑
i=0

p2
i ≤ pmax <

√√√√k−1∑
i=0

p2
i .

The left inequality holds because

k−1∑
i=0

p2
i ≤

k−1∑
i=0

pipmax = pmax

and the right inequality is clear.

Our primary contribution is proving the upper bound (2.1.3), i.e. that the mixing time is at

most Cp log(N). In Section 2.3 we reduce (2.1.3) to the estimation of a certain exponential moment,

which occupies Sections 2.4 and 2.5. In the other direction, Lalley showed mixing time lower bounds

of both C̃p log(N) and Cp log(N) in [Lal00]. However the latter result required p ≈
(

1
k ,

1
k , . . . ,

1
k

)
to be close to uniform. ([Lal00] only considered the case k = 2, but the arguments work identically

for larger k.) In Section 2.6 we generalize the Cp log(N) lower bound to all p = (p0, . . . , pk−1) by

refining Lalley’s approach. For the sake of continuity, several of our notational choices, such as the

constants Cp and C̃p, are adopted from [Lal00]. However we reversed the sign of ψp from [Lal00] so

that ψp(t) > 0 for all t > 1.
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Approximate Mixing Times Cp logN for p-Shuffles

Deck Size p = 0.5 p = 0.6 p = 0.7 p = 0.8 p = 0.9 p = 0.95

52 8.6 9.2 11.3 18 37 77

104 10.1 10.8 13.3 21 44 90

208 11.6 12.4 15.3 24 51 104

520 13.5 14.5 17.9 28 59 122

N 2.16 logN 2.32 logN 2.86 logN 4.5 logN 9.5 logN 19.5 logN

Table 2.1: The values Cp logN are shown for varying deck sizes N and p = (p, 1− p).
These values should be taken as a rough guide because our results are asymptotic in
N .

Figure 2.1: The values Cp for p = (p, 1 − p) are shown. The blue and red depict the transitions

between Cp and C̃p, which occur at p ≈ 0.28 and p ≈ 0.72. As p → 0, the divergence is Cp =
1

log(1/(1−p)) = 1
p +O(1).
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2.2 Preliminaries

Let Pp denote the probability measure on the symmetric group SN given by applying a p-shuffle to

the identity. Given two discrete probability vectors p = (p0, . . . , pk−1) and q = (q0, . . . , q`−1) define

their convolution

p ∗ q ≡ (p0q0, p0q1, . . . , p0q`−1, p1q0, . . . , pk−1q`−1).

This convolution turns out to correspond to shuffle composition.

Proposition 2.2.1 ([DFP92, Example 7]). Performing a q-shuffle followed by a p-shuffle is equiv-

alent to performing a (p ∗ q)-shuffle. That is,

Pp ∗ Pq = Pp∗q.

Proposition 2.2.1 yields an explicit description for the distribution Pp∗K of a deck after K shuffles.

For instance in the “symmetric” setting of [BD92], it implies that composing a k1-shuffle and a k2-

shuffle results in a k1k2-shuffle. It will actually be more convenient for us to work with the inverse

permutations. We now explain how to do this, following [Lal00]. First define a distribution on

sequences

S = (s1, . . . , sN )

of length K strings as follows. Generate N strings of length K, all with i.i.d. p-random digits in

[k]0 = {0, . . . , k − 1}.

S is obtained by sorting these strings into increasing lexicographic order

s1 ≤lex s2 ≤lex · · · ≤lex sN .

Recall that the lexicographic order on strings of the same length is just given by comparing their

base k values. In general, the lexicographically smaller of two different [k]0-strings is the one with

the smaller digit at the first place where their digits differ, or is the shorter string if one string is a

prefix of the other.

Next define the associated shuffle graph G = G(S) on vertex set

[N ] = {1, 2, . . . , N}

in which i, i+ 1 ∈ V (G) are neighbors if and only if si = si+1, and no other edges are in G. Hence

G is a union of disjoint paths, which we call G-components. (We say S and G = G(S) are p-random

when they are constructed in this way.) Finally choose a uniformly random permutation π ∈ SN and
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Figure 2.2: In this example with N = 10 strings in [k]K0 = [2]30, the lexiographically sorted sequence
of strings S leads to the shuffle graph G = G(S). The permutation π ∈ SN is then transformed into
πG by sorting within each G-component. By Proposition 2.2.2, the inverse (πG)−1 of the resulting
permutation has distribution Pp∗K .

define its G-modification πG by, within each G-component, sorting the values π(i) into increasing

order. The next proposition states that πG is exactly the inverse permutation of a p∗K-shuffled

deck.

Proposition 2.2.2 ([Lal00, Lemma 3]). Let π ∈ SN be uniformly random and G = G(S) be p-

random as defined above, for some fixed positive integers N and K. Then the distribution of (πG)−1

is exactly Pp∗K . In particular, the total variation distance of πG from uniform equals dTV

N (K).

In other words, the inverse permutation of a shuffled deck can be generated by starting with

a uniformly random permutation π, and then modifying π to create πG which is increasing on an

independently random set of subintervals in [N ]. After more and more shuffles, these subintervals

shrink in distribution, leading eventually to mixing. In fact, L∞ and separation mixing both corre-

spond to G having no edges with high probability, see [Lal00, Corollary 3] and [ADS12]. However

because G is random, total variation mixing can and does occur sooner. We refer the reader to

[Lal00, Section 2] for more explanation and examples regarding Proposition 2.2.2. In brief, the N

sequences si ∈ [k]K0 correspond to the sequences of pile-types that each of the N cards in the deck

appears in during the shuffles. The sorting within G-components corresponds to the fact that if

two cards are in the same pile during all K of the riffle shuffles, then their relative order must be

preserved.

Throughout the remainder of this chapter, we work entirely with this transformed problem.

Namely we will show that for K ≥ (1 + ε)Cp logN the permutation πG has total variation distance

o(1) from uniform, while for K ≤ (1− ε)Cp logN this distance is 1− o(1).

2.2.1 Intuition Based on an Independent Point Process

There are two main obstructions to mixing which lead to the separate lower bounds of C̃p and Cp.

The simpler obstruction is that if K ≤ (C̃p− ε) log(N), then some strings will typically occur many
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times, so πG will contain an abnormally long increasing substring of length NΩ(1). Indeed, from the

definition C̃p = 1
log(1/pmax)

it follows that after K ≤ (C̃p− ε) log(N) shuffles, the expected number of

strings with sj = iKmax is

E
∣∣{j ∈ [N ] : sj = iKmax}

∣∣ = pKmaxN

≥ N−(C̃p−ε) log(1/pmax)+1

≥ NΩε(1).

Since the number of such strings is binomially distributed, it is well-concentrated around its mean.

Therefore with probability 1 − o(1) the p-random shuffle graph G contains a length NΩε(1) path,

and so πG contains an increasing contiguous substring of the same length. However in a uniformly

random permutation π, the probability to have an increasing substring of length ` ≥ logN is

at most N/(`!) = o(1). Therefore the total variation distance from uniform is 1 − o(1) when

K ≤ (C̃p − ε) log(N).

The more complicated obstruction to mixing comes from a fractal set of predictable locations

(referred to as “cold spots” in [Lal00]) which tend to contain many G-edges. This obstruction,

as well as our approach to the upper bound, can be motivated by an independent point process

heuristic. (See also the last section of [Lal00].) Suppose we observe σ ∈ SN which is generated by

either σ = π or σ = πG for uniformly random π ∈ SN and p-random G. Since the transformation

π → πG simply arranges small subintervals into increasing order, let us suppose that we observe only

the ascent set A(σ) = {i : σ(i) < σ(i + 1)}. As a heuristic, we may treat A(σ) as an independent

point process on edges in both the uniform σ = π and shuffled σ = πG distributions. Specifically,

for each i ∈ [N − 1] let

ηi ≡ P[(i, i+ 1) ∈ E(G)].

be the probability for (i, i+ 1) to be an edge in G. Then

P[(i, i+ 1) ∈ A(π)] =
1

2

while, roughly speaking,

P[(i, i+ 1) ∈ A(πG)] ≈ 1 + ηi
2

.

(Technically P[(i, i+1) ∈ A(πG)] should also depend on ηi−1 and ηi+1 but we will ignore this point.)

This heuristic suggests that the likelihood ratio

Pπ∈SN [πG = σ]

Pπ∈SN [π = σ]
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evaluated at a uniformly random σ ∈ SN behaves like the random product

∏
i∈[N−1]

(1± ηi)

where the ± signs are i.i.d. uniform. This product is close to 0 in probability (so mixing has not

occured) if
∑
i η

2
i � 1, and is close to 1 in probability (so mixing has occured) if

∑
i η

2
i � 1.

Next observe that even without heuristic assumptions,

∑
i

η2
i = E[E(G,G′)]

is the expected size of the edge-intersection

E(G,G′) ≡ E(G) ∩ E(G′)

of two independent p-random shuffle graphs G and G′. Therefore it is natural to guess that mixing

occurs once |E(G,G′)| is typically small. Indeed, the quantity |E(G,G′)| will be crucial throughout.

Let us finally summarize how it and related quantities appear in the proofs.

To lower bound the mixing time, one identifies deterministic “cold spot” sets H ⊆ [N ] which typi-

cally contain at least |H| 12 +δ G-edges and shows that this implies non-mixing (see Proposition 2.6.1).

The existence of such sets H implies in general that E[|E(G,G′)|] � 1 (Remark 2.6.1). Moreover

in the independent point process model, the existence of such sets H is essentially equivalent to∑
i η

2
i � 1. Indeed, if

∑
i η

2
i � Nδ then by the dyadic pigeonhole principle it follows that for some

positive integer n there are at least Ω(22nNδ/3) values i ∈ [N − 1] with ηi ∈ [2−n, 2−n+1]. These

values of i can be taken for the set H.

On the other hand, it can happen that E[|E(G,G′)|] � 1 holds strictly before the onset of

total variation mixing. This requires that pmax > max(p0, pk−1) and in particular k ≥ 3 — see

Remark 2.5.1. Instead as explained in Section 2.3, we reduce the mixing time upper bound (2.1.3)

to showing that suitably truncated exponential moments of |E(G,G′)| are small. Estimating

these exponential moments is rather involved. Our strategy is outlined just before the beginning of

Subsection 2.3.2, and the proof occupies Sections 2.4 and 2.5.

These exponential moments arise naturally from considering (after some truncation) a chi-squared

upper bound for total variation distance (see Lemma 2.3.3). In fact this seems to be a generally

applicable method to upper-bound the total variation distance from a mixture of distributions with

“random hidden structure” to a “null distribution” by controlling the interaction between two inde-

pendent copies of the “structure” (in our setting, the graph G). For instance, a related observation

was made in [MP12, Proposition 3.2] and later exploited in [LS16, LS17] to analyze information
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percolation for the Ising model (see also the exposition [LS15]).

2.2.2 Notation

For any M ≥ 1 the set [k]M0 consists of all length M strings with digits in [k]0. (All strings will have

digits in [k]0.) Let

S ⊆ ([k]K0 )N

denote the set of all lexicographically non-decreasing sequences S = (s1, . . . , sN ) of N strings with

length K each. Let G denote the set of all shuffle graphs, i.e. subgraphs of the path graph on N

vertices. For G ∈ G, let C(G) be the set of G-components, i.e. connected components of G.

Define µp,M , often abbreviated as just µp, to be the probability measure on [k]M0 with each

digit independently p-random. By abuse of notation, we also use µp,M or simply µp to denote the

associated p-random distributions on S or G. We sometimes use square brackets to denote strings

written out by their digits. For instance [(k−1)(k−1)] indicates the string with two digits of (k−1)

while [(k − 1)(k − 1)0K−2] denotes the string with two initial (k − 1)-digits followed by K − 2 final

0-digits. We also occasionally use brackets to denote digits of a string, so for instance the digit

expansion of a string x may be written

x = x[1]x[2] . . . x[M ] ∈ [k]M0 .

We write Eσ,Eπ,Pσ, and Pπ to denote expectations or probabilities taken over uniformly random

permutations σ or π in SN . We similarly write ES to indicate expectation over S ∼ µp,K . We will

continue to use E(G,G′) = E(G) ∩ E(G′) to denote the edge-intersection of G,G′ ∈ G. S′ and

G′ = G(S′) will always denote independent copies of S and G.

The following definitions are used to prove Lemma 2.3.9 at the end of Section 2.3, and otherwise

do not appear until Section 2.4. For each string

x = x[1]x[2] . . . x[M ] ∈ [k]M0

with M ≥ 1 a positive integer, define

tx ≡ Py∼µp,M [y <lex x], (2.2.1)

λx ≡ Py∼µp,M [y = x] =

M∏
i=1

px[i], (2.2.2)

Jx ≡ [tx, tx + λx). (2.2.3)



CHAPTER 2. CUTOFF FOR THE ASYMMETRIC RIFFLE SHUFFLE 32

Hence the intervals (Jx)x∈[k]M0
partition [0, 1) for any fixed M . Note that

tx + λx = Py∼µp,M [y ≤lex x].

It will often be useful to observe that to sample a p-random string x ∈ [k]M0 , one may equivalently

sample a uniform random variable a ∈ [0, 1] and take the unique x with a ∈ Jx. Similarly to sample

(s1, . . . , sN ) ∈ S, one may instead sample uniform i.i.d.

a′1, . . . , a
′
N ∈ [0, 1],

sort them into increasing order

0 ≤ a1 ≤ · · · ≤ aN ≤ 1,

and finally choose si ∈ [k]K0 such that ai ∈ Jsi for each i ∈ [N ].

Figure 2.3: The partition [0, 1) =
⋃
x∈[k]M0

Jx with k = 2,M = 2, and (p0, p1) =
(

1
3 ,

2
3

)
.

2.3 Upper Bound Approach

Here we explain some of the ingredients used to prove the mixing time upper bound (2.1.3). In

Subsection 2.3.1 we present the more conceptual parts, ultimately reducing (2.1.3) to a certain

exponential moment estimate. In Subsection 2.3.2 we prove a few other lemmas used in Subsec-

tion 2.3.1. This section might be viewed as an extended setup for the more difficult parts of the

proof. For instance the constant Cp does not explicitly enter until the next section. However we

emphasize that the results of this section are both specific to the particular problem considered and

essential to understand the remainder of the argument.

2.3.1 High-Level Approach

We begin by carefully examining the Radon–Nikodym derivative between the distributions of πG

and π where π is a uniformly random permutation. For each G ∈ G, let C(G) = {G1, . . . , Gj} be

the G-components, and suppose that each Gi contains vi vertices. Then it is easy to see that the
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map SN → SN given by π → πG is
(∏j

i=1 vi!
)

to 1. Moreover its image consists of those σ with

σG = σ. Therefore

Pπ[πG = σ] = 1σ=σG ·
∏j
i=1 vi!

N !
, σ ∈ SN .

As a consequence, for fixed G ∈ G the Radon–Nikodym derivative fG,σ of πG with respect to π is

given by

fG,σ ≡
Pπ[πG = σ]

Pπ[π = σ]

= N ! · Pπ[πG = σ]

= 1σG=σ ·
j∏
i=1

vi!

=
1σG=σ

Pπ[πG = π]
.

Observe that for fixed G ∈ G,
σ

E[fG,σ] = 1. (2.3.1)

On the other hand for fixed σ and µp,K-random G = G(S), we may apply the law of total expectation

to the second definition of fG,σ above. This implies that for fixed σ,

Pπ,S [πG(S) = σ] =
ES [fG(S),σ]

N !
.

Therefore the total variation distance to uniform after K shuffles is given by

dTV

N (K) =
1

2
·
σ

E
∣∣ES [fG(S),σ − 1]

∣∣ .
Next, we use a chi-squared upper bound for total variation distance after removing exceptional

sequences from S. To carry this out, given a partition S = S1 ∪ S0 (where S1 consists of “typical”

sequences), write

Eσ
∣∣ES [fG(S),σ − 1]

∣∣ ≤ Eσ
∣∣ES [(fG(S),σ − 1)1S∈S1 ]

∣∣+ Eσ
∣∣ES [(fG(S),σ − 1)1S∈S0 ]

∣∣
≤ Eσ

∣∣ES [(fG(S),σ − 1)1S∈S1 ]
∣∣+ Eσ,S [(fG(S),σ + 1)1S∈S0 ]

(2.3.1)
= Eσ

∣∣ES [(fG(S),σ − 1)1S∈S1 ]
∣∣+ 2µp(S0). (2.3.2)

Take S′ to be an independent copy of S and define for any shuffle graphs G,G′ ∈ G

fG,G′ ≡ Eσ[fG,σfG′,σ].
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We now use the Cauchy–Schwarz inequality to upper-bound the main term of (2.3.2) via

(
Eσ
∣∣ES [(fG(S),σ − 1)1S∈S1 ]

∣∣)2 ≤ Eσ
[(
ES [(fG(S),σ − 1)1S∈S1 ]

)2]
= EσES,S

′
[(fG(S),σ − 1)(fG(S′),σ − 1)1S,S′∈S1 ]

= EσES,S
′
[(fG(S),σfG(S′),σ − 1)1S,S′∈S1 ]

= ES,S
′
[(fG,G′ − 1)1S,S′∈S1 ] . (2.3.3)

The second equality holds by switching the order of expectation and using (2.3.1). Starting from

(2.3.3) and throughout the remainder of the chapter, we set G = G(S), G′ = G(S′). Based on

(2.3.3), to establish mixing it remains to show that fG,G′ rarely exceeds 1 in an L1 sense (modulo

choosing S1 and S0).

We will upper-bound fG,G′ using the number |E(G,G′)| of edges shared by G and G′. As

motivation for why such a relationship should exist, observe that if no vertex i ∈ [N ] is incident to

both a G-edge and a G′-edge, then fG,σ and fG′,σ are exactly independent for σ ∈ SN uniformly

random. Hence in this case we have the exact equality

fG,G′ = Eσ[fG,σfG′,σ] = Eσ[fG,σ]Eσ[fG′,σ]
(2.3.1)

= 1.

In fact Lemma 2.3.1 below implies that fG,G′ ≤ 1 holds whenever |E(G,G′)| = 0. In essence,

incident but non-overlapping edges only reduce fG,G′ . It is now unsurprising that fG,G′ can be

bounded above by some function of |E(G,G′)|. We show in Lemma 2.3.3 that this dependence is at

most exponential when a condition called L-sparsity holds for both G and G′. The requirement of

L-sparsity will be part of the eventual definition of S1.

In general, for any shuffle graphs G and G′, define the new shuffle graph U to be their edge-union

with U -components C(U). The next lemma shows how to estimate fG,G′ based on the intersection

structure of G and G′. The proof is deferred to the next subsection.

Lemma 2.3.1. Suppose the U -components have vertex-sizes (u1, . . . , uc). Then

fG,G′ ≤
∏

1≤i≤c,
E(Ui)∩E(G,G′)6=∅

(ui!). (2.3.4)

We now define the first condition that “typical” sequences in S1 must satisfy. The objective is

to ensure that the ui in Lemma 2.3.1 are uniformly bounded by some constant L = L(p, ε). Let

us point out that it is not enough to argue that maxi(ui) ≤ L holds with high probability over

random pairs (S, S′). Indeed, the truncation step (2.3.2) was used to remove S0 before applying

Cauchy–Schwarz to introduce S′. There is no analogous way to remove an arbitrary low-probability
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subset of pairs (S, S′) ∈ S. It is therefore important that the definition of L-sparsity below implies

maxi(ui) ≤ L via separate restrictions on G and G′.

Definition 2.3.2. For L ≥ 10 a positive integer, a shuffle graph G is L-sparse if within any

discrete interval {i, i+ 1, . . . , i+L− 1} ⊆ [N ] of L consecutive vertices, at most L/3 (of the possible

L− 1) edges are in E(G).

Lemma 2.3.3. Suppose G and G′ are L-sparse shuffle graphs. Then fG,G′ ≤ (L!)|E(G,G′)|.

Proof. We claim that maxi(ui) ≤ L, i.e. each U -component contains at most L vertices. Indeed by

L-sparsity, U contains at most 2L
3 < L−1 edges within each subinterval of L vertices, hence no such

interval can be a connected subgraph of U . Therefore Lemma 2.3.1 implies that

fG,G′ ≤
∏

1≤i≤c,
E(Ui)∩E(G,G′)6=∅

(L!).

By definition, |E(G,G′)| is at least the number of components Ui satisfying E(Ui) ∩ E(G,G′) 6= ∅.
This completes the proof.

Given Lemma 2.3.3, our main remaining task is to control the (truncated) exponential moments

of |E(G,G′)|. For technical reasons outlined at the end of this subsection, we will cover E(G,G′)

by a union E(G,G′) = Efor(G,G
′) ∪ Eback(G,G

′) of two sets which omit lexicographically late and

early strings respectively. To ensure that E(G,G′) can be covered in this way for G,G′ ∈ S1, we

add a second restriction to the definition of S1 called regularity. This amounts to requiring that

both prefixes [00] and [(k−1)(k−1)] appear with roughly the expected frequency among the strings

(s1, . . . , sN ) of S.

Definition 2.3.4. The sequence S = (s1, . . . , sN ) ∈ S of strings is regular if at most
(
p2

0 + p0pk−1

2

)
N

strings si begin with [00] (two consecutive 0 digits) and at most
(
p2
k−1 + p0pk−1

2

)
N strings begin with

[(k − 1)(k − 1)] (two consecutive (k − 1) digits).

Lemma 2.3.5. For any p and ε > 0 there exist L = L(p, ε) ∈ Z+ and δ = δ(p, ε) > 0 such

that the following holds. Consider a p-random sequence S = (s1, . . . , sN ) of strings of length K ≥
(C̃p + ε) log(N). Then with probability 1−O(N−δ), S is regular and G(S) is L-sparse.

The proof is deferred to the next subsection. S1 can now be defined: it consists of the regular

sequences S for which G(S) is L-sparse for L = L(p, ε) as in Lemma 2.3.5. Then Lemma 2.3.5

exactly states that

µp(S0) = O(N−δ)

for some small δ = δ(p, ε).
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We remark that the convergence rate O(N−δ) eventually appears as the upper bound for the

total variation distance to uniformity (see (2.3.5) and the next displayed equations in that proof).

The rate O(N−δ) seems to be tight in e.g. Proposition 2.4.1 via Lemma 2.4.15. As a result we use

this rate in the statement of Lemma 2.3.5 although it could be improved. In fact the probability

for S to be regular is at least 1− e−Ωp(N). The probability for G(S) to be L-sparse can be made at

most e−CN for any desired C > 0, if L = L(C,p, ε) is taken sufficiently large.

Next we show how to cover E(G,G′) when S and S′ are regular.

Definition 2.3.6. Let Efor(G) consist of all edges (i, i+ 1) ∈ E(G) for which the strings si = si+1

do not begin with prefix [(k− 1)(k− 1)]. Let Efor(G,G
′) = Efor(G)∩Efor(G

′). Define Eback(G,G
′)

in the same way but with [(k − 1)(k − 1)] replaced by [00].

Lemma 2.3.7. If S, S′ ∈ S are regular, then

|E(G,G′)| ≤ |Efor(G,G
′)|+ |Eback(G,G

′)|.

Proof. Regularity implies that Efor(G,G
′) contains all shared edges (i, i+ 1) ∈ E(G,G′) with

i ≤ (1− p2
k−1 − (p0pk−1/2))N,

and Eback(G,G
′) contains all shared edges (i, i+ 1) ∈ E(G,G′) with

i ≥ (p2
0 + (p0pk−1/2))N.

Since

p2
0 + p0pk−1 + p2

k−1 < (p0 + pk−1)2 ≤ 1

we obtain

(p2
0 + (p0pk−1/2))N ≤ (1− p2

k−1 − (p0pk−1/2))N.

Therefore

Efor(G,G
′) ∪ Eback(G,G

′) = E(G,G′)

which implies the result.

Using symmetry to suppress the identical case of Eback, to establish the mixing time upper bound

in Theorem 8 it remains to verify the following lemma.

Lemma 2.3.8. For any p and positive reals ε and t, there is δ = δ(p, ε, t) such that if K ≥
(Cp + ε) log(N) then

E[et·|Efor(G,G
′)|] ≤ 1 +O(N−δ).
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Indeed, the mixing time upper bound (2.1.3) in Theorem 8 easily follows from the results above

as we show now.

Proof of (2.1.3). Let δ > 0 be sufficiently small depending on (p, ε, L, t), some of which are yet to

be chosen. By (2.3.2) and (2.3.3),

dTV

N (K) =
1

2
· Eσ

∣∣ES [fG(S),σ]− 1
∣∣

≤ 1

2
·
√

ES,S′ [(fG,G′ − 1)1S,S′∈S1 ] + µp(S0). (2.3.5)

(It follows from (2.3.3) that the expression inside the square-root is non-negative.) Since µp(S0) =

O(N−δ) by Lemma 2.3.5, it remains to estimate ES,S′∈S [(fG,G′ − 1)1S,S′∈S1 ]. Using Lemma 2.3.3

in the first step, then Lemma 2.3.7 and finally Lemma 2.3.8 with t = 2 log(L!), we obtain

ES,S′∈S [(fG,G′ − 1)1S,S′∈S1 ] ≤ ES,S′ [
(

(L!)|E(G,G′)| − 1
)

1S,S′∈S1 ]

≤ E[
(

(L!)|Efor(G,G
′)|+|Eback(G,G

′)| − 1
)

1S,S′∈S1 ]

≤ E[(L!)|Efor(G,G
′)|+|Eback(G,G

′)| − 1]

≤ E[(L!)2|Efor(G,G
′)|]+E[(L!)2|Eback(G,G

′)|]
2 − 1

≤ O(N−δ).

Lemma 2.3.7

Lemma 2.3.8

Combining the above, we conclude that dTV

N (K) ≤ O(N−δ) when K ≥ (Cp + ε) log(N).

The above constitutes a complete proof for the upper bound, except that Lemmas 2.3.1, 2.3.5

and 2.3.8 are yet to be proved. The first two are not difficult and are handled in the next subsection.

Lemma 2.3.8 is more challenging and its proof occupies Sections 2.4 and 2.5. We now outline

our approach to Lemma 2.3.8, which starts from the following basic fact. Suppose X ∈ N is a

non-negative integer-valued random variable satisfying the uniform hazard rate bound

sup
j≥0

P[X ≥ j + 1|X ≥ j] ≤ O(N−δ) (2.3.6)

for some δ > 0. Then X is stochastically dominated by a geometric random variable with mean

O(N−δ), and therefore E[etX ] = 1+O(etN−δ) = 1+o(1) for any constant t. To prove Lemma 2.3.8,

we will implement this idea with X = |Efor(G,G
′)|. We explore G and G′ by revealing their strings

together in order, so that

(s1, . . . , si) and (s′1, . . . , s
′
i)

have been revealed at time i ∈ [N ]. We show that at any time, the expected number of unrevealed
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edges in Efor(G,G
′) is at most O(N−δ). That is, almost surely,

E
[∣∣Efor(G,G

′)|{i,i+1,...,N}
∣∣ ∣∣∣ (s1, . . . , si, s

′
1, . . . , s

′
i)
]
≤ O(N−δ). (2.3.7)

(Here we write Efor(G,G
′)|{i,i+1,...,N} to indicate the set of edges (j, j+1) ∈ Efor(G,G

′) with j ≥ i.)
The estimate (2.3.7) readily implies Lemma 2.3.8 analogously to the above discussion on (2.3.6). See

Lemma 2.5.4 for a detailed proof.

As a first step towards establishing (2.3.7), in Section 2.4 we prove for K ≥ (Cp + ε) log(N) the

weaker first moment bound

E [|E(G,G′)|] ≤ O(N−δ). (2.3.8)

In Section 2.5 we use (2.3.8) to show (2.3.7). The idea is to group the set of possible future strings

{s ∈ [k]K0 : s ≥lex si}

into a small number of blocks. Here each block Bx consists of all strings beginning with some prefix

x ∈ [k]M0 (where M = M(x) depends on x). Such a block Bx is essentially equivalent to a copy

of [k]K−M0 . The idea is to first estimate the left-hand side of (2.3.7) by a sum over blocks (using

Cauchy–Schwarz several times), and to then estimate the contribution of each block using (2.3.8).

The total number of blocks will always be O(logN) ≤ No(1). Therefore summing over blocks is no

problem (up to adjusting the value of δ slightly) as long as the hypothesis of (2.3.8) applies “within”

each block.

To illustrate the key reason for introducing Efor, let us explain why (2.3.7) can be false if

Efor(G,G
′) is replaced by E(G,G′). Suppose that si = s′i = [(k−1)K ] holds for some i ∈ [N ]. Then

conditioning on (si, s
′
i) forces sj = s′j = [(k − 1)K ] for all j > i. Hence E(G,G′) must contain all

the edges (i, i+ 1), (i+ 1, i+ 2), . . . , (N − 1, N) and so

E
[∣∣E(G,G′)|{i,i+1,...,N}

∣∣ ∣∣∣ (s1, . . . , si, s
′
1, . . . , s

′
i)
]

= N − i+ 1.

However working with Efor(G,G
′) prevents such situations by halting exploration once either si

or s′i becomes too lexicographically late. This circumvents the above obstruction because the left-

hand side of (2.3.7) is trivially 0 unless a lot of “space” in [k]K0 remains available for future strings

(si+1, . . . , sN , s
′
i+1, . . . , s

′
N ).

In fact, this guaranteed available space is also directly helpful in implementing the block decom-

position strategy outlined above. Namely for any prefix x ∈ [k]M0 , it ensures that the distribution

for the number of strings (si+1, . . . , sN ) starting with x cannot increase too much from conditioning

on (s1, . . . , si) (see Lemma 2.5.6 for a precise statement). This is important because when applying

(2.3.8) to the block of strings starting with some prefix x, we replace N by the number of strings
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starting with x (and also replace K by K −M). In short, we must ensure that the hypothesis of

(2.3.8) holds within each block.

2.3.2 Proof of Lemmas 2.3.1 and 2.3.5

Here we prove Lemmas 2.3.1 and 2.3.5, thus reducing the proof of the mixing time upper bound

(2.1.3) to establishing Lemma 2.3.8.

Proof of Lemma 2.3.1. Let (v1, . . . , va) be the vertex-sizes of the G-components and (w1, . . . , wb) be

the vertex-sizes of the G′-components.

We first claim that

fG,G′ =

(∏a
i=1 vi!

)
·
(∏b

j=1 wj !
)∏c

`=1 u`!
. (2.3.9)

Indeed this follows by writing

fG,G′ = Eσ[fG,σfG′,σ]

= Eσ
1σG=σ · 1σG′=σ ·

(
a∏
i=1

vi!

)
·

 b∏
j=1

wj !


= Eσ [1σU=σ] ·

(
a∏
i=1

vi!

)
·

 b∏
j=1

wj !


=

(∏a
i=1 vi!

)
·
(∏b

j=1 wj !
)∏c

`=1 u`!
.

Decomposing the product in (2.3.9) based on the components Ui ∈ C(U) implies

fG,G′ =
∏
`

fG,G′,U` (2.3.10)

where we define

fG,G′,U` ≡

(∏
i:Gi⊆U` vi!

)
·
(∏

j:G′j⊆U`
wj !
)

u`!
.

Observe that in general, for any positive integers m1, . . . ,mn,M with

n∑
i=1

(mi − 1) ≤M − 1,

one has
∏n
i=1mi! ≤ M !. Indeed both sides can be written as a product of at most M − 1 integers

at least 2, and the M − 1 numbers appearing in the product for M ! are clearly larger. In particular,

this holds for M = u` whenever m1, . . . ,mn are the vertex-sizes of edge-disjoint subinterval graphs
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of V (U`). It directly implies

∏
i:Gi⊆U`

vi! ≤ u`!,∏
j:G′j⊆U`

wj ! ≤ u`!

from which it follows that fG,G′,U` ≤ u`! holds. Moreover if U` does not contain any edge in E(G,G′)

then the G-components and G′-components are collectively edge-disjoint. Hence for such U`, ∏
i:Gi⊆U`

vi!

 ·
 ∏
j:G′j⊆U`

wj !

 ≤ u`!
which implies fG,G′,U` ≤ 1. Substituting these estimates into (2.3.10) implies (2.3.4).

The next lemma is used to show Lemma 2.3.5.

Lemma 2.3.9. For K ≥ (C̃p+ε) log(N), there is δ(p, ε) > 0 so that the following holds. Conditioned

on any initial strings s1, s2, . . . , si, none of which begin with [(k−1)(k−1)], the conditional probability

that si = si+1 is at most O(N−δ).

Proof. Recall the definitions (2.2.1), (2.2.2), (2.2.3) and the subsequent discussion. We use the

sampling model of N i.i.d.-then-sorted uniform random variables, letting

0 ≤ a1 ≤ a2 ≤ · · · ≤ aN ≤ 1

be uniformly random before being sorted and then choosing sj such that aj ∈ Jsj for each 1 ≤ j ≤ N .

Recall that we condition on si. Let us now condition further on the value ai ∈ Jsi . Then

the remaining numbers aj for j > i are, up to sorting, conditionally i.i.d. in [ai, 1]. The crucial

observation is that the interval [ai, 1] has length lower bounded by 1 − ai ≥ p2
k−1 ≥ p2

min. Indeed,

ai < 1 − p2
k−1 is equivalent to the assumption that si does not begin with [(k − 1)(k − 1)]. (For

instance, note that J[(k−1)(k−1)] = [1− p2
k−1, 1).) Meanwhile the length of Jsi is λsi .

Combining these observations, it follows that the conditional distribution for the number of

j > i with sj = si is stochastically dominated by a Bin(N, p−2
minλsi) random variable, regardless of

the value ai. Averaging over the unknown ai, the same stochastic domination holds conditioned on

just (s1, . . . , si). Since K ≥ (C̃p + ε) log(N) was assumed,

λsi ≤ (pmax)
K ≤ N−1−δ.

The result now follows.
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Proof of Lemma 2.3.5. The regularity readily follows from Chernoff estimates so we focus only on

the L-sparsity. First, Lemma 2.3.9 implies that P[si+1 = si|(s1, . . . , si)] ≤ O(N−δ) whenever si <lex

[(k − 1)(k − 1)]. A simple Markovian coupling now implies that the set of edges formed by strings

si <lex [(k − 1)(k − 1)] is stochastically dominated by instead choosing each edge independently

with probability O(N−δ). By symmetry the same holds for edges formed by strings starting with

[(k − 1)(k − 1)]. Call these ordinary edges and final edges, respectively.

A simple Chernoff bound implies that for L ≥ 1000δ−1, each interval {i, i + 1, . . . , i + L − 1}
of L consecutive vertices contains at most L/6 ordinary edges and at most L/6 final edges with

probability 1 − OL
(

1
N2

)
. Since L/6 + L/6 = L/3, union bounding over at most N such length-L

intervals shows that L-sparsity holds with probability at least 1−O(N−1) ≥ 1−O(N−δ).

2.4 Upper Bounding the Expected Shared Edges

Define the constant

Cp ≡ max

(
Cp,

1

log(1/p0)
,

1

log(1/pk−1)

)
≤ Cp.

The purpose of this section is to prove the following crucial result.

Proposition 2.4.1. For any ε > 0, if K ≥
(
Cp + ε

)
log(N) holds then

E [|E(G,G′)|] ≤ O(N−Ωp(ε)).

We eventually need to control the (truncated) exponential moments of E(G,G′). However Propo-

sition 2.4.1 is the most involved part of upper-bounding the mixing time, and the value Cp =
3+θp

4ψp(2)

emerges naturally in its proof. We note that for our main goal of establishing cutoff, proving Propo-

sition 2.4.1 only for K ≥
(
Cp + ε

)
log(N) would suffice just as well. However there is no additional

difficulty in proving Proposition 2.4.1 as stated. Moreover the case Cp 6= Cp amounts to an inter-

esting discrepancy between the first moment and exponential moment behavior of |E(G,G′)|. See

Remark 2.5.1 for more discussion of this point.

Let us mention that after further preparation in Subsection 2.4.1, we provide in Subsection 2.4.2

a proof outline for Proposition 2.4.1.

2.4.1 Preparation for the Upper Bound Proof

We now introduce several more technical definitions. As a convention, p and ε will be treated as fixed,

while δ = δ(p, ε) will be taken sufficiently small. As before G and G′ will always be independent

p-random shuffle graphs. Moreover s will denote strings of length K while x will denote strings of
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arbitrary length M ≤ K.

Lexicographic Subintervals and Blocks

Figure 2.4: The blocks B00 and B1 are shown for k = 2 and K = 3.

For a string x of length M , define its block Bx ⊆ [k]K0 to be the set of strings of length K beginning

with x. Hence Bx consists of kK−M strings. Given a lexicographically sorted sequence (s1, . . . , sN ) ∈
S of strings, define the discrete interval I(Bx) ⊆ [N ] by

I(Bx) ≡ {i ∈ [N ] : si ∈ Bx} = {ι(x), ι(x) + 1, . . . , τ(x)}.

In general, we define

ι(x) = |{i ∈ [N ] : si <lex x}|+ 1, τ(x) = |{i ∈ [N ] : si <lex x or si ∈ Bx}|.

This ensures |I(Bx)| = τ(x)− ι(x) + 1 even if I(Bx) is empty. Observe that for fixed x (recall the

definitions (2.2.1) and (2.2.2)),

|I(Bx)| ∼ Bin(N,λx), (2.4.1)

ι(x) ∼ Bin(N, tx) + 1, (2.4.2)

τ(x) ∼ Bin(N, tx + λx). (2.4.3)

Finally define GBx to be the induced subgraph of G with vertex set I(Bx), which retains the

edges (i, i+ 1) ∈ E(G) such that si = si+1 ∈ Bx. Denote its edge set by E(GBx).
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Entropy

We will require the entropy function. Given any k-tuple of non-negative real numbers (a0, . . . , ak−1)

with sum atot, let

H(a0, . . . , ak−1) =

∑k−1
i=0 ai log

(
atot
ai

)
atot

be the entropy of the discrete probability distribution with weights (ai/atot)
k−1
i=0 . If a0 = · · · =

ak−1 = 0 then set H(a0, . . . , ak−1) = 0. The following result allows approximation of multinomial

coefficients using entropy. (The values ai log(N) correspond to the normalization in Definition 2.4.3

just below.)

Proposition 2.4.2 ([CS04, Lemma 2.2]). For fixed A ≥ 0 and any non-negative real numbers

a0, . . . , ak−1 ∈ [0, A] satisfying ai log(N) ∈ Z,

NatotH(a0,...,ak−1)−oN (1) ≤
(

atot log(N)

a0 log(N), . . . , ak−1 log(N)

)
≤ NatotH(a0,...,ak−1).

Here the term oN (1) tends to 0 for any fixed A as N → ∞, uniformly in the values a0, . . . , ak−1 ∈
[0, A].

The following special definitions will also be convenient. For t > 0, let pt be the probability

distribution on [k]0 given by (pt)i =
pti

φp(t) . Define

I(p,pt) ≡ DKL(p
t || p) +H(pt) =

k−1∑
i=0

(pt)i log(1/pi) =

k−1∑
i=0

pti log(1/pi)

φp(t)
> 0. (2.4.4)

It is not difficult to verify the identity

H(pt) = t · I(p,pt)− ψp(t), t ∈ R+. (2.4.5)

Digit Profile

Here we define several notions based on the digit profile of a string, which tracks how many of each

digit a string contains, as well as initial digits of 0 or k − 1.

Definition 2.4.3. For a string x ∈ [k]M0 , the digit profile of x is the (k + 2)-tuple

(b0(x), bk−1(x), c0(x), . . . , ck−1(x)) ∈ (Z/ logN)
k+2

of non-negative real numbers summing to b0 + bk−1 +
∑k−1
i=0 ci = M

log(N) defined as follows. b0 log(N)

is the number of initial 0-digits in x and bk−1 log(N) is the number of initial (k − 1)-digits (so
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min(b0, bk−1) = 0). After the first (b0 + bk−1) log(N) digits, x contains ci log(N) digits of i for each

i ∈ [k]0.

The normalization 1
logN above is taken so that the total sum M

logN is of constant order. We next

define constants depending on the digit profile of x. Let

ctot(x) =

k−1∑
i=0

ci(x)

be the number of digits in x after the initial 0 or initial (k − 1) digits. Also define

cL(x) ≡ 1− b0 log

(
1

p0

)
− bk−1 log

(
1

pk−1

)
−
k−1∑
i=0

ci log

(
1

pi

)
= 1 + logN (λx),

cF (x) ≡
1− b0 log

(
1
p0

)
− bk−1 log

(
1

pk−1

)
2

,

cD(x) ≡ cL(x)− cF (x) =
1− b0 log

(
1
p0

)
− bk−1 log

(
1

pk−1

)
2

−
k−1∑
i=0

ci log

(
1

pi

)
,

cE(x) ≡
(
M −K
logN

)
ψp(2) =

(
b0 + bk−1 + ctot −

K

logN

)
ψp(2) < 0,

cX(x) ≡ ctotH(c0, . . . , ck−1) + 5cL − 2cF + 2cE .

Finally say x is δ-stable if

cL(x)− cF (x) ∈ [δ, 2δ]. (2.4.6)

The typical size of |I(Bx)| is N cL while N cF is the order of fluctuations for ι(x) and τ(x). cE is

related to the typical number of G-edges coming from strings in Bx. cX is related to the typical

number of G-edges coming from strings of the same digit profile as x. Note that when b0 = bk−1 = 0

we have cF = 1
2 . As explained in the next subsection, this corresponds to ι(x) and τ(x) having

fluctuations of order N1/2.

2.4.2 Proof Outline for Proposition 2.4.1

We now outline the proof of Proposition 2.4.1. Except for the end of this outline we will only

consider strings x with b0(x) = bk−1(x) = 0 so that the interval Jx ∈ [0, 1] is a constant distance

from the boundary points {0, 1}. We will take δ � ε to be a small constant, and simply write δ

when a constant multiple such as 4δ would be technically correct. Since we are targeting an upper

bound O
(
N−Ωp(ε)

)
in Proposition 2.4.1, factors of NO(δ) can usually be thought of as small.

The first idea is to start from the empty block B∅ = [k]K0 and recursively refine the partition of
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[k]K0 by decomposing a block Bx into k smaller blocks via

Bx =
⋃
i∈[k]0

Bxi.

For example when k = 2 such a refinement might proceed as

B∅ → B0 ∪B1 → B00 ∪B01 ∪B1 = [2]K0 .

We recursively refine the partition B∅ in this way until each block Bx in the partition has size

µp(Bx) ≈ N−
1
2 +δ; this is formally carried out in Lemma 2.4.5. The set of strings x used in the

resulting partition is denoted by Lstable, so that we obtain

[k]K0 =
⋃

x∈Lstable

Bx, and [N ] =
⋃

x∈Lstable

I(Bx). (2.4.7)

as in Lemma 2.4.6. The first and last indices ι(x) and τ(x) of I(Bx) are (non-independent) binomial

random variables with N trials, hence each fluctuate by at most O(N1/2) with high probability.

The upshot of the above is that the random set I(Bx) agrees with a discrete deterministic interval

of size |NJx ∩ Z| ≈ N
1
2 +δ up to boundary fluctuations |ι(x)−Ntx| and |τ(x)−N(tx + λx)| which

are smaller than N
1
2 +δ with high probability. Because the random interval I(Bx) has typical size

of larger order than the fluctuations of its left and right endpoints, we may think of I(Bx) as being

nearly deterministic. In line with this intuition, we show in Lemma 2.4.10 that given any i ∈ [N ]

there exist adjacent xi,1, xi,2 ∈ Lstable such that i ∈ I(Bxi,1) ∪ I(Bxi,2) holds with extremely high

probability. Combining this with AM-GM, we show in Lemma 2.4.11 that E[|E(G,G′)|] is upper

bounded by the expected number of shared edges from pairs (GBx , G
′
Bx

) of matching blocks as

follows.

E[|E(G,G′)|] .
∑

x∈Lstable

E[E(GBx , G
′
Bx)] (2.4.8)

=
∑

x∈Lstable

N−1∑
i=1

P[(i, i+ 1) ∈ E(GBx)]2.

Here the informal notation . hides a constant factor and a negligible additive term.

Our next objective is to upper-bound for each x the probability P[(i, i+ 1) ∈ E(GBx)] appearing

in (2.4.8). We do this by conditioning on the multiset Sx of strings appearing in I(Bx) and averaging

over the still-random external strings. Although this conditioning determines the size and internal

edge-structure of I(Bx), the position of I(Bx) is conditionally random. Indeed the position of the

interval I(Bx) depends on the number of external strings lexicographically smaller than x, which we
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have not conditioned on. This shift is conditionally binomial with order N1/2 fluctuations. Crucially,

these fluctuations “homogenize” the edge locations within each blockBx. Indeed averaging over these

external shifts, it follows that

max
i∈[N−1]

P[(i, i+ 1) ∈ E(GBx)|Sx] .
|E(GBx)|
N1/2

. (2.4.9)

It is not difficult to control the typical size |E(GBx)|. Moreover since the location of I(Bx) is almost

deterministic, the above probability is negligibly small for all but O(E[|I(Bx)|]) = O(N
1
2 +δ) values

of i. Combining these considerations leads to an upper bound on

N−1∑
i=1

P[(i, i+ 1) ∈ E(GBx)]2. (2.4.10)

The precise bound requires some care to state and is given in Lemma 2.4.14.

The preceding argument allowed us to estimate (2.4.10) for each x. In light of (2.4.8), it remains

to sum over x ∈ Lstable. The last key point is that all x ∈ Lstable with a given digit profile

contribute essentially identically. Moreover there are only log(N)O(1) ≤ No(1) possible digit profiles.

It therefore suffices to count the number of x ∈ Lstable with each digit profile and then determine

the maximum total contribution of any fixed digit profile. This count is easily approximated using

Proposition 2.4.2. The resulting maximum turns out to be achieved when x has digit frequencies

approximately given by pθp , which leads to the appearance of the constant Cp.

So far, this outline considered only blocks Bx with b0(x) = bk−1(x) = 0. When b0(x) or bk−1(x) is

large the fluctuations of ι(x) and τ(x) shrink, simply because the variance Np(1− p) of a Bin(N, p)

random variable shrinks when p is close to 0 or 1. To handle such prefixes x requires a slightly

revised definition of Lstable. In general the fluctuations of ι(x) and τ(x) should be slightly smaller

than the typical size of I(Bx); this is precisely the definition of δ-stability in (2.4.6). It turns out

that the resulting maximization problem over digit profiles nearly reduces to considering those with

b0 = bk−1 = 0. Indeed by an elementary linearity argument (see (2.4.18)), the only other digit

profiles that must be considered are the degenerate cases with c0 = c1 = · · · = ck−1 = 0 in which x

consists of all 0 digits or all (k−1) digits. These cases are much simpler and lead to the requirement

that

Cp ≥ max

(
1

log(1/p0)
,

1

log(1/pk−1)

)
.

During a first reading of the next subsection it may be easier to focus on the main case b0 = bk−1 = 0

so that the proofs match the outline above more closely.
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Finally, we remark that the estimates outlined after (2.4.8) lead to the inequality

E[|E(G,G′)|] . NO(δ)
∑

x∈Lstable

E[|E(GBx)|]2

E[|I(Bx)|]
.

Hence for the purpose of counting edges in E(G,G′), each block Bx behaves approximately like an

i.i.d. point process of edges in I(Bx) with x-dependent edge probability
E[|E(GBx )|]
E[|I(Bx)|] . In fact (2.4.9)

states that this holds more precisely at the level of individual edge probabilities. These hold precisely

because the boundary fluctuations of I(Bx) are only slightly smaller than E[|I(Bx)|], so that the

homogenizing effect of the random shifts is near-total. Somewhat fancifully, one might then view

the partition (2.4.7) as analogous to an ergodic or pure state decomposition.

2.4.3 The Partition into Stable Blocks

We now turn to a tree-based partition of [k]K0 into blocks Bx. Define the k-ary rooted tree T = Tk,K
of depth K which consists of all [k]0-strings of length M at each level 0 ≤M ≤ K. Here the children

of s ∈ [k]M0 are the concatenations s0, s1, . . . , s(k− 1) ∈ [k]M+1
0 . Hence the leaves of T are given by

[k]K0 while the root of T is the empty string ∅. Recall from Subsection 2.4.1 the definition

cD(x) = cL(x)− cF (x) =
1− b0 log

(
1
p0

)
− bk−1 log

(
1

pk−1

)
2

−
k−1∑
i=0

ci log

(
1

pi

)
.

Moreover, as in Proposition 2.4.1, we assume throughout that K ≥ (Cp + ε) log(N) holds for some

small, fixed ε > 0.

Lemma 2.4.4. Let x be the parent of y in T . Then

0 ≤ cD(x)− cD(y) ≤ O
(

1

log(N)

)
. (2.4.11)

Moreover cD takes value cD(∅) = 1
2 at the root, while cD(s) ≤ −Ωp(ε) for any leaf s ∈ [k]K0 .

Proof. The values b0, bk−1, c0, . . . , ck−1 each change by O (1/ log(N)) between neighboring vertices

in T , which shows that

|cD(x)− cD(y)| ≤ O
(

1

log(N)

)
.

Moreover since cD is decreasing in each coordinate of the digit profile it follows that cD(x)−cD(y) ≥
0. This concludes the proof of (2.4.11).

When x = ∅ is the root, b0 = bk−1 = c0 = · · · = ck−1 = 0, and so cD(∅) = 1
2 . Finally for any leaf
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s ∈ [k]K0 of T we have

b0(s) + bk−1(s) +

k−1∑
i=0

ci(s) = K ≥ Cp + ε.

Since t→ log( 1
t ) is decreasing and positive for t ∈ (0, 1),

cL(s)− cF (s) =
1

2
− b0 ·

log
(

1
p0

)
2

− bk−1 ·
log
(

1
pk−1

)
2

−
k−1∑
i=0

ci log

(
1

pi

)
≤ 1

2
−

(Cp + ε) min(log(1/p0), log(1/pk−1), 2 log(1/pmax))

2

By definition Cp log(1/p0) ≥ 1 and Cp log(1/pk−1) ≥ 1. Moreover Proposition 2.1.1 implies

2Cp log(1/pmax) ≥
2Cp

C̃p

≥ 1.

Combining yields

Cp ·min(log(1/p0), log(1/pk−1), 2 log(1/pmax)) ≥ 1

which implies the result.

Define the subtree Tstable ⊆ T to consist of all x ∈ T with cD(x) ≥ 2δ, as well as all children of

such x. Let Lstable denote the set of leaves of Tstable. We say a finite rooted tree is a full k-ary tree

if all of its vertices have either 0 or k children.

Lemma 2.4.5. Tstable is a full k-ary tree. Moreover Lstable consists entirely of δ-stable strings.

Finally all x ∈ Lstable are strings of length in [Ωp,δ(logN),K − Ωp,δ(logN)] and satisfy

cF (x) ≥ δ and cL(x) ≥ 2δ.

Proof. First we explain why Tstable is a full k-ary tree. The point is that since cD(x) is decreasing

down T by Lemma 2.4.4, the set of strings x with cD(x) ≥ 2δ forms a subtree, and adding all

children of such x therefore yields a full k-ary subtree.

Next, Lemma 2.4.4 shows cD(∅) = 1
2 while cD(s) ≤ −Ωp(ε) for any s of length K, and also shows

cD has Lipschitz constant O
(

1
log(N)

)
on T . It follows that Tstable contains all of the first Ω(log(N))

levels of T but none of the last Ω(log(N)). As a result all x ∈ Lstable have length in

[Ωp,δ(log(N)),K − Ωp,δ(log(N))].

The fact that all leaves are δ-stable holds because children were added in the definition of Tstable.
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Indeed this definition combined with (2.4.11) implies that

cD(x) ∈ [2δ −O(1/ logN), 2δ]

for all x ∈ Lstable. Moreover recalling the definition (2.4.6), all x ∈ Lstable satisfy

cF (x) + δ ≤ cL(x).

Finally the inequality cL(x) ≤ 2cF (x) holds for any string x. Altogether, these inequalities imply

cF (x) ≥ δ and therefore

cL(x) ≥ cF (x) + δ ≥ 2δ.

Lemma 2.4.6. The following partitions (i.e. disjoint unions) hold:

[k]K0 =
⋃

x∈Lstable

Bx and [N ] =
⋃

x∈Lstable

I(Bx). (2.4.12)

Proof. The first partition clearly implies the second. The first partition holds because Lstable consists

of the leaves of Tstable and Tstable ⊆ T is a full k-ary subtree. Indeed, it simply asserts that the

subtrees of T rooted at each x ∈ Lstable partition the leaves of T .
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Figure 2.5: The first partition in Lemma 2.4.6 is shown in the case that Lstable = {B00, B01, B1}
with (k,K) = (2, 3). It states that [k]K0 = [2]30 = B00 ∪B01 ∪B1.

2.4.4 No Edge Intersections in Expectation

In this subsection we prove Proposition 2.4.1. As explained in the outline, the idea is to estimate

E[|E(G,G′)|] by a sum of individual contributions from each x ∈ Lstable and then control the total

contribution from each digit profile.

Lemma 2.4.7. Let X ∼ Bin(N, q) for some q ∈ [0, 1]. Then for t ≤
√
Nq(1− q),

P
[∣∣X − E[X]

∣∣ ≥ t√Nq(1− q)] ≤ e−Ω(t2)

holds uniformly over q.

Proof. This follows from Bernstein’s inequality; see for instance [BLM13, Inequality (2.10)].

Lemma 2.4.8. For any x ∈ [k]M0 , either

min(tx, 1− tx) = 0
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or

min(tx, 1− tx) �p N
−1+2cF (x)

holds. The same holds for min(tx + λx, 1− tx − λx). Here �p denotes asymptotic equality for large

N up to p-dependent constant factors.

Proof. We focus on min(tx, 1− tx) (as the two statements are symmetric) and assume x has a digit

x[i] 6= 0 so that tx 6= 0. If x[1] = 0 and i > 1 is minimal with x[i] 6= 0, then b0(x) log(N) = i− 1 and

so

tx �p p
b0(x) log(N)
0 = N−1+2cF .

Similarly if x[1] > 0 and i′ > 1 is minimal with x[i′] 6= (k − 1), then

1− tx − λx �p p
bk−1(x) log(N)
k−1 = N−1+2cF .

Lemma 2.4.9. Let x ∈ Lstable have digit profile (b0, bk−1, c0, . . . , ck−1). Then

P
[∣∣∣∣|I(Bx)| −N cL

∣∣∣∣ ≥ N cL+δ

2

]
≤ e−Ω(Nδ), (2.4.13)

P
[∣∣ι(x)−Ntx]

∣∣ ≥ N cF+ δ
2

]
≤ e−Ω(Nδ) (2.4.14)

P
[∣∣τ(x)−N(tx + λx)

∣∣ ≥ N cF+ δ
2

]
≤ e−Ω(Nδ). (2.4.15)

Proof. First, inequality (2.4.13) follows immediately from (2.4.1), by applying Lemma 2.4.7 with

t = Nδ/2.

For inequality (2.4.14) we similarly recall the distribution of ι given by (2.4.2). From Lemma 2.4.8

it follows that unless tx = 0 (in which case ι(x) = 1 with probability 1),

min(tx, 1− tx) � N−1+2cF .

Then Lemma 2.4.7 with t = Nδ/2 completes the proof of (2.4.14) as δ
2 < min( cL2 , cF ) by Lemma 2.4.5.

Inequality (2.4.15) is proved identically.

The next lemma shows that for any i ∈ [N ], there are at most two blocks Bxi,1 , Bxi,2 that i could

plausibly appear in.

Lemma 2.4.10. For each index i ∈ [N ], there exist xi,1, xi,2 ∈ Lstable with

P[i ∈ I(Bxi,1) ∪ I(Bxi,2)] ≥ 1− e−Ω(Nδ).
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Proof. Choose xi,1 ∈ Lstable so that i
N ∈ Jx = [txi,1 , txi,1 + λxi,1), and without loss of generality

assume
i

N
∈
[
txi,1 +

λxi,1
2

, txi,1 + λxi,1

)
.

Then we obtain

ι(xi,1) ≤ Ntxi,1 +
∣∣ι(xi,1)−Ntxi,1

∣∣
≤ i−

Nλxi,1
2

+
∣∣ι(xi,1)−Ntxi,1

∣∣ .
As

Nλxi,1 = N cL(xi,1) ≥ N cF (xi,1)+δ,

using inequality (2.4.14) implies that

P[ι(xi,1) ≤ i] ≥ 1− e−Ω(Nδ)

If xi,1 is the lexicographically last element of Lstable then ι(xi,1) ≤ i already implies i ∈ I(Bxi,1).

Otherwise using Lemma 2.4.6 we take xi,2 ∈ Lstable immediately lexicographically following xi,1, so

that txi,1 + λxi,1 = txi,2 . Reasoning identically to the above shows that

P[τ(xi,2) ≥ i] ≥ 1− e−Ω(Nδ).

If ι(xi,1) ≤ i ≤ τ(xi,2), then i ∈ I(Bxi,1) ∪ I(Bxi,2) holds because xi,1 and xi,2 are consecutive in

Lstable. The result follows.

Based on the previous lemma, we now upper-bound E[|E(G,G′)|] by a sum over the individual

blocks Bx. Recall that E(GBx) ⊆ E(G) is the set of edges (i, i + 1) ∈ E(G) coming from strings

si = si+1 ∈ Bx.

Lemma 2.4.11. E[|E(G,G′)|] ≤ e−Ω(Nδ) + 4
∑
x∈Lstable

∑N−1
i=1 P[(i, i+ 1) ∈ E(GBx)]2.
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Proof. Lemma 2.4.10 and the AM-GM inequality imply

E[|E(G,G′)|] ≤
N−1∑
i=1

P[(i, i+ 1) ∈ E(G,G′)]

≤ e−Ω(Nδ) +

N−1∑
i=1

∑
j1,j2∈{1,2}

P[(i, i+ 1) ∈ E(GBxi,j1
, GBxi,j2

)]

≤ e−Ω(Nδ) + 2

N−1∑
i=1

∑
j∈{1,2}

P[(i, i+ 1) ∈ E(GBxi,j )]2

≤ e−Ω(Nδ) + 4
∑

x∈Lstable

N−1∑
i=1

P[(i, i+ 1) ∈ E(GBx)]2.

The next lemma uses the quantity

cE(x) =

(
M(x)−K

logN

)
ψp(2) =

(
b0(x) + bk−1(x) + ctot(x)− K

logN

)
ψp(2) < 0

defined near the end of Subsubsection 2.4.1.

Lemma 2.4.12. For any x ∈ T ,

E
[
|E(GBx)|

∣∣ |I(Bx)|
]
≤ |I(Bx)|2N cE(x).

Proof. The right-hand side upper-bounds the expected number of pairs (i, j) with si = sj and

i, j ∈ I(Bx), by summing over the |I(Bx)|2 pairs of pre-sorted strings in Bx. Indeed it is easy to

see that for independent µp,K-random strings s and s′, and fixed x ∈ [k]M0 ,

P[s = s′|s, s′ ∈ Bx] = φp(2)−(K−M) = N cE(x).

The following lemma upper-bounds the probability for an edge (i, i+ 1) to appear in E(GBx) as

a function of x, uniformly over i ∈ [N ]. The idea is that even conditioned on the value |I(Bx)| and

the internal structure of I(Bx), the remaining randomness of the value ι(x) has a “homogenizing”

effect.

Lemma 2.4.13. For any x ∈ Lstable and index i ∈ [N − 1],

P[(i, i+ 1) ∈ E(GBx)] ≤ 4N2cL(x)−cF (x)+cE(x)+2δ + e−Ω(Nδ).
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Proof. We condition on the multiset of strings Sx ≡ [sj |sj ∈ Bx] appearing in Bx. We will show

that if

|I(Bx)| ≤ 2N cL ≤ N/2 (2.4.16)

holds, then

P[(i, i+ 1) ∈ E(GBx)|Sx] ≤ 4N2cL(x)−cF (x)+cE(x)+2δ.

This implies the desired result since by inequality (2.4.13),

P[|I(Bx)| ≤ 2N cL ] ≥ 1− e−Ω(Nδ).

Observe that the multiset Sx determines the values |E(GBx)| and |I(Bx)| = |Sx|, and in fact

determines the entire set E(GBx) up to shifts. Given Sx, it is easy to see that ι(x) has conditional

law

ι(x) ∼ Bin

(
N − |I(Bx)|, tx

1− λx

)
+ 1.

From (2.4.16), we have N − |I(Bx)| ≥ N/2. Because any x ∈ Lstable has length Ω(log(N)) by

Lemma 2.4.5, it follows that λx ≤ 1
2 for all x ∈ Lstable when N is large enough. Therefore

Lemma 2.4.8 gives tx = 0 or tx ≥ Ω(N−1+2cF ). Similarly

1− tx
1− λx

=
1− tx − λx

1− λx
≥ Ω(N−1+2cF )

unless 1− tx − λx = 0.

Let us now split into two cases, the first being that

min(tx, 1− tx − λx) > 0.

In this case we conclude that ι(x)−1 is binomial with number of trials N −|I(Bx)| ≥ N/2 and total

variance Ω(N2cF ). Recalling that cF (x) ≥ δ for x ∈ Lstable, the Lindeberg condition implies that

conditionally on Sx, ι(x) satisfies a central limit theorem with standard deviation Ω
(
N cF (x)

)
. Since

ι(x) − 1 is binomial, this implies a pointwise bound on its probability mass function. Explicitly,

we may apply either [Pit97, Equation 25] or the combination of [Pit97, Equation 24] and [Can80,

Theorem B] to obtain

max
j∈[N ]

P[ι(x) = j|Sx] ≤ N−cF (x)+2δ. (2.4.17)

Next in the second case, assume that

min(tx, 1− tx − λx) = 0.

This simply means that x consists of all digits 0 or all digits (k − 1). Then ctot(x) = 0 and so



CHAPTER 2. CUTOFF FOR THE ASYMMETRIC RIFFLE SHUFFLE 55

cL = 2cF ≤ cF + 2δ implies cF ≤ 2δ. Hence (2.4.17) holds in either case. As a result for any

i ∈ [N − 1],

P [(i, i+ 1) ∈ E(GBx) | Sx] ≤ |E(GBx)| · max
j∈[N ]

P [ι(x) = j|Sx]

≤ |E(GBx)| ·N−cF (x)+2δ.

Applying Lemma 2.4.12 shows that when (2.4.16) holds,

P [(i, i+ 1) ∈ E(GBx) | Sx] ≤ 4N2cL(x)−cF (x)+cE(x)+2δ.

Using Lemma 2.4.13, we can estimate each term appearing in Lemma 2.4.11.

Lemma 2.4.14. For any x ∈ Lstable,

N−1∑
i=1

P[(i, i+ 1) ∈ E(GBx)]2 ≤ 64N5cL(x)−2cF (x)+2cE(x)+4δ + e−Ω(Nδ).

Proof. For those i ∈ [N ] with

i ∈
[
Ntx −N cF+ δ

2 , N(tx + λx) +N cF+ δ
2

]
,

Lemma 2.4.13 implies

P[(i, i+ 1) ∈ E(GBx)] ≤ 4N2cL(x)−cF (x)+cE(x)+2δ + e−Ω(Nδ).

As cF + δ
2 ≤ cL − δ

2 , the above applies to at most 2N cL values of i. For all other i ∈ [N − 1],

inequalities (2.4.14) and (2.4.15) imply P[(i, i + 1) ∈ E(GBx)] ≤ e−Ω(Nδ). Combining and using

(a+ b)2 ≤ 2a2 + 2b2 yields

N−1∑
i=1

P[(i, i+ 1) ∈ E(GBx)]2 ≤ 2N cL
(

4N2cL(x)−cF (x)+cE(x)+2δ + e−Ω(Nδ)
)2

+Ne−Ω(Nδ)

≤ 64N5cL(x)−2cF (x)+2cE(x)+4δ + e−Ω(Nδ).

Having controlled the individual summands in Lemma 2.4.11 in terms of the digit profile of x,

it remains to sum over x ∈ Lstable. This amounts to determining the number of x ∈ Lstable with

each possible digit profile, and then finding the maximum possible contribution of each digit profile.
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Recalling the definition

cX = ctotH(c0, . . . , ck−1) + 5cL − 2cF + 2cE ,

it follows from Lemma 2.4.14 and Proposition 2.4.2 that the contribution of a given digit profile x

to the bound of Lemma 2.4.11 is roughly N cX(x). The next lemma shows that cX(x) is uniformly

negative over x ∈ Lstable when K ≥ (Cp + ε) log(N). Here we give a concise proof which does

not provide much intuition for the constants θp and Cp. See Subsection 2.4.5 for another argument

which is longer and less formal but probably more enlightening.

Lemma 2.4.15. For δ = δ(p, ε) small enough, if K ≥ (Cp + ε) log(N) then

max
(b0,bk−1,c0,...,ck−1) δ-stable

cX(b0, bk−1, c0, . . . , ck−1) ≤ −Ωp(ε) < 0.

Proof. Let us extend the definitions of ctot, cF , cL, cE , and cX to be functions of arbitrary (k + 2)-

tuples (b0, bk−1, c0, . . . , ck−1) ∈ (R+)
k+2

which are constrained to satisfy min(b0, bk−1) = 0. Having

done this, we observe that cX = cX(b0, bk−1, c0, . . . , ck−1) is affine in t along the paths

t ∈ R→ ((1− tαp) b0, (1− tαp) bk−1, (1 + t)c0, . . . , (1 + t)ck−1) (2.4.18)

where αp ≥ 0 is chosen so that cL − cF remains constant as t varies.

Therefore to conclude we only need to show cX ≤ −Ω(ε) at the endpoint cases, which take

the forms (b0, bk−1, 0, . . . , 0) and (0, 0, c0, . . . , ck−1) and which continue to satisfy cL − cF ∈ [δ, 2δ].

As either b0 = 0 or bk−1 = 0, we assume without loss of generality that bk−1 = 0. In the case

(b0, 0, . . . , 0), we get

cX(b0, 0, . . . , 0) = 5− 5b0 log

(
1

p0

)
− 1 + b0 log

(
1

p0

)
+ 2

(
b0 −

K

log(N)

)
ψp(2) + 2δ

= 4

(
1− b0 log

(
1

p0

))
+ 2

(
b0 −

K

log(N)

)
ψp(2) + 2δ

From cL − cF ∈ [δ, 2δ] we obtain

cL − cF =
1− b0 log

(
1
p0

)
2

∈ [δ, 2δ]

and so

b0 log

(
1

p0

)
∈ [1− 4δ, 1− 2δ].

Using also that
K

logN
≥ Cp + ε ≥ 1

log(1/p0)
+ ε,
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we find

cX(b0, 0, . . . , 0) ≤ 8δ + 2

 1− 2δ

log
(

1
p0

) − 1 + ε

log
(

1
p0

)
ψp(2) + 2δ

≤ −Ωp(ε) + 10δ

≤ −Ωp(ε).

The last inequality above holds because δ = δ(p, ε) is sufficiently small. We now turn to the main

task of estimating cX(0, 0, c0, . . . , ck−1). We use the following identities and inequalities.

• cL − cF ∈ [δ, 2δ].

• cF = 1
2 .

• H(pθp) = θpI(p,pθp)− ψp(θp).

• ψp(θp) = 2ψp(2).

To deal with the entropy term in cX , we use the non-negativity of Kullback-Leibler divergence. For

any discrete probability distribution q = (q0, . . . , qk−1) (with
∑k−1
i=0 qi = 1),

H(q0, . . . , qk−1) =

k−1∑
i=0

qi log

(
1

(pθp)i

)
−DKL(q,p

θp)

≤
k−1∑
i=0

qi log

(
1

(pθp)i

)

= −ψp(θp) + θp

k−1∑
i=0

qi log

(
1

pi

)
.

Using the above estimate with qi = ci
ctot

, we find

cX(0, 0, c0, . . . , ck−1) = ctotH(c0, . . . , ck−1) + 5(cL − cF ) +
3

2
+ 2cE + 2δ

≤ −ctotψp(θp) + θp

k−1∑
i=0

ci log

(
1

pi

)
+

3

2
+ 2cE + 12δ (2.4.19)

≤ θp
k−1∑
i=0

ci log

(
1

pi

)
+

3

2
− 2(Cp + ε)ψp(2) + 12δ

≤ θp
k−1∑
i=0

ci log

(
1

pi

)
+

3

2
− 2ψp(2)Cp − Ωp(ε). (2.4.20)
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The last line again follows because δ is sufficiently small. Finally we recall the following:

k−1∑
i=0

ci log

(
1

pi

)
= 1− cL =

1

2
+O(δ),

Cp =
3 + θp
4ψp(2)

≤ Cp = max

(
Cp,

1

log(1/p0)
,

1

log(1/pk−1)

)
.

Substituting into the estimate (2.4.20), we obtain

cX(0, 0, c0, . . . , ck−1) ≤ 3 + θp +O(δ)

2
− 2ψp(2)Cp − Ωp(ε) ≤ −Ωp(ε).

This completes the proof.

Proposition 2.4.1 readily follows by combining the ingredients just established.

Proof of Proposition 2.4.1. We start from the upper bound in Lemma 2.4.11 and group the strings

x ∈ Lstable by their digit profile. For each digit profile (b0, bk−1, c0, c1, . . . , ck−1), by Proposition 2.4.2

the number of corresponding blocks x ∈ Lstable is at most(
ctot log(N)

c0 log(N), . . . , ck−1 log(N)

)
≤ N ctotH(c0,...,ck−1).

Lemmas 2.4.14 and 2.4.15 imply that for each fixed digit profile (b0, bk−1, c0, c1, . . . , ck−1),

∑
x∈Lstable,

Digit Profile(x)=(b0,...,ck−1)

N−1∑
i=1

P[(i, i+ 1) ∈ E(GBx)]2 ≤ 64N ctotH(c0,...,ck−1)+5cL−2cF+2cE+2δ + e−Ω(Nδ)

= 64N cX+4δ + e−Ω(Nδ)

≤ 64N−Ωp(ε) + e−Ω(Nδ).

Since there are at most O(logk+2(N)) ≤ No(1) total digit profiles (b0, bk−1, . . . , ck−1), Lemma 2.4.11

therefore yields the desired estimate

E[|E(G,G′)|] ≤ 256N−Ωp(ε) + e−Ω(Nδ).
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2.4.5 Informal Derivation of the Value Cp

We saw the constant

ψp(2) = − log

k−1∑
i=0

p2
i

arise naturally in Lemma 2.4.12, expressed via cE . In this informal subsection, we will explain why

the constants θp and Cp appeared in the final stages of the proof above by determining “straight-

forwardly” how large K
logN must be for Lemma 2.4.15 to hold. We again view cX(c0, . . . , ck−1) as a

continuous function and restrict to the main case that b0 = bk−1 = 0. Moreover we will set all O(δ)

terms to zero for simplicity. For x ∈ Lstable with b0(x) = bk−1(x) = 0, we have cL(x) = cF (x) = 1/2

which yields the constraint equation

k−1∑
i=0

ci log(1/pi) =
1

2
. (2.4.21)

Setting C = K
logN , we find from cL(x) = cF (x) = 1/2 that

cX =
(
H(c0, . . . , ck−1) + 2ψp(2)

)
· ctot +

3

2
− 2Cψp(2).

To maximize cX = cX(c0, . . . , ck−1) given the constraint (2.4.21), we set the gradient ∇cX to be

parallel to the constraint direction
(

log(1/p0), log(1/p1), . . . , log(1/pk−1)
)
. (Without arguing too

formally, one expects there are no issues of maxima occurring at the boundary because the entropy

function is concave and its inward-normal derivative diverges when any coordinate approaches 0.)

By writing out the definition of entropy one readily computes that the maximizer (c∗0, . . . , c
∗
k−1)

satisfies

θ log(1/pi) =
∂

∂ci
(c∗X)

= 2ψp(2) + log(c∗tot/c
∗
i )− 1 +

∑
j∈[k]0

c∗j
c∗tot

= 2ψp(2) + log(c∗tot/c
∗
i )

for some proportionality constant θ ∈ R. Recalling that ψp(t) = − log φp(t) for φp(t) =
∑k−1
i=0 p

t
i,

we obtain by rearranging

c∗i
c∗tot

= e2ψp(2)pθi

=
pθi

φp(2)2
.
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Since
∑k−1
i=0

c∗i
c∗tot

= 1 it follows that φp(θ) = φp(2)2, i.e. θ = θp. Moreover we find
(
c∗0
c∗tot

, . . . ,
c∗k−1

c∗tot

)
=

pθp . Solving for c∗tot using (2.4.21) above yields

1

c∗tot
=

2

φ(θp)

k−1∑
i=0

p
θp
i log(1/pi) = 2I(p,pθp).

Finally plugging back into the definition of cX and recalling properties of I(p,pt),

cX(c∗0, . . . , c
∗
k−1) =

H(pθp) + 2ψp(2)

2I(p,pθp)
+

3

2
− 2Cψp(2)

=
H(pθp) + ψp(θp)

2I(p,pθp)
+

3

2
− 2Cψθp(2)

=
3 + θp

2
− 2Cψp(2).

Rearranging shows that c∗X < 0 is equivalent to

C > Cp =
3 + θp
4ψp(2)

=
3 + θp

2ψp(θp)
.

Therefore we have “straightforwardly” recovered the statement of Lemma 2.4.15. Let us also point

out that

ctot =
1

2I(p,pθp)
=

θp
2(H(pθp) + ψp(θp))

<
θp

2ψp(θp)
<

3 + θp
2ψp(θp)

= Cp ≤ Cp.

Here we used (2.4.5) in the first line. Hence the maximizer we found corresponds to “real” blocks

Bx with length M ≈ ctot logN < K.

Since this argument ignored O(δ) error terms and some details on boundary issues, we verified

Lemma 2.4.15 directly in the previous section instead of making the informal argument rigorous.

The main step of this verification was to use non-negativity of the Kullback-Leibler divergence

DKL(q,p
θp) with qi = ci

ctot
in inequality (2.4.19). Given the argument above, this step becomes

quite natural. Indeed cX is linear in (c0, . . . , ck−1) except for the entropy term, so (2.4.19) simply

linearizes this entropy term around the equality case
(
c∗0
c∗tot

, . . . ,
c∗k−1

c∗tot

)
≈ pθp .

2.5 Proof of Lemma 2.3.8

In this section we prove Lemma 2.3.8, whose statement is recalled now.
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Lemma 2.3.8. For any p and positive reals ε and t, there is δ = δ(p, ε, t) such that if K ≥
(Cp + ε) log(N) then

E[et·|Efor(G,G
′)|] ≤ 1 +O(N−δ).

It was shown in Section 2.3 how to upper-bound the total variation distance from uniform after

K p-shuffles based on the exponential moment estimate above. Therefore establishing Lemma 2.3.8

will complete the proof of the mixing time upper bound (2.1.3).

2.5.1 Preparatory Lemmas

Define F (a, b) to be the value E[|E(G,G′)|] for i.i.d. p-random shuffle graphs G and G′ on decks

of a cards with b shuffles. Proposition 2.4.1 provides the main upper bound on F (a, b), stated as a

bound on F (N,K). The next lemma gives a much easier estimate we will use for small values of a

and b.

Lemma 2.5.1. For any non-negative integers a and b,

F (a, b) ≤ min
(
a, a2 · φp(2)b

)
.

Proof. The bound F (a, b) ≤ a is obvious. The other bound

E[|E(G,G′)|] ≤ E[|E(G)|] ≤ a2φp(2)b

follows by summing over all
(
a
2

)
pairs of strings si, sj as in Lemma 2.4.12.

The next two lemmas allow us to upper-bound relatively complicated expected edge intersections

based on simple expected edge intersections. They will be used below to estimate the left-hand side

of (2.5.2) as a sum over the blocks in the decomposition (2.5.3).

Lemma 2.5.2. Let A and B be independent random subsets of a finite set A. Let A′ and B′

respectively be independent copies of A and B. Then

E[|A ∩B|] ≤ E[|A ∩A′|] + E[|B ∩B′|]
2

.

Proof. For each a ∈ A let Aa = P[a ∈ A] and Ba = P[a ∈ B]. Then the statement reduces to

showing
∑
aAaBa ≤

∑
a(A2

a+B2
a)

2 which holds by AM-GM.

Lemma 2.5.3. Let A be a random subset of a finite set A and let F be a σ-algebra. Let A′ be an

independent copy of A and let AF and A′F be conditionally independent copies of A conditioned on

F . Then

E[|A ∩A′|] ≤ E[|AF ∩A′F |]. (2.5.1)
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Proof. For each element a ∈ A, let Qa = P[a ∈ A|F ]. Let Pa = P[a ∈ A] = E[Qa]. Then (2.5.1)

amounts to showing ∑
a∈A

P 2
a ≤

∑
a∈A

E[Q2
a].

Since E[Q2
a] − P 2

a ≥ 0 is simply the variance of the random variable Qa for each a, the result

follows.

2.5.2 The Edge-Exploration Process

We now define the exploration process mentioned at the end of Section 2.3, which explores a pair

(s1, . . . , sN ), (s′1, . . . , s
′
N ) ∈ S of sorted string sequences in order starting from s1, s

′
1. At step i, the

currently revealed strings are

(s1, . . . , si) and (s′1, . . . , s
′
i)

which results in revealed subgraphs

Gi ⊆ G, G′i ⊆ G′

that grow with i. Explicitly, Gi and G′i are simply the induced subgraphs of G and G′ on the vertex

set {1, 2, . . . , i}. When either si or s′i begins with the prefix [(k − 1)(k − 1)] we stop the process.

Essentially by definition, this process finds all edges in Efor(G,G
′). As alluded to at the end of

Section 2.3, the following lemma shows how to bound the exponential moments of Efor(G,G
′) using

this exploration process.

Lemma 2.5.4. Suppose γ > 0 is such that the conditional expectation estimate

E[Efor(G,G
′)− E(Gi, G

′
i)|Fi] ≤ γ (2.5.2)

holds almost surely with Fi ≡ σ(s1, . . . , si, s
′
1, . . . , s

′
i) for each i ∈ [N ]. Then

E[et·Efor(G,G
′)] ≤ 1 + 2etγ

for any t > 0 satisfying etγ ≤ 1
10 .

Proof. Define for simplicity the random variable X = Efor(G,G
′). For each j ≥ 0 let tj = inf{i :

E(Gi, G
′
i) ≥ j}. Then tj is an stopping time, and if tj < ∞ then |E(Gtj , G

′
tj )| = j holds because

E(Gi+1, G
′
i+1)− E(Gi, G

′
i) ≤ 1 holds almost surely for each i. Morever when tj <∞ we have

P[X > j|Ftj ] ≤ γ

due to the assumption (2.5.2). Of course the inequality X ≥ j implies that tj is finite. Hence by
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optional stopping, we may average the above display to conclude that

P[X > j|X ≥ j] ≤ γ.

This means X has hazard rate at least that of a geometric random variable Y with

P[Y = j] = (1− γ)γj , j ≥ 0.

Therefore X is stochastically dominated by Y . Using the assumption etγ ≤ 1
10 , we find

E[etX ] ≤ E[etY ]

≤ (1− γ)
∑
j≥0

(etγ)j

≤ 1

1− etγ
≤ 1 + 2etγ.

To analyze the exploration process we group the potential future strings which are lexicograph-

ically larger than si. Supposing that si <lex [(k − 1)(k − 1)] does not begin with [(k − 1)(k − 1)],

set

Blocks(si) = Blocks(si, [(k − 1)(k − 1)])

in the notation of Lemma 2.5.5 just below. By construction, Blocks(si) consists of O(logN) blocks

and

{s ∈ [k]K0 : si <lex s <lex [(k − 1)(k − 1)]} =
⋃

x∈Blocks(si)

Bx. (2.5.3)

The fact that |Blocks(si)| ≤ O(logN) ≤ No(1) will be used in the proof of Lemma 2.3.8 in the next

subsection. It allows us to estimate a sum over x ∈ Blocks(si) by its maximum term; see just before

the start of Case 1 therein.
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Figure 2.6: The decomposition of (2.5.3), guaranteed by Lemma 2.5.5, is shown when si = 010
with (k,K) = (2, 3). It states that {s ∈ [2]30 : 010 <lex s <lex 11} = B001 ∪B10.

Lemma 2.5.5. Let sa <lex sb be strings each of length at most K. Define the lexicographic interval

Isa,sb ≡ {s ∈ [k]K0 : sa <lex s <lex sb}.

Then Isa,sb can be written as a disjoint union of blocks

Isa,sb =
⋃

x∈Blocks(sa,sb)

Bx

for some set Blocks(sa, sb) containing at most 2Kk ≤ O(logN) strings, each of length at most K.

Proof. For 0 ≤M ≤ K, define

Blocks
M

(sa, sb) = {x ∈ [k]M0 : Bx ∩ Isa,sb 6= ∅}

to be the set of all length-M strings x such that Bx has non-trivial intersection with Isa,sb . Similarly

define

BlocksM (sa, sb) = {x ∈ [k]M0 : Bx ⊆ Isa,sb}
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to be the set of all length-M strings x such thatBx is contained inside Isa,sb . Clearly BlocksM (sa, sb) ⊆
Blocks

M
(sa, sb). Moreover the fact that Isa,sb is a lexicographic interval means these sets differ in

at most 2 elements, i.e. ∣∣BlocksM (sa, sb)\BlocksM (sa, sb)
∣∣ ≤ 2. (2.5.4)

Define

Blocks(sa, sb) =
⋃

0≤M≤K

Blocks
M

(sa, sb),

Blocks(sa, sb) =
⋃

0≤M≤K

BlocksM (sa, sb).

Next, for any s ∈ Isa,sb , note that all ancestors (prefixes) of s are contained in Blocks(sa, sb), while

∅ /∈ Blocks(sa, sb). Let ys be the longest ancestor string of s with

ys /∈ Blocks(sa, sb).

By definition ys 6= s, so ys has a child xs which is also an ancestor of s (possibly xs = s). By

definition of ys,

xs ∈ Blocks(sa, sb)

and so

Bxs ⊆ Isa,sb .

We claim the blocks Bxs constructed in this way from s ∈ Isa,sb are pairwise equal or disjoint.

Indeed if

Bxs ( Bxs′

then xs′ is a prefix of ys. However

ys /∈ Blocks(sa, sb)

and

xs′ ∈ Blocks(sa, sb)

which contradicts the fact that Blocks(sa, sb) is descendent-closed.

Above, we started from an arbitrary s ∈ Isa,sb and found a block Bxs containing s. It follows

that the distinct blocks Bxs appearing in the above construction form a partition of Isa,sb . Finally,

note that by inequality (2.5.4), and the fact that ys has length at most K − 1, ys ranges over a set

of size at most 2K. Hence xs ranges over a set of size at most 2Kk. This concludes the proof.
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The next lemma shows that conditioning on the exploration process for G up to si with

si <lex [(k − 1)(k − 1)]

does not dramatically increase the typical size of I(Bx) for any x ∈ Blocks(si). The fact that

si <lex [(k − 1)(k − 1)] is crucial here, as was discussed at the end of Subsection 2.3.1. Indeed

conditioning on si = [(k − 1)K ] would imply that

si = si+1 = · · · = sN = [(k − 1)K ]

so that E(G) contains all remaining potential edges (i, i+ 1), (i+ 1, i+ 2), . . . , (N − 1, N). However

when si <lex [(k − 1)(k − 1)], a constant fraction of the µp,K-measure of [k]K0 remains not yet

occupied, which prevents such an example from occuring.

Lemma 2.5.6. Conditioned on (s1, . . . , si) which satisfy si <lex [(k − 1)(k − 1)], for any x ∈
Blocks(si) the conditional distribution of |I(Bx)| is stochastically dominated by a Bin(N, p−2

minλx)

random variable.

Proof. Condition further on the largest value j ∈ [N ] with si = sj . Then we can generate all strings

(sj+1, . . . , sN ) by sampling i.i.d. random numbers a′j+1, . . . , a
′
N uniformly from [tsi +λsi , 1], sorting

them into increasing order aj+1 ≤ aj+2 ≤ · · · ≤ aN , and choosing s` ∈ [k]K0 such that a` ∈ Js` for

` ≥ j + 1. There are N − j ≤ N such random numbers a`, and 1− (tsi + λsi) ≥ p2
min because of the

assumption that si <lex [(k − 1)(k − 1)]. Therefore conditionally on j, each a′i has probability at

most p−2
minλx to fall into the interval Jx, which completes the proof.

2.5.3 Proof of Lemma 2.3.8

We now complete the proof of Lemma 2.3.8. In light of Lemma 2.5.4 it remains to show that the

conditional expectation for the number of unrevealed edges in Efor(G,G
′), given by

E[Efor(G,G
′)− E(Gi, G

′
i)|Fi],

is almost surely bounded by O(N−δ). The idea is to use Lemmas 2.5.2 and 2.5.3 to upper-bound this

quantity by a sum over the future blocks appearing in (2.5.3), see Equation (2.5.6) in the proof below.

Analyzing the summand corresponding to a block Bx for x ∈ [k]M0 amounts to a smaller version of the

problem considered in Proposition 2.4.1 since Bx can be viewed as a copy of [k]K−M0 . As a result,

the summand for Bx has value F (|IBx |,K − M). This term can be estimated by Lemma 2.5.1

when E[|IBx |] ≤ Nδ is small (Cases 1 and 2 of the proof below) and by Proposition 2.4.1 when

E[|IBx |] ≥ Nδ is reasonably large (Case 3 of the proof).
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Proof of Lemma 2.3.8. Take δ = δ(p, ε) sufficiently small, η = η(p, ε, δ) smaller and ζ = ζ(p, ε, δ, η)

yet smaller. Define the following σ-algebras.

Fi = σ(s1, . . . , si, s
′
1, . . . , s

′
i),

F̃i = σ
(
s1, . . . , si, s

′
1, . . . , s

′
i, (I(Bx))x∈Blocks(si)

)
.

(Note that the σ-algebras F̃i do not define a filtration as i varies.) Let

Gu,1 = Efor(G)\E(Gi)

consist of all so-far-unrevealed edges which do not involve strings beginning with [(k − 1)(k − 1)].

Let Gu,2 be a conditionally independent copy of Gu,1 given F̃i - equivalently this means Gu,2 is

obtained by resampling Gu,1 conditioned to have the same sets I(Bx) for each x ∈ Blocks(si).

Define G′u,1, G
′
u,2 the same way for G′. Hence Gu,1, Gu,2, G

′
u,1, G

′
u,2 are shuffle graphs with all

edge-endpoints in {i, i+ 1, . . . , N}.

We will show that at any time i in the exploration process, the expected number of unrevealed

edges in Efor(G,G
′) is bounded by

E[|E(Gu,1, G
′
u,1)|

∣∣Fi] ≤ O(N−ζ).

By Lemma 2.5.4, this will complete the proof of Lemma 2.3.8 up to replacing ζ with δ. First, using

Lemmas 2.5.2 and 2.5.3 conditionally on Fi, we estimate the expected number of unrevealed edges

by

E[|E(Gu,1, G
′
u,1)|

∣∣Fi] ≤ E
[ |E(Gu,1, Gu,2)|+ |E(G′u,1, G

′
u,2)|

2

∣∣Fi] .
Therefore by symmetry it suffices to show that

E
[
|E(Gu,1, Gu,2)|

∣∣Fi] ≤ O(N−ζ)

holds almost surely. By definition, conditioning on F̃i determines the interval I(Bx) for each such

x. Moreover the remaining K −M digits of each of the |I(Bx)| random strings in Bx are still i.i.d.

p-random. As a consequence,

E[E(Gu,1, Gu,2)
∣∣F̃i] = |{j > i : sj = si}|+

∑
x∈Blocks(si)

F (|I(Bx)|,K −M). (2.5.5)

Indeed recall from the start of Subsection 2.5.1 that F (a, b) is the expected size of E(G,G′) when

there are a cards and b shuffles. Thus (2.5.5) essentially holds by definition.
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Next, the law of total expectation yields

E[E(Gu,1, Gu,2)
∣∣Fi] = E

[
E[E(Gu,1, Gu,2)

∣∣F̃i]∣∣∣∣Fi]
= E

[
|{j > i : sj = si}|

∣∣Fi]+
∑

x∈Blocks(si)

E
[
F (|I(Bx)|,K −M)

∣∣Fi]. (2.5.6)

The first term on the right-hand side of (2.5.6) is controlled by Lemma 2.3.9, which implies

E[|{j > i : sj = si}|
∣∣Fi] ≤ O(N−ζ).

To estimate the other (main) term on the right-hand side of (2.5.6), we will show for each x ∈
Blocks(si) that

E
[
F (|I(Bx)|,K −M)

∣∣Fi] ≤ O(N−ζ).

As |Blocks(si)| = O(logN) ≤ No(1) this suffices to finish the proof. We now split into three cases

depending on the size of λx. In all cases below we let M denote the length of x. Case 3 (the main

one) is where Proposition 2.4.1 is essential.

Let us emphasize that |I(Bx)| is still random conditionally on Fi. While we do not have good

almost sure bounds on |I(Bx)| itself, its conditional distribution is uniformly stochastically bounded

by Lemma 2.5.6. Since we are estimating a conditional expectation given Fi and not F̃i, this suffices

for an almost sure bound.

Case 1: λx ≤ N−1−δ.addpunct. In this case, Lemmas 2.5.1 and 2.5.6 imply

E
[
F (|I(Bx)|,K −M)|Fi

]
≤ E[|I(Bx)|]

≤ O(N−ζ).

Case 2: N−1−δ ≤ λx ≤ N−1+δ.addpunct. In this case, Lemmas 2.5.6 and 2.4.7 imply that

|I(Bx)| ≤ N2δ holds with probability 1− e−Ω(Nδ). The fact λx ≤ (pmax)
M implies

M ≤ log(λ−1
x )

log(p−1
max)

≤ (1 + δ) logN

log(p−1
max)

In particular as δ � ε is sufficiently small this implies K −M ≥ Ωp(ε) logN . Lemma 2.5.1 now
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yields

E
[
F (|I(Bx)|,K −M)|Fi

]
≤ E[|I(Bx)|2]φp(2)Ωp(ε) log(N)

≤ O
(
N2δ−Ωp(ε)

)
≤ O(N−ζ).

Case 3: λx ≥ N−1+δ.addpunct. Similarly to the previous case, observe that

M ≤ log(λ−1
x )

log(p−1
max)

(2.5.7)

≤ Cp log(λ−1
x ). (2.5.8)

We break into subcases depending on |I(Bx)|. The first subcase is that |I(Bx)| ≤ Nη. Here the

lower bound K−M ≥ Ωp(δ logN) follows from inequality (2.5.8), and applying Lemma 2.5.1 yields

F (|I(Bx)|,K −M) ≤ N2ηφp(2)K−M ≤ N−Ωp(δ).

In the main subcase |I(Bx)| ∈ [Nη, 2p−2
minNλx] we obtain:

K −M ≥ (Cp + ε) log(Nλx) (2.5.9)

≥
(
Cp +

ε

2

)
log(2p−2

minNλx)

≥
(
Cp +

ε

2

)
log |I(Bx)|.

Since |I(Bx)| ≥ Nη tends to infinity with N , Proposition 2.4.1 implies

F (|I(Bx)|,K −M) ≤ O
(
|I(Bx)|−δ

)
≤ O(N−ζ).

Finally the subcase |I(Bx)| ≥ 2p−2
minNλx occurs with tiny probability e−Ω(Nδ) by Lemmas 2.5.6

and 2.4.7. In this subcase we use the trivial bound F (|I(Bx)|,K −M) ≤ N . Combining subcases,

we have established that whenever Case 3 holds,

E
[
F (|I(Bx)|,K −M)|Fi

]
≤ O(N−ζ).

Combining cases (and substituting δ for ζ at the end) concludes the proof of Lemma 2.3.8.
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Remark 2.5.1. Recall that throughout Section 2.4, and in particular in Proposition 2.4.1, the

weaker inequality K ≥ (Cp + ε) logN sufficed where

Cp ≡ max

(
Cp,

1

log(1/p0)
,

1

log(1/pk−1)

)
≤ Cp.

This means that when k > 2, for some parameter choices such as p = (0.01, 0.98, 0.01), the expec-

tation E[|E(G,G′)|] becomes small before mixing occurs, so the exponential moments of |E(G,G′)|
are still large. This discrepancy can be explained as follows. When K satisfies

Cp + ε <
K

logN
< Cp − ε,

the graph G typically contains NΩ(1)-size connected components coming from strings with nearly

all digits imax. In such situations E[|E(G,G′)|] ≤ o(1) is small by Proposition 2.4.1. However an easy

pigeonhole argument on N copies of G shows that with Ω(1/N2) probability, E(G,G′) contains an

NΩ(1)-sized component formed by a large G-component and large G′-component overlapping. As a

result |E(G,G′)| has large exponential moments. (Moreover this argument still applies if we initially

require S, S′ ∈ S1 to be “typical”.)

In upper-bounding the mixing time, the bound K ≥ (Cp + ε) logN , as opposed to K ≥ (Cp +

ε) logN , is necessary in two places. The first is in Lemma 2.3.9. The other occurs above in (2.5.9)

where we needed to ensure that Proposition 2.4.1 yields an upper bound for F (|I(Bx)|,K −M). In

the worst case, all M of x’s digits might be imax. Then typically (at least when the right-hand side

below is positive),

log |I(Bx)| ≈ log(N)−M log(1/pmax).

To apply Proposition 2.4.1, we thus need

K −M ≥ Cp(logN −M log(1/pmax))

to hold for any M making both sides positive. In particular, if we continuously increase M the

right side must reach 0 before the left side, which implies K ≥ logN
log(1/pmax)

. On the other hand, when

M = 0 we need K ≥ Cp logN for Proposition 2.4.1 to apply. Hence at least in bounding the

exponential moments of |E(G,G′)|, the value Cp = max
(
Cp,

1
log(1/pmax)

)
arises from the need to

apply Proposition 2.4.1 for all sizes of block Bx appearing in the partition (2.5.3).
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2.6 Proof of the Mixing Time Lower Bound

In this section we take K = b(Cp − ε) log(N)c and show that almost no total-variation mixing

occurs after K shuffles. First, when K ≤ (C̃p − ε) log(N) we previously argued at the start of

Subsection 2.2.1 that the total variation distance from uniform is 1 − o(1). Hence we may assume

that C̃p < Cp holds, else there is nothing to prove. By taking ε small enough, we may further

assume

K ≥ (C̃p + ε) logN. (2.6.1)

For a set H ⊆ Z, its boundary ∂H ⊆ H is defined by

∂H ≡ {h ∈ H : h− 1 /∈ H or h+ 1 /∈ H}.

Its edge set E(H) is the set of edges with both endpoints in H, i.e. we identify H with the

corresponding induced subgraph of G. We will verify the following criterion from [Lal00] for non-

mixing. The idea of the proof is to use the number of ascents of σ ∈ SN within H to distinguish

the uniform distribution σ = π from the shuffled distribution σ = πG.

Proposition 2.6.1 ([Lal00, Proposition 2]). Let (KN )N≥1 be a deterministic sequence of positive

integers. Suppose there exist deterministic subsets H = HN ⊆ [N ] such that for some δ = δ(p, ε) the

following properties hold as N →∞, where G is the shuffle graph for a deck of N cards undergoing

KN p-shuffles:

|H| → ∞ (2.6.2)

|∂H| = O(|H|1/2) (2.6.3)

P
[
|E(G) ∩ E(H)| ≥ |H| 12 +δ

]
→ 1. (2.6.4)

Then asymptotically no total-variation mixing occurs after KN shuffles, i.e.

lim
N→∞

dTV

N (KN ) = 1.

Remark 2.6.1. By using AM-GM or Cauchy–Schwarz similarly to the proof of Lemma 2.5.3, the

conditions of Proposition 2.6.1 imply

E[|E(G,G′)|] ≥ E[|E(G) ∩ E(H)|]2

|E(H)|
· (1− o(1))

≥ Ω(|H|2δ)

� 1.



CHAPTER 2. CUTOFF FOR THE ASYMMETRIC RIFFLE SHUFFLE 72

However it does not follow from what we show that K = (Cp±o(1)) logN is always the cutoff point

where the expected number E[|E(G,G′)|] of shared edges in G and G′ transitions from superconstant

to subconstant. This is because the analysis of this section assumes inequality (2.6.1).

2.6.1 Preparation and Proof Idea

Define αtot log(N) =
⌊

1−δ
2I(p,pθp )

log(N)
⌋
, where as usual δ = δ(p, ε) is sufficiently small. Choose (via

some rounding procedure) positive integers α0 log(N), . . . , αk−1 log(N) satisfying

k−1∑
i=0

αi = αtot and

∣∣∣∣∣αi log(N)− αtot log(N)p
θp
i

φp(θp)

∣∣∣∣∣ ≤ 1. (2.6.5)

Note that αtot ≤
3Cp

4 ; indeed we showed in Proposition 2.1.1 that θp ≤ 4, hence

αtot +O(δ) =
1

2I(p,pθp)
=

θp
2(H(pθp) + ψp(θp))

<
θp

2ψp(θp)
<

3 + θp
3ψp(θp)

=
2Cp

3
≤

2Cp

3
.

We may therefore take βtot log(N) = K − αtot log(N) ≥ Ω(logN) and choose positive integers

(βi log(N))i∈[k]0 with

k−1∑
i=0

βi = βtot and

∣∣∣∣βi log(N)− βtot log(N)p2
i

φp(2)

∣∣∣∣ ≤ 1.

The numbers just constructed satisfy

k−1∑
i=0

αi log(N) +

k−1∑
i=0

βi log(N) = αtot log(N) + βtot log(N) = K.

We will consider G-edges coming from strings with αi log(N) digits i in the first αtot log(N) digits,

and βi log(N) digits i in the last βtot log(N) digits, for each i ∈ [k]0. This is essentially a two-part

digit profile. Let us point out that strings with many leading 0 or (k − 1) digits will not require

special care in this part.

Definition 2.6.2. The length αtot log(N) string x ∈ [k]M0 is a collision-likely prefix (we write

x ∈ PreCL) if x contains αi log(N) digits of i for each i ∈ [k]0.

Definition 2.6.3. The string s ∈ [k]K0 is collision-likely (we write s ∈ CL) if s satisfies the

following properties.
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• With M = αtot log(N), the first M digits of s form a collision-likely prefix.

• s[M + 1] = 0, s[M + 2] = 1.

• The βtot log(N) digits s[M + 1], s[M + 2], . . . , s[K] consist of βi log(N) digits of i for each

i ∈ [k]0.

Recall from (2.2.3) the definition Jx = [tx, tx + λx) and set

H ≡ Z ∩

( ⋃
x∈PreCL

NJx

)
.

That is, H consists of the “expected locations” of collision-likely prefixes. The set H is essentially

the same as in the lower bound of [Lal00]. Our analysis differs from Lalley’s in the last part of

Definition 2.6.3 where we consider strings whose later digits have empirical distribution p2.

Before proceeding into more technical details, let us give some intuition both for the definitions

above and the remainder of the proof. Based on Subsection 2.4.5, we expect that the bulk of the

edges in E(G,G′) come from the blocks Bx with digit profile

ci(x) ≈ c∗i =
1

2I(p,pθp)
· p

θp
i

φp(θp)
.

Therefore we took αi ≈ c∗i and defined H so that

H ≈
⋃

x∈PreCL

I(Bx).

The main difficulty in applying Proposition 2.6.1 is to verify the last condition by lower-bounding

the number of G-edges appearing in blocks Bx for x ∈ PreCL. Intuitively, to count these edges one

should simply count pairs of strings in Bx as in Lemma 2.4.12. However this will overestimate the

number of G-edges for strings that appear many times. Hence one would like to also control for

example the number of equal triples si = si+1 = si+2 = s — this is relevant for obtaining the

correct first moment and also for controlling the variance. Such a strategy was carried out in [Lal00,

Lemmas 8 and 9]. However for this approach to work, p must be close to a uniform distribution so

that the expected number of triples does not overwhelm the expected number of pairs.

Instead of counting pairs of equal strings si = sj , we consider for each s ∈ CL the event Ys that

si = si+1 = s holds for at least one i ∈ [N ]. Because of the “extra margin” afforded by the second

property of CL in Definition 2.6.3, it follows that with high probability, all i ∈ [N ] with si ∈ CL
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satisfy i ∈ H (see Lemma 2.6.6). Under this event, we have

|E(G) ∩ E(H)| ≥
∑
s∈CL

1Ys . (2.6.6)

The sum
∑
s∈CL 1Ys turns out to concentrate nicely while retaining almost the same expectated

value. Indeed the indicator functions 1Ys are pairwise anti-correlated as s ∈ CL varies. Therefore

whenever the expected value E
[∑

s∈CL 1Ys
]
≥ NΩ(1) is large, Chebychev’s inequality immediately

implies a high-probability lower bound of the same order.

Since P[Ys] is a function of the digit profile of s, it suffices to focus on a single digit profile,

keeping in mind that the prefix should be collision-likely. Restricting the sums above to s ∈ CL

exactly corresponds to such a choice of digit profile. The reason to choose p2 for the distribution

of the later digits in the definition of CL is that conditioned on two p-random digits being equal,

the distribution of this shared digit is p2. Thus we expect most collisions inside a block Bx to have

digit distribution p2 in the later K −M digits.

In summary, the lower bound (2.6.6) essentially involves two separate truncation steps. The first

step, truncating |E(G) ∩ E(H)| to a sum of indicators 1Ys , is important to obtain control of the

second moment. The second step, restricting this sum to collision-likely strings s ∈ CL, is simply a

convenient way to isolate the dominant contribution to the sum over all strings s with collision-likely

prefixes s[1] . . . s[αtot log(N)] = x ∈ PreCL.

We conclude this subsection with two lemmas, the second of which verifies the “easy” parts of

Proposition 2.6.1.

Lemma 2.6.4. For sufficiently large N ,

∑
i

αi log(pi) =
−1 + δ

2
± o(1).

Proof. By the definition of αi in (2.6.5) and of I(p,pθp) in (2.4.4),

∑
i

αi log(pi) ≥
(1− δ)

2I(p,pθp)
·
∑
i

p
θp
i log(pi)

φp(θp)
−O

(
1

logN

)
=
−1 + δ

2
−O

(
1

logN

)
. (2.6.7)

Proposition 2.6.5. As N →∞ we have |H| → ∞ and |∂H| = O(|H| 12 ). More precisely

|H| = N1+
∑k−1
i=0 αi log(pi)+αtotH(α0,...,αk−1)+o(1).
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Proof. For each x ∈ PreCL, Lemma 2.6.4 shows

λx = N
∑k−1
i=0 αi log(pi)±o(1) = N

−1+δ
2 ±o(1).

Moreover it is easy to see that

bNλxc ≤ |Z ∩NJx| ≤ dNλxe. (2.6.8)

This immediately implies |H| → ∞ as PreCL is non-empty. For the precise asymptotics, Proposi-

tion 2.4.2 implies

|PreCL| =
(

αtot log(N)

α0 log(N), . . . , αk−1 log(N)

)
= NαtotH(α0,...,αk−1)+o(1).

As the discrete sets (Z∩NJx)x∈PreCL are disjoint, they have total size at most N . By (2.6.8) these sets

individually have size N
1+δ
2 +o(1), and so |PreCL| ≤ N

1−δ
2 +o(1). This means the number of connected

components of H is smaller than the size of each component, hence |∂H| = O(|H| 12 ).

2.6.2 Lower Bounding the Number of G-Edges Inside H

It remains to show that H contains many G-edges with high probability. The next lemma shows

that with high probability, all appearances of collision-likely strings are inside H, so that it suffices

to simply count edges (i, i + 1) with si = si+1 ∈ CL. The reason is simply that the requirements

s[M + 1] = 0 and s[M + 2] = 1 effectively refine collision-likely prefixes x ∈ PreCL to x01. Bx01 is

deep enough inside Bx to overcome the small fluctuations of I(Bx) vs NJx.

Lemma 2.6.6. With probability 1− o(1), all i ∈ [N ] with si ∈ CL satisfy i ∈ H.

Proof. The Dvoretzky–Kiefer–Wolfowitz–Massart inequality [DKW56, Mas90] implies that with

probability 1− o(1), all y ∈ [k]M0 for 0 ≤M ≤ K simultaneously satisfy

|ι(y)−Nty| ≤ N
1
2 + δ

10 , |τ(y)−N(ty + λx)| ≤ N 1
2 + δ

10 . (2.6.9)

We assume the inequalities (2.6.9) hold for all y and show the conclusion under this assumption.

Fixing a collision-likely string s with collision-likely prefix x, we apply (2.6.9) with y = x and

y = x01. Here x01 denotes concatenation. Using (2.6.7), we obtain

min (λx, λx01, λx1) ≥ λxp2
min ≥ Ω

(
N
−1+δ

2

)
.
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Therefore

N(tx01 − tx) = Nλx01 ≥ Ω
(
N

1+δ
2

)
,

N
(
tx + λx − tx01 − λx01

)
= Nλx1 ≥ Ω

(
N

1+δ
2

)
.

By the triangle inequality,

ι(x01) ≥ Ntx +N(tx01 − tx)− |ι(x01)− tx01|

≥ Ntx + Ω
(
N

1+δ
2

)
−N 1

2 + δ
10

≥ Ntx

and

τ(x01) ≤ N
(
tx + λx

)
+N

(
tx01 + λx01 − tx − λx

)
+ |τ(x01)− tx01 − λx01|

≤ N
(
tx + λx

)
− Ω

(
N

1+δ
2

)
−N 1

2 + δ
10

≤ N
(
tx + λx

)
.

Altogether if (2.6.9) holds for all y, then all x ∈ PreCL satisfy

Ntx ≤ ι(x01) ≤ τ(x01) ≤ N(tx + λx).

Therefore si ∈ Bx01 implies i ∈ H, which completes the proof.

Define the constant

γ ≡ 2 + 2

k−1∑
i=0

(αi + βi) log(pi) + αtotH (α0, . . . , αk−1) + βtotH(β0, . . . , βk−1).

We next give another important numerical lemma, which up to O(δ) terms will ensure that the

number Nγ of edges in H is large enough for Proposition 2.6.1 to apply. (It is only important that
ψp(2)

2 ε is positive below.)

Lemma 2.6.7. With αi, βi and γ as defined above,

γ ≥ 1

2

(
1 +

k−1∑
i=0

αi log(pi) + αtotH (α0, . . . , αk−1)

)
+
ψp(2)

2
ε. (2.6.10)

Proof of Lemma 2.6.7. Recall the following definitions and identities.



CHAPTER 2. CUTOFF FOR THE ASYMMETRIC RIFFLE SHUFFLE 77

• ψp(t) = − log φp(t) = − log
(∑k−1

i=0 p
t
i

)
> 0 for any t > 1.

• ψp(θp) = 2ψp(2).

• Cp =
3+θp

4ψp(2) =
3+θp

2ψp(θp) .

• I(p,pt) = −
∑
i
pti log(pi)
φp(t) .

• H(pt) = tI(p,pt)− ψp(t) for any t > 0.

• αtot = 1−δ
2I(p,pθp )

± o(1).

• αtot + βtot ≤ Cp − ε.

• αi = (pθp)i · αtot ± o(1)

• βi = (p2)i · βtot ± o(1)

After rearranging (2.6.10) and multiplying by 2, it suffices to show

3 +

k−1∑
i=0

(3αi + 4βi) log(pi) + αtotH (α0, . . . , αk−1) + 2βtotH(β0, . . . , βk−1)
?
≥ ψp(2)ε.

First, replacing both entropy terms using H(pt) = tI(p,pt)−ψp(t) and then substituting ψp(θp) =

2ψp(2) reduces us to showing

3 +

k−1∑
i=0

(3αi + 4βi) log(pi) + αtot(θpI(p,pθp)− 2ψp(2)) + 2βtot(2I(p,p2)− ψp(2))

?
≥ ψp(2)ε.

Using αtot + βtot = K
logN ≤ Cp − ε, it remains to prove

3 +

k−1∑
i=0

(3αi + 4βi) log(pi) + θpαtotI(p,pθp) + 4βtotI(p,p2)− 2ψp(2)Cp

?
≥ −ψp(2)ε.

Substituting Cp =
3+θp

4ψp(2) and αtot = 1−δ
2I(p,pθp )

+ o(1) we are reduced to showing

3

2
+

k−1∑
i=0

(3αi + 4βi) log(pi) + 4βtotI(p,p2)
?
≥ −ψp(2)ε+O(δ) + o(1). (2.6.11)
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Now, using I(p,pθp) = −
∑
i
p
θp
i log(pi)

φp(θp) allows us to simplify

∑
i

αi log(pi) = αtot

∑
i

p
θp
i log(pi)

φp(θp)
+ o(1) = −1− δ

2
+ o(1).

Furthermore,

βtotI(p,p2) = −βtot
k−1∑
i=0

p2
i log(pi)

φp(2)
= −

∑
i

βi log(pi) + o(1).

Substituting these near-equalities into (2.6.11), it suffices to show

0
?
≥ −ψp(2)ε+O(δ) + o(1).

Recalling that δ = δ(p, ε) was chosen sufficiently small completes the proof.

Lemma 2.6.8. With probability 1− o(1), at least Nγ−δ distinct s ∈ CL appear 2 or more times in

the p-random sequence S = (s1, . . . , sN ) ∈ S.

Proof. By Proposition 2.4.2, there are

|CL| = NαtotH(α0,...,αk−1)+βtotH(β0,...,βk−1)+o(1)

collision-likely strings, each of which occurs Bin
(
N,N

∑k−1
i=0 (αi+βi) log(pi)

)
times in S. Because (C̃p +

ε) logN ≤ K holds (recall (2.6.1)) and log(pi) ≤ log(pmax) < 0 for all i, we obtain

k−1∑
i=0

(αi + βi) log(pi) ≤
K log(pmax)

logN

≤ (C̃p + ε) log(pmax)

≤ −1− δ

for δ = δ(p, ε) sufficiently small. This implies

(
1−N

∑k−1
i=0 (αi+βi) log(pi)

)N
= Ω(1).

Next for each s ∈ CL, let Ys denote the event that s appears at least twice in S. By the binomial

distribution formula, each s ∈ CL satisfies

P[Ys] ≥
(
N

2

)
N2

∑k−1
i=0 (αi+βi) log(pi) · Ω(1) = N2+2

∑k−1
i=0 (αi+βi) log(pi)+o(1).
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Letting Ytot =
∑
s∈CL 1Ys and estimating |CL| with Proposition 2.4.2, we get

E[Ytot] ≥ Nγ−o(1).

We claim that the Bernoulli random variables (1Ys)s∈CL are pairwise non-positively correlated, i.e.

P[Ys ∩ Ys′ ] ≤ P[Ys] · P[Ys′ ], s 6= s′.

Indeed for any collision-likely strings s 6= s′, set ns′ ∈ Z≥0 to be the number of i such that

si = s′. It is easy to see that P[Ys|ns′ ] is decreasing in ns′ , which implies the claim.

From Lemmas 2.6.4 and 2.6.7 it follows that γ > 1
4 for N large enough. Therefore for large N ,

we have

E[Ytot] ≥ Ω(N1/4).

As argued just above, Ytot is a sum of Bernoulli random variables Ys with pairwise non-positive

correlations, which implies that Ytot has smaller variance than expectation. In particular

Var(Ytot) ≤ E[Ytot] ≤ O
(
E[Ytot]

2

N1/4

)
.

Chebychev’s inequality now completes the proof as

P
[
Ytot ≥ Nγ−δ] ≥ P

[
Ytot ≥

1

2
· E [Ytot]

]
≥ 1− 4 ·Var(Ytot)

E[Ytot]2

≥ 1−O(N−1/4).

We are finally ready to establish the mixing time lower bound (2.1.2) in Theorem 8.

Proof of (2.1.2). By Lemmas 2.6.7 and 2.6.8, with probability 1 − o(1) at least Nγ−δ ≥ |H| 12 +δ

strings s ∈ CL appear at least twice in S. Each such s by definition results in an edge (i, i+1) ∈ E(G)

with si = si+1 = s. Moreover Lemma 2.6.6 implies that with probability 1− o(1), all of these edges

appear inside H. Then by Lemma 2.6.7,

|E(G) ∩ E(H)| ≥ |H| 12 +Ωp(ε) ≥ |H| 12 +δ

also holds with probability 1−o(1). Combined with Proposition 2.6.5, it follows that H satisfies the

conditions of Proposition 2.6.1. This completes the proof.



Chapter 3

Algorithmic Stochastic

Localization for the

Sherrington-Kirkpatrick Model

3.1 Introduction

This Sherrington-Kirkpatrick (SK) Gibbs measure is the probability distribution on ΣN = {−1,+1}N

given by

µA(x) =
1

Z(β,A)
exp

{β
2
〈x,Ax〉

}
, (3.1.1)

where β ≥ 0 is an inverse temperature parameter and A ∼ GOE(N); i.e., A is symmetric. This

means that Aij ∼ N (0, 1/N) are i.i.d. for 1 ≤ i ≤ j ≤ N , and the diagonal entries Aii ∼ N (0, 2/N)

are i.i.d. for 1 ≤ i ≤ N . The parameter β is fixed and we will leave implicit the dependence of µ

upon β, unless mentioned otherwise.

In this chapter, we consider the problem of efficiently sampling from the measure (3.1.1). Namely,

we seek a randomized algorithm that accepts as input A and generates xalg ∼ µalg

A , such that:

1. The algorithm runs in polynomial time for any A.

2. The distribution µalg

A is close to µA for typical realizations of A. Given a bounded distance

dist(µ, ν) between probability distributions µ, ν, this can be formalized by requiring

E[dist(µA, µ
alg

A )] = oN (1).

80
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Gibbs sampling (also known in this context as Glauber dynamics) provides an algorithm to

approximately sample from µA. However, standard techniques to bound its mixing time (e.g.,

Dobrushin condition [AH87]) only imply polynomial mixing for a vanishing interval of temperatures

β = O(N−1/2). By contrast, physicists [SZ81, MPV87] predict fast convergence to equilibrium (at

least for certain observables) for all β < 1.

Significant progress on this question was achieved only recently. In [BB19], Bauerschmidt and

Bodineau showed that, for β < 1/4, the measure µA can be decomposed into a log-concave mixture

of product measures. They use this decomposition to prove that µA satisfies a log-Sobolev inequality,

although not for the Dirichlet form of Glauber dynamics1. Eldan, Koehler, Zeitouni [EKZ21] prove

that, in the same region β < 1/4, µA satisfies a Poincaré inequality for the Dirichlet form of

Glauber dynamics. Hence Glauber dynamics mixes in O(N2) spin flips in total variation distance.

This mixing time estimate was improved to O(N logN) by [AJK+21] using a modified log Sobolev

inequality, see also [CE22, Corollary 51]. The aforementioned results apply deterministically to any

matrix A satisfying β(λmax(A)− λmin(A)) ≤ 1− ε (for some constant ε > 0).

For spherical spin glasses, it is shown in [GJ19] that Langevin dynamics have a polynomial spec-

tral gap at high temperature. Meanwhile [BAJ18] proves that at sufficiently low temperature and

under an overlap gap condition, the mixing times of Glauber and Langevin dynamics are exponen-

tially large in Ising and spherical spin glasses, respectively.

In this chapter we develop a different approach which is not based on a Monte Carlo Markov

Chain strategy. We build on the well known remark that approximate sampling can be reduced to

approximate computation of expectations of the measure µA, and of a family of measures obtained

from µA. One well known method to achieve this reduction is via sequential sampling [JVV86,

CDHL05, BD11]. A sequential sampling approach to µA would proceed as follows. Order the

variables x1, . . . , xN ∈ {−1,+1} arbitrarily. At step i compute the marginal distribution of xi,

conditional to x1, . . . , xi−1 taking the previously chosen values: p
(i)
s := µA(xi = s|x1, . . . , xi−1),

s ∈ {−1,+1}. Fix xi = +1 with probability p
(i)
+1 and xi = −1 with probability p

(i)
−1.

We follow a different route, which is similar in spirit, but that we find more convenient technically,

and of potential practical interest. Our approach is motivated by the stochastic localization process

[Eld20]. Given any probability measure µ on RN with finite second moment, positive time t > 0,

and vector y ∈ RN , define the tilted measure

µy,t(dx) :=
1

Z(y)
e〈y,x〉−

t
2‖x‖

2
2 µ(dx) , (3.1.2)

and let its mean vector be

m(y, t) :=

∫
RN
xµy,t(dx) . (3.1.3)

1We note in passing that their result immediately suggests a sampling algorithm: sample from the log-concave
mixture using Langevin dynamics, and then sample from the corresponding component using the product form.
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Consider the stochastic differential equation2 (SDE)

dy(t) = m(y(t), t)dt+ dB(t), y(0) = 0 , (3.1.4)

where (B(t))t≥0 is a standard Brownian motion in RN . Then, the measure-valued process (µy(t),t)t≥0

is a martingale and (almost surely) µy(t),t ⇒ δx∗ as t → ∞, for some random x∗ (i.e. the measure

localizes). As a consequence of the martingale property, E[
∫
ϕ(x)µy(t),t(dx)] is a constant for any

bounded continuous function ϕ, whence E[ϕ(x∗)] =
∫
ϕ(x)µ(dx). In other words, x∗ is a sample

from µ. For further information on this process, we refer to Section 3.3.

In order to use this process as an algorithm to sample from the SK measure µ = µA, we need to

overcome two problems:

• Discretization. We need to discretize the SDE (3.1.4) in time, and still guarantee that the

discretization closely tracks the original process. This is of course possible only if the map

y 7→m(y, t) is sufficiently regular.

• Mean computation. We need to be able to compute the mean vector m(y, t) efficiently. To

this end, we use an approximate message passing (AMP) algorithm for which we can leverage

earlier work [DAM17] to establish that ‖m(y) − m̂AMP(y)‖22/N = oN (1) along the algorithm

trajectory. (Note that the SK measure is supported on vectors with ‖x‖22 = N , and hence

the quadratic component of the tilt in Eq. (3.1.2) drops out. We will therefore write m(y) or

m(A,y) instead m(y, t) for the mean of the Gibbs measure.)

To our knowledge, ours is the first algorithmic implementation of the stochastic localization process,

although a recent paper by Nam, Sly and Zhang [NSZ22] uses this process (without naming it as

such) to show that the Ising measure on the infinite regular tree is a factor of IID process up to a

constant factor away from the Kesten–Stigum, or “reconstruction”, threshold. Their construction

can easily be transformed into a sampling algorithm.

In order to state our results, we define the normalized 2-Wasserstein distance between two prob-

ability measures µ, ν on RN with finite second moments as

W2,N (µ, ν)2 = inf
π∈C(µ,ν)

1

N
E
π

[∥∥X − Y ∥∥2

2

]
, (3.1.5)

where the infimum is over all couplings (X,Y ) ∼ π with marginals X ∼ µ and Y ∼ ν.

In this chapter, we establish two main results.

Sampling algorithm for β < 1/2. We prove that the strategy outlined above yields an algorithm

with complexity O(N2), which samples from a distribution µalg

A with W2,N (µalg

A , µA) = oN,P(1).

2If µ is has finite variance, then y → m(y, t) is Lipschitz and so this SDE is well posed with unique strong solution.
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Hardness for stable algorithms, for β > 1. We prove that no algorithm satisfying a certain sta-

bility property can sample from the SK measure (under the same criterion W2,N (µalg

A , µA) =

oN,P(1)) for β > 1, i.e., when replica symmetry is broken. Roughly speaking, stability formal-

izes the notion that the algorithm output behaves continuously with respect to A.

It is worth pointing out that we expect our algorithm to be successful (in the sense described above)

for all β < 1 and that closing the gap between β = 1/2 and β = 1 should be within reach of existing

techniques, at the price of a longer technical argument. We expound on this point in Remark 3.2.1

further below, and in Section 3.7.

The hardness results for β > 1 are proven using the notion of disorder chaos, in a similar spirit to

the use of the overlap gap property for random optimization, estimation, and constraint satisfaction

problems [GS14, RV17a, GS17, CGPR19, GJ21, GJW20a, Wei22, GK21a, BH21, GJW21, HS22].

While the overlap gap property has been used to rule out stable algorithms for this class of problems,

and variants have been used to rule out efficient sampling by specific Markov chain algorithms, to

the best of our knowledge we are the first to rule out stable sampling algorithms using these ideas.

In sampling there is no hidden solution or set of solutions to be found, and therefore no notion of

an overlap gap in the most natural sense. Instead, we argue directly that the distribution to be

sampled from is unstable in a W2,N sense at low temperature, and hence cannot be approximated

by any stable algorithm.

The rest of the chapter is organized as follows. In Section 3.2 we formally state our results. In

Section 3.3 we collect some useful properties of the stochastic localization process, and we present

the analysis of our algorithm in Section 3.4. Finally, the proof of hardness under stability is given

in Section 3.9.

3.2 Main Results

3.2.1 Sampling algorithm for β < 1/2

In this section we describe the sampling algorithm, and formally state the result of our analysis. As

pointed out in the introduction, a main component is the computation of the mean of the tilted SK

measure:

µA,y(x) :=
1

Z(A,y)
exp

{β
2
〈x,Ax〉+ 〈y,x〉

}
, x ∈ {−1,+1}N . (3.2.1)

We describe the algorithm to approximate this mean in Section 3.2.1, the overall sampling procedure

(which uses this estimator as a subroutine) in Section 11, and our Wasserstein-distance guarantee

in Section 10.
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Approximating the mean of the Gibbs measure

Algorithm 1: Mean of the tilted Gibbs measure

Input: Data A ∈ RN×N , y ∈ RN , parameters β, η > 0, q ∈ (0, 1), iteration numbers KAMP,
KNGD.

1 m̂−1 = z0 = 0,
2 for k = 0, · · · ,KAMP − 1 do

3 m̂k = tanh(zk), bk = β2

N

∑N
i=1

(
1− tanh2(zki )

)
,

4 zk+1 = βAm̂k + y − bkm̂
k−1 ,

5 end

6 u0 = zKAMP ,
7 for k = 0, · · · ,KNGD − 1 do

8 uk+1 = uk − η · ∇FTAP(m̂+,k;y, q),

9 m̂+,k+1 = tanh(uk+1),

10 end

11 return m̂+,KNGD

We will denote our approximation of the mean of the Gibbs measure µA,y by m̂(A,y), while

the actual mean will be m(A,y).

The algorithm to compute m̂(A,y) is given in Algorithm 1, and is composed of two phases:

1. An Approximate Message Passing (AMP) algorithm is run for KAMP iterations and constructs

a first estimate of the mean. We denote by AMP(A,y; k) the estimate produced after k AMP

iterations

AMP(A,y; k) := m̂k . (3.2.2)

2. Natural gradient descent (NGD) is run for KNGD iterations with initialization given by vector

computed at the end of the first phase. This phase attempts to minimize the following version

of the TAP free energy (for a specific value of q):

FTAP(m;y, q) := −β
2
〈m,Am〉 − 〈y,m〉 −

N∑
i=1

h(mi)−
Nβ2(1− q)(1 + q − 2Q(m))

4
, (3.2.3)

Q(m) =
1

N
‖m‖2, h(m) = −1 +m

2
log

(
1 +m

2

)
− 1−m

2
log

(
1−m

2

)
.

(3.2.4)

The second stage is motivated by the TAP (Thouless-Anderson-Palmer) equations for the Gibbs

mean of a high-temperature spin glass [MPV87, Tal10]. Essentially by construction, stationary

points for the function FTAP(m;y, q) satisfy the TAP equations, and we show in Lemma 3.7.2 that

the first stage above constructs an approximate stationary point for FTAP(m;y, q). The effect of
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the second stage is therefore numerically small, but it turns out to reduce the error incurred by

discretizing time in line 6 of Algorithm 2.

Let us emphasize that this two-stage construction is considered for technical reasons. Indeed

a simpler algorithm, that runs AMP for a larger number of iteration, and does not run NGD at

all, is expected to work but our arguments do not go through. The hybrid algorithm above allows

us to exploit known properties of AMP (precise analysis via state evolution) and of FTAP(m;y, q)

(Lipschitz continuity of the minimizer in y).

Sampling via stochastic localization

Algorithm 2: Approximate sampling from the SK Gibbs measure

Input: Data A ∈ RN×N , parameters (β, η,KAMP,KNGD, L, δ)
1 ŷ0 = 0,
2 for ` = 0, · · · , L− 1 do
3 Draw w`+1 ∼ N (0, IN ) independent of everything so far;
4 Set q = q∗(β, t = `δ);
5 Set m̂(A, ŷ`) the output of Algorithm 1, with parameters (β, η, q,KAMP,KNGD);

6 Update ŷ`+1 = ŷ` + m̂(A, ŷ`) δ +
√
δw`+1

7 end
8 Set m̂(A, ŷL) the output of Algorithm 1, with parameters (η, q,KAMP,KNGD);
9 Draw {xalg

i }i≤N conditionally independent with E[xalg

i |y, {w`}] = m̂i(A, ŷL)
10 return xalg

Our sampling algorithm is presented as Algorithm 2. The algorithm makes uses of constants

qk := qk(β, t). With W ∼ N (0, 1) a standard Gaussian, these constants are defined for k, β, t ≥ 0

by the recursion

qk+1 = E
[

tanh
(
β2qk + t+

√
β2qk + tW

)2]
, q0 = 0 , q∗ = lim

k→∞
qk . (3.2.5)

This iteration can be implemented via a one-dimensional integral, and the limit q∗ is approached

exponentially fast in k (see Lemma 3.6.3 below). The values q∗(β, t = `δ) for ` ∈ {0, . . . , L} can be

precomputed and are independent of the input A. For the sake of simplicity, we will neglect errors

in this calculation.

The core of the sampling procedure is step 6, which is a standard Euler discretization of the

SDE (3.1.4), with step size δ, over the time interval [0, T ], T = Lδ. The mean of the Gibbs measure

m(A,y) is replaced by the output of Algorithm 1 which we recall is denoted by m̂(A,y). We

reproduce the Euler iteration here for future reference

ŷ`+1 = ŷ` + m̂(A, ŷ`) δ +
√
δw`+1 . (3.2.6)
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The output of the iteration is m̂(A, ŷL), which should be thought of as an approximation of

m(A,y(T )), T = Lδ, that is the mean of µA,y(T ). According to the discussion in the introduction,

for large T , µA,y(T ) concentrates around x∗ ∼ µA. In other words, m(A,y(T )) is close to the corner

x∗ of the hypercube. We round its coordinates independently to produce the output xalg.

Theoretical guarantee

Our main positive result is the following.

Theorem 9. For any ε > 0 and β0 < 1/2 there exist η,KAMP,KNGD, L, δ independent of N , so that

the following holds for all β ≤ β0. The sampling algorithm 2 takes as input A and parameters

(η,KAMP,KNGD, L, δ) and outputs a random point xalg ∈ {−1,+1}N with law µalg

A such that with

probability 1− oN (1) over A ∼ GOE(N),

W2,N (µalg

A , µA ) ≤ ε . (3.2.7)

The total complexity of this algorithm is O(N2).

Remark 3.2.1. The condition β < 1/2 arises because our proof requires the Hessian of the TAP

free energy to be positive definite at its minimizer. A simple calculation yields

∇2FTAP(m;y, q) = −βA+D(m) + β2(1− q) IN , D(m) := diag
(
{(1−m2

i )
−1}i≤N

)
. (3.2.8)

A crude bound yields∇2FTAP(m;y, q) � −βA+IN � (1−βλmax(A))IN . Since p-limN→∞ λmax(A) =

2 the desired condition holds trivially for β < 1/2. However, we expect that a more careful treatment

will reveal that the Hessian is locally positive in a neighborhood of the minimizer for all β < 1.

3.2.2 Hardness for stable algorithms, for β > 1

The sampling algorithm 2 enjoys stability properties with respect to changes in the inverse temper-

ature β and the matrix A which are shared by many natural efficient algorithms. We will use the

fact that the actual Gibbs measure does not enjoy this stability property for β > 1 to conclude that

sampling is hard for all stable algorithms.

Throughout this section, we denote the Gibbs and algorithmic output distributions by µA,β and

µalg

A,β respectively to emphasize the dependence on β.

Definition 3.2.1. Let {ALGN}N≥1 be a family of randomized sampling algorithms, i.e., measurable

maps

ALGN : (A, β, ω) 7→ ALGN (A, β, ω) ∈ [−1, 1]N ,
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where ω is a random seed (a point in a probability space (Ω,F ,P)). Let A′ and A ∼ GOE(N)

be independent copies of the coupling matrix, and consider perturbations As =
√

1− s2A + sA′

for s ∈ [0, 1]. Finally, denote by µalg

As,β
the law of the algorithm output, i.e., the distribution of

ALGN (As, β, ω) when ω ∼ P independent of As, β which are fixed.

We say ALGN is stable with respect to disorder, at inverse temperature β, if

lim
s→0

p-lim
N→∞

W2,N (µalg

A,β , µ
alg

As,β
) = 0 . (3.2.9)

We say ALGN is stable with respect to temperature at inverse temperature β, if

lim
β′→β

p-lim
N→∞

W2,N (µalg

A,β , µ
alg

A,β′) = 0 . (3.2.10)

We begin by establishing the stability of the proposed sampling algorithm.

Theorem 10 (Stability of the sampling Algorithm 2). For any β ∈ (0,∞) and fixed parameters (η,

KAMP, KNGD, L, δ), Algorithm 2 is stable with respect to disorder and with respect to temperature.

This theorem is proved in Section 3.9.1. As a consequence, the Gibbs measures µA,β enjoy similar

stability properties for β < 1/2, which amount (as discussed below) to the absence of chaos in both

temperature and disorder:

Corollary 3.2.2. For any β < 1/2, the following properties hold for the Gibbs measure µA,β of the

Sherrington-Kirkpatrick model, cf. Eq. (3.1.1):

1. lims→0 p-limN→∞W2,N (µA,β , µAs,β) = 0.

2. limβ′→β p-limN→∞W2,N (µA,β , µA,β′) = 0.

Proof. Take ε > 0 arbitrarily small and choose parameters (η,KAMP,KNGD, L, δ) of Algorithm 2

with the desired tolerance ε so that Theorem 37 holds. Combining with Theorem 10 using the

same parameters (η,KAMP,KNGD, L, δ) implies the result since ε is arbitrarily small. (Recall that

(η,KAMP,KNGD, L, δ) can be chosen independent of β for β ≤ β0 < 1/2.)

Remark 3.2.2. We emphasize that Corollary 3.2.2 makes no reference to the sampling algorithm,

and is instead a purely structural property of the Gibbs measure. The sampling algorithm, however,

is the key tool of our proof.

Stability is related to chaos, which is a well studied and important property of spin glasses, see

e.g. [Cha09, Che13a, Cha14, CHHS15, CP18]. In particular, “disorder chaos” refers to the following
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phenomenon. Draw x0 ∼ µA,β independently of xs ∼ µAs,β , and denote by µ
(0,s)
A,β := µA,β ⊗ µAs,β

their joint distribution. Disorder chaos holds at inverse temperature β if

lim
s→0

lim
N→∞

Eµ(0,s)
A,β

{( 1

N
〈x0,xs〉

)2}
= 0 . (3.2.11)

Note that disorder chaos is not necessarily a surprising property. For instance when β = 0, the

distribution µAs,β is simply the uniform measure over the hypercube {−1,+1}N for all s, and this

example exhibits disorder chaos in the sense of Eq. (3.2.11). In fact, the SK Gibbs measure exhibits

disorder chaos at all β ∈ [0,∞) [Cha09]. However, for β > 1, Eq. (3.2.11) leads to a stronger

conclusion.

Theorem 11 (Disorder chaos in W2,N distance). For all β > 1,

inf
s∈(0,1)

lim inf
N→∞

E
[
W2,N (µA,β , µAs,β)

]
> 0 .

Finally, we obtain the desired hardness result by reversing the implication in Corollary 3.2.2:

no stable algorithm which can approximately sample from the measure µA,β in the W2,N sense for

β > 1.

Theorem 12. Fix β > 1, and let {ALGN}N≥1 be a family of randomized algorithms which is stable

with respect to disorder as per Definition 3.2.1 at inverse temperature β. Let µalg

A,β be the law of the

output ALGN (A, β, ω) conditional on A. Then

lim inf
N→∞

E
[
W2,N (µalg

A,β , µA,β)
]
> 0 .

We refer the reader to Section 3.9.2 for the proof of this theorem.

3.2.3 Notations

We use oN (1) to indicate a quantity tending to 0 as N →∞. We use oN,P(1) for a quantity tending

to 0 in probability. If X is a random variable, then L(X) indicates its law. The quantity C(β)

refers to a constant depending on β. For x ∈ RN and ρ ∈ R≥0, we denote the open ball of center

x and radius ρ by B(x, ρ) := {y ∈ RN : ‖y − x‖2 < ρ}. The uniform distribution on the interval

[a, b] is denoted by Unif([a, b]). The set of probability distributions over a measurable space (Ω,F)

is denoted by P(Ω).
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3.3 Properties of Stochastic Localization

We collect in this section the main properties of the stochastic localization process needed for our

analysis. To be definite, we will focus on the stochastic localization process for the Gibbs measure

(3.1.1), although most of what we will say generalizes to other probability measures in RN , under

suitable tail conditions. Throughout this section, the matrix A is viewed as fixed.

Recalling the tilted measure µA,y of Eq. (3.1.2), and the SDE of Eq. (3.1.4), we introduce the

shorthand

µt = µA,y(t) .

The following properties are well known. See for instance [ES22, Propositions 9, 10] or [Eld20].

We provide proofs for the reader’s convenience.

Lemma 3.3.1. For all t ≥ 0 and all x ∈ {−1,+1}N ,

dµt(x) = µt(x)〈x−mA,y(t), dB(t)〉 . (3.3.1)

As a consequence, for any function ϕ : RN → Rm, the process
(
Ex∼µt

[
ϕ(x)

])
t≥0

is a martingale.

Proof. Let us evaluate the differential of log µt. By writing Zt for the normalization constant Z(y(t))

of Eq. (3.1.2), we get

d logµt(x) = 〈dy(t),x〉 − d logZt . (3.3.2)

Using Itô’s formula for Zt we have

dZt = d
∑

x∈{−1,+1}N
e(β/2)〈x,Ax〉+〈y(t),x〉

=
∑

x∈{−1,+1}N

(
〈dy(t),x〉+

1

2
‖x‖2dt

)
e(β/2)〈x,Ax〉+〈y(t),x〉 .

Therefore, denoting by [Z]t the quadratic variation process associated to Zt,

d logZt =
dZt
Zt
− 1

2

d[Z]t
Z2
t

= 〈dy(t),mA,y(t)〉+
1

2
E
µt

[‖x‖2]dt− 1

2
‖mA,y(t)‖2dt

= 〈dy(t),mA,y(t)〉+
N

2
− 1

2
‖mA,y(t)‖2dt .
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Substituting in (3.3.2) we obtain

d logµt(x) = 〈dy(t),x−mA,y(t)〉 −
N

2
dt+

1

2
‖mA,y(t)‖2dt

= 〈dBt,x−mA,y(t)〉 −
1

2
‖x−mA,y(t)‖2dt .

Applying Itô’s formula to elog µt(x) yields the desired result.

Finally, Eq. (3.3.1) implies that µt(x) is a martingale for every x ∈ {−1,+1}N . Since Ex∼µt
[
ϕ(x)

]
is a linear combination of martingales, it is itself a martingale.

Lemma 3.3.2 ([Eld20]). For all t > 0,

ECov(µt) �
1

t
IN . (3.3.3)

Lemma 3.3.3. For all t > 0,

W2,N

(
µA,L(mA,y(t))

)2 ≤ 1

t
. (3.3.4)

In particular, the mean vector mA,y(t) converges in distribution to a random vector x∗ ∼ µA as

t→∞.

Proof. By Lemma 3.3.2,

E
[

E
x∼µt

[‖x−mA,y(t)‖2]
]
≤ N

t
,

therefore

E
[
W2,N

(
µt, δmA,y(t)

)2] ≤ 1

t
.

Notice that (µ, ν) 7→W 2
2,N (µ, ν) is jointly convex. Since µA = E[µt], this implies

W2,N

(
µA,L(mA,y(t))

)2 ≤ E
[
W2,N

(
µt, δmA,y(t)

)2] ≤ 1

t
.

3.4 Analysis of Algorithm 2 and proof of Theorem 37

This section is devoted to the analysis of Algorithm 2 described in the previous section. An important

simplification is obtained by reducing ourselves to working with a corresponding planted model. This

approach has two advantages: (i) The joint distribution of the matrix A and the process (y(t))t≥0

in (3.1.4) is significantly simpler in the planted model; (ii) Analysis in the planted model can be cast

as a statistical estimation problem. In the latter, Bayes-optimality considerations can be exploited

to relate the output of the AMP algorithm AMP(A,y; k) to the true mean vector m(A,y).
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This section is organized as follows. Section 3.5 introduces the planted model and its relation to

the original model. We then analyze the AMP component of our algorithm in Section 3.6, and the

NGD component in Section 3.7. Finally, Section 3.8 puts the various elements together and proves

Theorem 37.

3.5 The planted model and contiguity

Let ν be the uniform distribution over {−1,+1}N and consider the joint distribution of pairs (x,A) ∈
{−1,+1}N × RN×Nsym ,

µpl(dx,dA) =
1

Zpl

exp
{
− N

4

∥∥∥A− βxx>

N

∥∥∥2

F

}
ν(dx) dA , (3.5.1)

where dA is the Lebesgue measure over the space of symmetric matrices RN×Nsym , and the normalizing

constant

Zpl :=

∫
exp

{
− N

4

∥∥∥A− βxx>

N

∥∥∥2

F

}
dA (3.5.2)

is independent of x ∈ {−1,+1}N . It is easy to see by construction that the marginal distribution

of x under µpl is ν, and the conditional law µpl( · |x) is a rank-one spiked GOE model with spike

βxx>/N . Namely, under µpl( · |x), we have

A =
β

N
xx> +W , W ∼ GOE(N) . (3.5.3)

On the other hand, µpl( · |A) is the SK measure µA.

The marginal of A under µpl is not the GOE(N) distribution µGOE but takes the form

µpl(dA) =
1

Zpl

e−
N
4 ‖A‖

2
F ZSK(A) dA (3.5.4)

= µGOE(dA)ZSK(A) , (3.5.5)

where ZSK(A) is the (rescaled) partition function of the SK measure

ZSK(A) = 2−n
∑

x∈{−1,+1}N
exp

{β
2
〈x,Ax〉 − β2N

4

}
. (3.5.6)

By a classical result [ALR87], ZSK(A) has log-normal fluctuations for all β < 1:
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Theorem 13 ([ALR87]). Let β < 1, A ∼ µGOE and σ2 = 1
4 (− log(1− β2)− β2). Then

ZSK(A)
d−−−−→

n→∞
exp(W ) , (3.5.7)

where W ∼ N
(
− σ2, 2σ2

)
.

Therefore, by Le Cam’s first lemma [VdV98, Lemma 6.4], µpl(dA) and µGOE(dA) are mutually

contiguous for all β < 1. For the purpose of our analysis we will need a stronger result about the joint

distributions of (A,y) under our “random” model and a planted model which we now introduce.

Recall that m(A,y) denotes the mean of the Gibbs measure µA,y in Eq. (3.1.2). For a fixed

T ≥ 0, we define two Borel distributions P and Q on (A,y) ∈ RN×Nsym × C([0, T ],RN ) as follows:

Q :


A ∼ µGOE ,

y(t) =

∫ t

0

m(A,y(s)) ds+B(t) , t ∈ [0, T ] ,
(random) (3.5.8)

P :


x0 ∼ ν ,

A ∼ µpl( · |x0) ,

y(t) = tx0 +B(t) , t ∈ [0, T ]

(planted) (3.5.9)

where (B(t))t≥0 is a standard Brownian motion in RN independent of everything else. Note the SDE

defining the process y = (y(t))t∈[0,T ] in Eq. (3.5.8) is a restatement of the stochastic localization

equation (3.1.4) applied to the SK measure µA.

Proposition 3.5.1. For all T ≥ 0 and β ≥ 0, P absolutely continuous with respect to Q and for all

(A,y) ∈ RN×Nsym × C([0, T ],RN ),
dP
dQ

(A,y) = ZSK(A) .

Therefore, for all β < 1, P and Q are mutually contiguous. (Namely, for a sequence of events EN ,

limN→∞ P(EN ) = 0 if and only if limN→∞Q(EN ) = 0.)

Proof. Fix x0 ∈ RN . We first calculate the density of the process y(t) = tx0 +B(t) with respect

to Brownian motion. Let W be the Wiener measure on C([0, T ],RN ). We obtain by Girsanov’s

theorem that
dP( · |x0)

dW
(y) = e〈x0,y(T )〉−T‖x0‖2/2 . (3.5.10)

Notice that the above density only depends on the endpoint y(T ) of the process y. From this, we
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obtain an explicit formula for the density of P with respect to (dA)×W :

P(dA,dy) =
1

Zpl

(∫
exp

{
− N

4

∥∥∥A− βx0x
>
0

N

∥∥∥2

F
+ 〈x0,y(T )〉 − T

2
‖x0‖2

}
ν(dx0)

)
dAW (dy) ,

(3.5.11)

where Zpl =
∫
e−n‖A‖

2
F /4dA is given in Eq. (3.5.2).

Next we derive a similar formula for Q. Fix a matrix A ∈ RN×Nsym and let y be the solution to

the SDE in (3.5.8). Let (B̄(t))t≥0 be another standard Brownian motion in RN , and consider the

process ȳ = (ȳ(t))t∈[0,T ] defined by

ȳ(t) = tx+ B̄(t) where x ∼ µA independently of B̄ . (3.5.12)

Then, there exists another Brownian motion (W (t))t≥0 adapted to the filtration (F t = σ(ȳ(s) : s ≤
t))t∈[0,T ] such that dȳ(t) = mA,ȳ(t)dt + dW (t) for all t ∈ [0, T ]. This is stated as Theorem 7.12

of [LS77], and can be proved directly applying Levy’s characterization of Brownian motion to the

process ȳ(t)−
∫ t

0
m(A, ȳ(s))ds.

Therefore, the processes ȳ and y share the same law conditional on A. Since we computed the

law of ȳ in (3.5.10), we obtain

Q(dA,dy) =
1

Zpl

(∫
exp

{
− N

4

∥∥A∥∥2

F
+ 〈x,y(T )〉 − T

2
‖x‖2

}
µA(dx)

)
dAW (dy) , (3.5.13)

where Zpl is as above. Since µA(dx) = ZSK(A)−1eβ〈x,Ax〉/2−β
2N/4ν(dx), we obtain after simplifica-

tion

dP
dQ

(A,y) = ZSK(A) . (3.5.14)

Mutual contiguity follows from Theorem 13 and Le Cam’s first lemma.

Therefore, for the remainder of the proof of Theorem 37, we work under the “planted” distribution

P. All results proven under P transfer to Q by contiguity.
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3.6 Approximate Message Passing

In this section we analyze the AMP iteration of Algorithm 1, which we copy here for the reader’s

convenience

m̂−1 = z0 = 0,

m̂k = tanh(zk), bk =
β2

N

N∑
i=1

(
1− tanh2(zki )

)
∀k ≥ 0 , (3.6.1)

zk+1 = βAm̂k + y − bkm̂
k−1 .

When needed, we will specify the dependence on A,y by writing m̂k = m̂k(A,y) = AMP(A,y; k)

and zk = zk(A,y). Throughout this section (A,y) ∼ P will be distributed according to the planted

model introduced above.

Our analysis will be based on the general state evolution result of [BM11a, JM13], which implies

the following asymptotic characterization for the iterates. Set γ0(β, t) = 0,Σ0,i(β, t) = 0 and

recursively define

γk+1(β, t) = β2 · E [tanh (γk(β, t) + t+Gk)] , (3.6.2)

Σk+1,j+1(β, t) = β2 · E [tanh (γk(β, t) + t+Gk) tanh (γj(β, t) + t+Gj)] , (3.6.3)

where (Gj)≤k are jointly Gaussian, with zero mean and covariance Σ≤k + t11>, Σ≤k := (Σij)i,j≤k.

Proposition 3.6.1 (Theorem 1 of [BM11a]). For (A,y) ∼ P and any k ∈ Z≥0, the empirical

distribution of the coordinate of the AMP iterates converges almost surely in W2(Rk+2) as follows:

1

N

N∑
i=1

δ(z1i ,··· ,zki ,xi,yi)
W2−−−−→
n→∞

L
(
γ≤k(β, t)X +G+ Y 1, X, Y

)
, (3.6.4)

γ≤k(β, t) =
(
γ1(β, t), . . . , γk(β, t)

)
, G ∼ N (0,Σ≤k) . (3.6.5)

On the right-hand side, X is uniformly random in {−1,+1}, Y = tX +
√
tW where W ∼ N (0, 1)

and X,G,W are mutually independent.

Remark 3.6.1. This specific statement follows from [BM11a, Theorem 1] by a change of variables,

as in [DAM17] or [MV21].

As in [DAM17, Eqs. (69,70)] we argue that the state evolution equations (3.6.2), (3.6.3) take a

simple form thanks to our specific choice of AMP non-linearity tanh(·). It will be convenient to use
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the notations

γ̃k(β, t) = γk(β, t) + t ,

Σ̃k,j(β, t) = Σk,j(β, t) + t .

Proposition 3.6.2. For any t ∈ R≥0 and k, j ∈ Z≥0,

Σk,j(β, t) = γk∧j(β, t) , and Σ̃k,j(β, t) = γ̃k∧j(β, t) .

Proof. The two claims are equivalent and we proceed by induction. The base case k = 0 holds by

definition, so we may assume Σi,j(β, t) = γi∧j(β, t) for i, j ≤ k − 1. Set Zj = γjX + G̃j where

G̃ ∼ N (0, Σ̃≤k−1). Note that, by the induction hypothesis, Zk−1 is a sufficient statistic for X given

(Zj)j≤k−1. Using Bayes’ rule, and writing σ̃2
k−1 := Σ̃k−1,k−1, one easily computes

E[X|Zk−1] =
eγ̃k−1Zk−1/σ̃

2
k−1 − e−γ̃k−1Zk−1/σ̃

2
k−1

eγ̃k−1Z/σ̃2
k−1 + e−γ̃k−1Z/σ̃2

k−1

= tanh(Z) .

Therefore using Eq. (3.6.2), the fact that tanh is an odd function and WX
d
= W ,

Σ̃k,j = E
[
E[X|Zk−1]E[X|Zj−1]

]
(a)
= E

[
X E[X|Zj−1]

]
= E

[
X tanh(γ̃j−1X + σ̃2

j−1W )
]

= E
[
tanh(γ̃j−1 + σ̃2

j−1W )
]

= γj ,

where in step (a) we crucially used the sufficient statistic property. This completes the inductive

step and hence the proof.

Define the function mmse : R→ R given by

mmse(γ) ≡ 1− E
[

tanh(γ +
√
γW )2

]
= 1− E

[
E[X|γX +

√
γW ]2

]
.

It follows from Proposition 3.6.2 that (3.6.2) and (3.6.3) can be expressed just in terms of the

sequence γk(β, t) defined by γ0(t) = 0 and the recursion

γk+1(β, t) = β2
(
1−mmse(γk(β, t) + t)

)
. (3.6.6)

Note that γk(β, t) depends also on β, which is usually treated as constant. The following result

details some useful properties of mmse.

Lemma 3.6.3 (Lemma 6.1 of [DAM17]). The following properties hold, where {γk(β, t)}k≥1 is as
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defined by (3.6.6).

(a) mmse is differentiable, strictly decreasing, and convex in γ ∈ R≥0.

(b) mmse(0) = 1, mmse′(0) = −1 and limγ→∞mmse(γ) = 0.

(c) For t ≥ 0 there exists a non-negative solution γ∗ = γ∗(β, t) to the fixed point equation

γ∗ = β2(1−mmse(γ∗ + t)) . (3.6.7)

The solution to this equation is unique for all t > 0.

(d) The function (β, t) 7→ γ∗(β, t) is differentiable for t > 0.

(e) For all β < 1 and t > 0,

1− β2k ≤ γk(β, t)

γ∗(β, t)
≤ 1 . (3.6.8)

(f) For β < 1 and T > 0, there exist constants c(β,T), C(β,T) ∈ (0,∞) such that, for all t ∈ (0,T],

c(β,T) ≤ γ∗(β, t)

t
≤ C(β,T) . (3.6.9)

(g) For β < 1 and any t1, t2 ∈ (0,∞),

γ∗(β, t1)− γ∗(β, t2) ≤ β2

1− β2
|t1 − t2|. (3.6.10)

Proof. Lemma 6.1 in [DAM17] proves that γ 7→ mmse(γ) is differentiable, strictly decreasing, and

convex in γ ∈ R≥0 (Note that the statement of that Lemma does not claim differentiability, but this

is actually proved there by a simple application of dominated convergence). This proves point (a).

Point (b) follows by a direct calculation, cf. [DAM17]. Indeed, by Stein’s lemma (Gaussian

integration by parts), with Z = γ +W
√
γ,

−mmse′(γ) =
d

dγ
E[tanh(γ +W

√
γ)2]

= E[2 tanh(Z) tanh′(Z) + tanh′(Z)2 + tanh(Z) tanh′′(Z)]

Evaluating at γ = 0 shows

mmse′(0) = −1.

Also, dominated convergence yields the desired limit values.

Point (c), namely existence and uniqueness of solutions of Eq. (3.6.7) follows from the above

monotonicity and convexity properties. Point (d) follows from the implicit function theorem.
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We are left with the task of proving (3.6.8), (3.6.9) and (3.6.10), which are not given in [DAM17].

Define

ft(γ) ≡ β2(1−mmse(γ + t))

so that ft(γk(β, t)) = γk+1(β, t). By point (b), ft(0) ≥ 0. By point (a), ft(·) is increasing and

concave. Combined with the computation above, we conclude that f ′t(γ) ∈ [0, β2] for all γ ≥ 0. By

the mean value theorem, it follows that for γ < γ∗,

0 ≤ γ∗(β, t)− ft(γ) = f(γ∗(β, t))− ft(γ) ≤ β2(γ∗(β, t)− γ) . (3.6.11)

Setting γ = γj(β, t), we obtain

0 ≤ γ∗(β, t)− γj+1(β, t)

γ∗(β, t)− γj(β, t)
≤ β2.

Multiplying for j ∈ {0, . . . , k − 1}, we find

0 ≤ γ∗(β, t)− γk(β, t)

γ∗(β, t)
≤ β2k ,

or,
γk(β, t)

γ∗(β, t)
∈
[
1− β2k, 1

]
,

which proves (3.6.8).

To prove (3.6.9), note that we just showed

γ1(β, t)

γ∗(β, t)
∈
[
1− β2, 1

]
.

Therefore it suffices to show that

c(β,T) ≤ γ1(β, t)

t
≤ C(β,T), t ∈ (0,T] . (3.6.12)

By definition, γ1(β, t) = β2(1 − mmse(t)). Thus (3.6.12) follows from the fact that mmse(0) = 1,

mmse′(0) = −1, and mmse : R≥0 → [0, 1] is convex and strictly decreasing. In fact we have

γ1(β,T)/T ≤ γ1(β, t)/t ≤ β2 for all t ∈ (0,T].

Finally, we prove (3.6.10). Since |mmse′(t)| ≤ 1 for all t ≥ 0 we find that for t1, t2 ≥ 0,

|γ∗(β, t1)− γ∗(β, t2)| = β2|mmse(γ∗(β, t1) + t1)−mmse(γ∗(β, t2) + t2)|

≤ β2|γ∗(β, t1)− γ∗(β, t2)|+ β2|t1 − t2|.
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Rearranging, we obtain
|γ∗(β, t1)− γ∗(β, t2)|

|t1 − t2|
≤ β2

1− β2
.

For (A,y) ∼ P and x ∼ µA,y(t), define

MSEAMP(k;β, t) = p-lim
N→∞

1

N
E
∥∥x− m̂k(A,y(t))

∥∥2

2
, m̂k(A,y(t)) := AMP(A,y(t); k) , (3.6.13)

where the limit is guaranteed to exist by Proposition 3.6.1.

Lemma 3.6.4. We have

MSEAMP(k;β, t) = 1− γk+1(β, t)

β2
.

In particular,

lim
k→∞

MSEAMP(k;β, t) = 1− γ∗(β, t)

β2
.

Proof. By state evolution

MSEAMP(k;β, t) = p-lim
N→∞

1

N
E
∥∥m̂k(A,y(t))− x

∥∥2

2

= E
[(

tanh(γkX + σkW + Y )−X
)2]

= E
[(

tanh(γ̃kX + σ̃kW )−X
)2]

= 1− 2E[tanh(γ̃kX + σ̃kW )X] + E[tanh(γ̃kX + σ̃kW )2]

= 1− 2γk+1/β
2 + σ2

k+1/β
2

= 1− γk+1/β
2,

where the last line follows from Proposition 3.6.2.

We next show that, for any t > 0, the mean square error achieved by AMP is the same as the

Bayes optimal error, i.e., the mean squared error achieved by the posterior expectation m(A,y(t)).

Proposition 3.6.5. Fix β < 1 and t ≥ 0. We have

lim
N→∞

1

N
E
[∥∥x−m(A,y(t))

∥∥2

2

]
=
γ∗(β, t)

β2
. (3.6.14)

Proof. The proof is an adaptation from [DAM17], which we will present succinctly.
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Let I(X;Y ) denote the mutual information between random variables X,Y on the same proba-

bility space. Letting X ∼ Unif({−1,+1}) independent of W ∼ N (0, 1), define the function

I(γ) := I
(
X; γX +

√
γW

)
(3.6.15)

= γ − E log cosh
(
γ +
√
γW )

)
. (3.6.16)

We also define the function

Ψ(γ;β, t) :=
β2

4
+

γ2

4β2
− γ

2
+ I(γ + t) . (3.6.17)

As in [DAM17], it is easy to check that ∂γΨ(γ∗(β, t);β, t) = 0 and, using the continuity of (β, t) 7→
γ∗(β, t),

d

d(β2)
Ψ(γ∗(β, t);β, t) =

1

4

(
1− γ∗(β, t)

2

β4

)
, (3.6.18)

d

dt
Ψ(γ∗(β, t);β, t) =

1

2

(
1− γ∗(β, t)

β2

)
. (3.6.19)

We further note that by the de Brujin identity (also known as I-MMSE relation [GSV05])

d

d(β2)
I(x;A(β),y(t)) =

1

4n
E
[∥∥xx> − E[xx>|A(β),y(t)]

∥∥2

F

]
, (3.6.20)

d

dt
I(x;A(β),y(t)) =

1

2
E
[∥∥x− E[x|A(β),y(t)]

∥∥2

2

]
. (3.6.21)

Here we write A = A(β) to emphasize the dependence upon β. Using Eqs. (3.6.18) and (3.6.20), we

have

log 2− I(t) = lim
β→∞

lim
N→∞

1

N

[
I(x;A(β),y(t))− I(x;A(0),y(t))

]
= lim
N→∞

∫ ∞
0

1

4n
E
[∥∥xx> − E[xx>|A(β),y(t)]

∥∥2

F

]
dβ2

≤ lim
k→∞

lim
N→∞

∫ ∞
0

1

4n
E
[∥∥xx> − m̂k(A(β),y(t))m̂k(A(β),y(t))>

∥∥2

F

]
dβ2

= lim
k→∞

∫ ∞
0

1

4

(
1− γk(β, t)2

β4

)
dβ2

=

∫ ∞
0

1

4

(
1− γ∗(β, t)

2

β4

)
dβ2

= lim
β→∞

[
Ψ(γ∗(β, t);β, t)−Ψ(γ∗(0, t); 0, t)

]
.

(The exchanges of limits are justified by dominated convergence.)

Finally, a direct calculation reveals that limβ→∞
[
Ψ(γ∗(β, t);β, t)−Ψ(γ∗(0, t); 0, t)

]
= log(2)−I(t)
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and therefore equality holds at each of the steps above. We deduce that limN→∞ n−1I(x;A(β),y(t)) =

Ψ(γ∗(β, t);β, t).

Using this fact, together with Eqs. (3.6.19), (3.6.21) and the fact that the right hand sides of

these equations are monotone decreasing in t, we get that the following holds for almost every t > 0:

lim
N→∞

1

N
E
[∥∥x− E[x|A(β),y(t)]

∥∥2

2

]
= 1− γ∗(β, t)

β2
. (3.6.22)

This coincides with the claim (3.6.14), and actually holds for every t > 0 since the right-hand side

of Eq. (3.6.14) is continuous in t > 0 by Lemma 3.6.3.

It follows that AMP approximately computes the posterior mean m(A,y(t)) in the following

sense.

Proposition 3.6.6. Fix β < 1, T > 0 and let t ∈ (0,T]. Recalling that m̂k(A,y(t)) := AMP(A,y(t); k)

denotes the AMP estimate afte k iterations, and that zk is defined by Eq. (3.6.1), we have

lim
k→∞

sup
t∈(0,T)

p-lim
N→∞

‖m(A,y(t))− m̂k(A,y(t))‖2
‖m(A,y(t))‖2

= 0 . (3.6.23)

Moreover

lim
k→∞

sup
t∈(0,T)

p-lim
N→∞

‖zk+1 − zk‖
‖zk‖

= 0 . (3.6.24)

Remark 3.6.2. A somewhat similar result has recently been proved by Chen and Tang [CT21] where

the external field vector y(t) is replaced by a multiple of the all-ones vector h1, for any pair (β, h) for

which a certain condition of uniform concentration of the overlap between two independent draws

from the measure µA,h1 holds. In our setting, we are concerned with a different family of external

fields, namely the ones generated by the stochastic localization process (3.1.4). The argument, which

proceeds via the planted model, does not require the uniform concentration condition.

Proof. Throughout this proof we write y instead of y(t) for ease of notation. To show Eq. (3.6.23),

observe that the bias-variance decomposition yields (recalling the definition MSEAMP( · ) in Eq. (3.6.13))

MSEAMP(k;β, t) = p-lim
N→∞

{
1

N
E
[∥∥m̂k(A,y)−m(A,y)

∥∥2

2

]
+

1

N
E
[∥∥x−m(A,y)

∥∥2

2

]}
.

Using Lemma 3.6.4 for the left-hand side and Proposition 3.6.5 for the second step the second term

on the right-hand side, we get

p-lim
N→∞

1

N
E
[∥∥m̂k(A,y)−m(A,y)

∥∥2

2

]
=
γ∗(β, t)− γk+1(β, t)

β2
. (3.6.25)
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Claim (3.6.23) now follows by combining Eq. (3.6.25) with Eqs. (3.6.8) and (3.6.9) of Lemma 3.6.3.

Finally, Eq. (3.6.24) is an immediate consequence of Proposition 3.6.1 and Proposition 3.6.2.

Indeed, by Proposition 3.6.1, we have

p-lim
N→∞

1

N

∥∥zk∥∥2

2
= E

[
(γkX +Gk + Y )2

]
= (γk + t)2 + γk + t ,

p-lim
N→∞

1

N

∥∥zk+1 − zk
∥∥2

2
= E

[(
(γk+1 − γk)X +Gk+1 −Gk)2

]
= (γk+1 − γk)2 + (Σk+1,k+1 − 2Σk,k+1 + Σk,k)

= (γk+1 − γk)2 + (γk+1 − γk) ,

where in the last step we used Proposition 3.6.2. We therefore obtained we have

p-lim
N→∞

‖zk+1 − zk
∥∥2

2

‖zk‖22
=

(γk+1 − γk)2 + (γk+1 − γk)

(γk + t)2 + γk + t
.

Hence Eq. (3.6.24) also follows from Eq. (3.6.8).

We conclude this subsection with a lemma controlling the regularity of the posterior path t 7→
m(A,y(t)), which will be useful later.

Lemma 3.6.7. Fix β < 1 and 0 ≤ t1 < t2 ≤ T. Then

p-lim
N→∞

sup
t∈[t1,t2]

1

N

∥∥m(A,y(t))−m(A,y(t1))
∥∥2

2
= p-lim
N→∞

1

N

∥∥m(A,y(t2))−m(A,y(t1))
∥∥2

2

=
γ∗(β, t2)− γ∗(β, t1)

β2
. (3.6.26)

Proof. We will exploit the fact that (m(A,y(t)))t≥0 is a martingale, as a consequence of Lemma 3.3.1

(with ϕ : RN → RN given by ϕ(x) = x).

Using Proposition 3.6.5, we obtain, for any t1 < t2

lim
N→∞

1

N
E
[∥∥m(A,y(t2))−m(A,y(t1))

∥∥2

2

]
= p-lim
N→∞

E
[∥∥x−m(A,y(t1))

∥∥2

2

]
− E

[∥∥x−m(A,y(t1))
∥∥2

2

]
N

=
γ∗(β, t2)− γ∗(β, t1)

β2
,

where the first equality uses the fact that E[m(A,y(t2))|A,y(t1)] = m(A,y(t1)). By Lemma

3.6.6, we have, with high probability, ‖m(A,y(ti))− m̂k(A,y(t))‖22/N ≤ εk, for some deterministic
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constants εk so that εk → 0 as k →∞. As a consequence

p-lim
N→∞

1

N

∥∥m(A,y(t2))−m(A,y(t1))
∥∥2

2
=
γ∗(β, t2)− γ∗(β, t1)

β2
. (3.6.27)

Now, since t → mA,y(t) is a bounded martingale, it follows that, for any fixed constant c, the

process

YN,t :=
∣∣MN,t − c

∣∣ , where MN,t :=
1√
N

∥∥m(A,y(t))−m(A,y(t1))
∥∥

2
, (3.6.28)

is a positive bounded submartingale for t ≥ t1. Therefore by Doob’s maximal inequality [Dur19],

P
(

sup
t∈[t1,t2]

YN,t ≥ a
)
≤ 1

a
E
[
YN,t2

]
≤ 1

a
E
[
Y 2
N,t2

]1/2
, (3.6.29)

for any a > 0. We choose c =
√
γ∗(β, t2)− γ∗(β, t1)/β. By (3.6.27), we have

p-lim
N→∞

M2
N,t2 =

γ∗(t2)− γ∗(t1)

β2
= c2 ,

and therefore, since MN,t is bounded, for any fixed a > 0

lim
N→∞

P
(

sup
t∈[t1,t2]

MN,t ≥ c+ a
)
≤ lim
N→∞

P
(

sup
t∈[t1,t2]

YN,t ≥ a
)

≤ 1

a
lim
N→∞

E
[
(MN,t2 − c)2

]1/2
= 0 .

Together with Eq. (3.6.27), this yields

p-lim
N→∞

sup
t∈[t1,t2]

M2
N,t =

γ∗(t2)− γ∗(t1)

β2
,

which coincides with the claim (3.6.26).

3.7 Natural Gradient Descent

The main objective of this section is to show that FTAP(m;y, q) behaves well for q = q∗(β, t) and

for m in a neighborhood of m̂KAMP . Namely it has a unique local minimum m∗ = m∗(A,y) in such

a neighborhood, and NGD approximates m∗ well for large number of iterations K. Crucially, the

map y 7→ m∗ will be Lipschitz. For reference, we reproduce the NGD algorithm as Algorithm 3.

This corresponds to lines 6-11 of Algorithm 1.

Lemma 3.7.1. Let β < 1
2 , c ∈ (0, 1 − 2β), and T > 0 be fixed. Then there exists ε0 = ε0(β,T)



CHAPTER 3. STOCHASTIC LOCALIZATION FOR THE SK MODEL 103

Algorithm 3: Natural Gradient Descent on FTAP( · ;y, q)
Input: Initialization u0 ∈ RN , data A ∈ RN×N , ŷ ∈ RN , step size η > 0, q ∈ (0, 1), integer

K > 0.
1 m̂+,0 = tanh(u0).
2 for k = 0, · · · ,K − 1 do

3 uk+1 ← uk − η · ∇FTAP(m̂+,k;y, q),

4 m̂+,k+1 = tanh(u+,k+1),

5 end

6 return m̂+,K

such that, for all ε ∈ (0, ε0) there exists KAMP = KAMP(β,T, ε) and ρ0 = ρ0(β,T, ε) such that for all

ρ ∈ (0, ρ0) there exists KNGD = KNGD(β,T, ε, ρ), such that the following holds.

Let m̂AMP = AMP(A,y(t);KAMP) be the output of the AMP after KAMP iterations, when applied

to y(t). Fix K ≥ KAMP. With probability 1 − oN (1) over (A,y) ∼ P, for all t ∈ (0,T] and all

ŷ ∈ B
(
y(t), c

√
εtN/4

)
, setting q∗ := q∗(β, t):

1. The function

m 7→ FTAP(m; ŷ, q∗)

restricted to B
(
m̂AMP,

√
εtN

)
∩ (−1, 1)N has a unique stationary point

m∗(A, ŷ) ∈ B
(
m̂AMP,

√
εtN/2

)
∩ (−1, 1)N

which is also a local minimum. In the case ŷ = y(t), m∗(A,y(t)) also satisfies

m∗(A,y) ∈ B
(
m̂k′ ,

√
εtN/2

)
∩ (−1, 1)N

for all k′ ∈ [KAMP,K], where m̂k′ = AMP(A,y(t); k′).

2. The stationary point m∗(A, ŷ) satisfies (recall that m(A,y) denotes the mean of the Gibbs

measure) ∥∥m(A,y)−m∗(A,y)
∥∥

2
≤ ρ
√
tN .

3. The stationary point m∗ obeys the following Lipschitz property for all ŷ, ŷ′ ∈ B
(
y(t), c

√
εtN/4

)
:

∥∥m∗(A, ŷ)−m∗(A, ŷ
′)
∥∥ ≤ c−1‖ŷ − ŷ′‖ . (3.7.1)

4. There exists a learning rate η = η(β,T, ε) such that the following holds. Let m̂NGD(A, ŷ) be the

output of NGD (Algorithm 3), when run for KNGD iterations with parameter q∗, ŷ, η. Assume



CHAPTER 3. STOCHASTIC LOCALIZATION FOR THE SK MODEL 104

that the initialization u0 satisfies

∥∥u0 − arctanh(m̂AMP)
∥∥ ≤ c

√
εtN

200
. (3.7.2)

Then the algorithm output satisfies

∥∥m̂NGD(A, ŷ)−m∗(A, ŷ)
∥∥ ≤ ρ√tN . (3.7.3)

The proof of this lemma is deferred to the appendix. Here we will prove the two key elements:

first that m̂AMP is an approximate stationary point of FTAP( · ;y(t), q∗) (Lemma 3.7.2), and second

that FTAP( · ; ŷ, q∗) is strongly convex in a neighborhood of m̂AMP (Lemma 3.7.3). Let us point out

that, in the local convexity guarantee, it is important that the neighborhood has radius Θ(
√
tN) as

t→ 0.

We recall below the expressions for the gradient and Hessian of FTAP( · ;y, q) at m ∈ (−1, 1)N :

∇FTAP(m;y, q) = −βAm− y + arctanh(m) + β2 (1− q) m (3.7.4)

∇2FTAP(m;y, q) = −βA+D(m) + β2 (1− q) IN , D(m) := diag
(
{(1−m2

i )
−1}i≤N

)
. (3.7.5)

In (3.7.4), arctanh is applied coordinate-wise to m ∈ (−1, 1)N .

For t > 0, k ≥ 0 we let m̂k = AMP(A,y(t); k) and define the quantities

qk(β, t) :=
γk+1(β, t)

β2
, q∗(β, t) :=

γ∗(β, t)

β2
. (3.7.6)

Note that, by Lemma 3.6.4, we have

qk(β, t) = p-lim
N→∞

∥∥m̂k
∥∥2

N
, q∗(β, t) = lim

k→∞
qk(β, t) . (3.7.7)

We will use the bounds (3.6.8), (3.6.9) in Lemma 3.6.3 several times below, which ensures that

(qk(β, t)/t) ∈ [c, C] holds for constants c, C > 0 independent of t ∈ (0,T] and k ≥ 1.

Lemma 3.7.2. Let m̂k = m̂k(A,y(t)) denote the AMP iterates on input A,y(t). Then for any

T > 0,

lim
k→∞

sup
t∈(0,T]

sup
q∈[qk(β,t),q∗(β,t)]

p-lim
N→∞

∥∥∇FTAP(m̂k;y(t), q)
∥∥

√
tN

= 0.

Proof. As in Algorithm 1, let

zk+1 = arctanh(m̂k+1) = βAm̂k + y − β2

(
1− 1

N

∥∥m̂k
∥∥2
)
m̂k−1.
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Let q ∈ [qk(β, t), q∗(β, t)]. Combining the above with Eqs. (3.7.4) and (3.7.7) yields

1√
N
‖∇FTAP(AMP(A,y; k);y, q)‖ =

1√
N

∥∥∥−βAm̂k − y + arctanh(m̂k) + β2(1− q)m̂k
∥∥∥

=
1√
N

∥∥∥zk − βAm̂k − y + β2 (1− q) m̂k
∥∥∥

≤ 1√
N
‖zk+1 − zk‖+

1√
N

∥∥∥zk+1 − βAm̂k − y + β2 (1− q) m̂k
∥∥∥

=
1√
N

∥∥zk+1 − zk
∥∥+

β2

√
N

∥∥∥(1− ∥∥m̂k
∥∥2
/N
)
m̂k−1 − (1− q) m̂k

∥∥∥
≤ 1√

N

∥∥zk+1 − zk
∥∥+

β2

√
N

∥∥m̂k−1 − m̂k
∥∥

+ β2(q∗(β, t)− qk(β, t)) + oN,P(1).

Here oN,P(1) denotes terms which converge to 0 in probability as N →∞. By (3.6.24), (3.7.7) and

the bound (qk(β, t)/t) ∈ [c, C]

lim
k→∞

sup
t∈(0,T )

p-lim
N→∞

‖zk+1 − zk‖√
tN

= 0.

Moreover, ‖m̂k−1 − m̂k‖ ≤ ‖zk−1 − zk‖ since the function x 7→ tanh(x) is 1-Lipschitz. Finally

(3.6.8) and (3.6.9) of Lemma 3.6.3 imply

lim
k→∞

sup
t∈(0,T]

q∗(β, t)− qk(β, t)√
t

= 0 .

Combining the above statements concludes the proof.

We next control on the Hessian ∇2FTAP( · ;y, q). As anticipated in Remark 3.2.1, this is the

only part of our proof that requires β < 1/2 instead of β < 1.

Lemma 3.7.3. Let β > 0, y ∈ RN and q ∈ [0, 1]. Then for all m ∈ (−1, 1)N ,

(
1− β‖A‖op

)
D(m) � ∇2FTAP(m;y, q) �

(
1 + β2 + β‖A‖op

)
D(m) . (3.7.8)

In particular if β ≤ 1
2 − c, for c > 0, then with probability 1− oN (1), for all m ∈ (−1, 1)N ,

cD(m) � ∇2FTAP(m;y, q) � 2D(m) . (3.7.9)

Proof. The upper and lower bounds in Eq. (3.7.8) are obtained from (3.7.5) using the fact that

D(m) � IN for all m ∈ (−1, 1)N . Further, we use the fact that ‖A‖op ≤ 2+oN (1) with probability

1− oN (1). Therefore, Eq. (3.7.9) follows from the assumption β ≤ 1
2 − c.
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As mentioned above, our convergence analysis of NGD, and proof of Lemma 3.7.1 are given

in Appendix 3.10. The key insight is that the main iterative step in line 3 of Algorithm 3 can

be expressed as a version of mirror descent. Define the concave function h(m) =
∑N
i=1 h(mi) for

m ∈ (−1, 1)N (recall that h(x) := −((1+x)/2) log((1+x)/2)−((1−x)/2) log((1−x)/2)). Following

[LFN18], we define for m,n ∈ (−1, 1)N the Bregman divergence

D−h(m,n) = −h(m) + h(n) + 〈∇h(n),m− n〉 . (3.7.10)

Then with L = 1/η, the update in line 3 admits the alternate description

m̂+,k+1 = arg minx∈(−1,1)N
〈
∇FTAP(m̂+,k;y, q),x− m̂+,k〉+ L ·D−h(x, m̂+,k) . (3.7.11)

We will use this description to prove convergence.

Remark 3.7.1. If the Hessian ∇2FTAP were bounded above and below by constant multiples of

the identity matrix instead of D(m), then we could use simple gradient descent instead of NGD in

Algorithm 1. This would also simplify the proof. However, ∇2FTAP is not bounded above near the

boundaries of (−1,+1)N . The use of NGD to minimize TAP free energy was introduced in [CFM21],

which however considered a different regime in the planted model.

Remark 3.7.2. Our proof of Lemma 3.7.1 does not require ∇2FTAP to be globally convex. Instead,

we only use the fact that, with probability 1− oN (1),

∇2FTAP(m;y, q) � cD(m), ∀m ∈ B
(
m̂AMP,

√
εtN

)
∩ (−1, 1).

For β ∈ [1/2, 1) we expect only this weaker guarantee to hold. We believe the technique of [CFM21]

could be used to prove such local strong convexity in the full regime β ∈ [0, 1).

3.8 Continuous limit and proof of Theorem 37

We fix (β,T) and choose constants KAMP = KAMP(β,T, ε), ρ0 = ρ0(β,T, ε,KAMP), ρ ∈ (0, ρ0) and

KNGD = KNGD(β,T, ε, ρ) so that Lemma 3.7.1 holds.

We couple the discretized process (ŷ`)`≥0 defined in Eq. (3.2.6) (line 6 of Algorithm 2) to the

continuous time process (y(t))t∈R≥0
(cf. Eq. (3.5.8)) via the driving noise, as follows:

w`+1 =
1√
δ

∫ (`+1)δ

`δ

dB(t) . (3.8.1)

We denote by m̂(A,y) the output of the mean estimation algorithm 1 on inputA,y. By Lemma 3.7.1,
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which ensures that, for any t ∈ (0,T], with probability 1− oN (1),

∥∥m̂(A,y(t))−m∗(A,y(t); q∗(β, t))
∥∥ ≤ ρ√tN . (3.8.2)

Here and below we note explicitly the dependence of m∗ on t via q∗. The next lemma provides a

crude estimate on the Lipschitz continuity of AMP with respect to its input.

Lemma 3.8.1. Recall that AMP(A,y; k) ∈ RN denotes the output of the AMP algorithm on input

(A,y), after k iterations, cf. Eq. (3.2.2). If ‖A‖op ≤ 3, then, for any y, ŷ ∈ RN ,

∥∥ arctanh
(
AMP(A,y; k)

)
− arctanh

(
AMP(A, ŷ; k)

)∥∥
2
≤ k6k ‖y − ŷ‖2 . (3.8.3)

Proof. For 0 ≤ j ≤ k, set:

mj = AMP(A,y; j), zj = arctanh(mj), bj =
β2

N

N∑
i=1

(
1− tanh2(zji )

)
,

m̂j = AMP(A, ŷ; j), ẑj = arctanh(m̂j), b̂j =
β2

N

N∑
i=1

(
1− tanh2(ẑji )

)
.

Using the AMP update equation (line 4 of Algorithm 1) and the fact that tanh( · ) is 1-Lipschitz,

we obtain

‖zj+1 − ẑj+1‖ ≤ ‖βA(mj − m̂j)‖+ ‖y − ŷ‖+ ‖bjmj−1 − bjm̂
j−1‖+ ‖bjm̂j−1 − b̂jm̂

j−1‖

≤ 3β‖zj − ẑj‖+ ‖y − ŷ‖+ bj‖zj−1 − ẑj−1‖+ |bj − b̂j |
√
N .

Note that |1 − tanh2(x)| ≤ 1 for all x ∈ R and |bj | ≤ β2. Setting Ej = maxi≤j ‖zi+1 − ẑi+1‖, we

find

Ej+1 ≤ (3β2 + 3β)Ej + ‖y − ŷ‖

≤ 6Ej + ‖y − ŷ‖ .

It follows by induction that

Ej ≤ j6j‖y − ŷ‖ .

Setting j = k concludes the proof.
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Define the random approximation errors

A` :=
1√
N

∥∥ŷ` − y(`δ)
∥∥ , (3.8.4)

B` :=
1√
N

∥∥m̂(A, ŷ`)−m(A,y(`δ))
∥∥ . (3.8.5)

Note that A0 = B0 = 0. In the next lemma we bound the above quantities:

Lemma 3.8.2. For β < 1/2 and T > 0, there exists a constant C = C(β) <∞, and a deterministic

non-negative sequence α(N) with limN→∞ α(N) = 0 such that the following holds with probability

1− oN (1). For every ` ≥ 0, δ ∈ (0, 1) such that `δ ≤ T,

A` ≤ CeC`δ`δ
(
ρ
√
`δ +

√
δ
)

+ α(N) , (3.8.6)

B` ≤ CeC`δ`δ
(
ρ
√
`δ +

√
δ
)

+ Cρ
√
`δ + α(N) . (3.8.7)

Proof. Throughout the proof, we denote by α(N) a deterministic non-negative sequence α(N) with

limN→∞ α(N) = 0, which can change from line to line. Also, C will denote a generic constant that

may depend on β,T,KAMP.

The proof proceeds by induction on `. As the base case is trivial, we assume the result holds for

all j ≤ ` and we prove it for `+ 1. We first claim that with probability 1− oN (1),

A`+1 ≤ A` + δB` + Cδ3/2. (3.8.8)

Indeed, using (3.8.1) we find

A`+1 −A` ≤ n−1/2

∫ (`+1)δ

`δ

∥∥m̂(A, ŷ`)−m(A,y(t))
∥∥dt

≤ δn−1/2
(∥∥m̂(A, ŷ`)−m(A,y(`δ))

∥∥+ sup
t∈[`δ,(`+1)δ]

∥∥m(A,y(t))−m(A,y(`δ))
∥∥)

≤ δB` + δn−1/2 · sup
t∈[`δ,(`+1)δ]

∥∥m(A,y(t))−m(A,y(`δ))
∥∥

≤ δB` + C(β)δ3/2 + α(N) ,

where the last line holds with high probability by Lemma 3.6.7 and Eq. (3.6.10) of Lemma 3.6.3.

Using this bound together with the inductive hypothesis on A` and B`, we obtain

A`+1 ≤ CeC(`+1)δ`δ(ρ
√
`δ +

√
δ) + Cρδ

√
`δ + Cδ3/2 + α(N)

≤ CeC(`+1)δ(`+ 1)δ(ρ+
√
δ) + α(N) .

This implies Eq. (3.8.6) for `+ 1.
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We next show that Eq. (3.8.7) holds with ` replaced by ` + 1. By the bound (3.8.6) for ` + 1,

taking δ ≤ δ(β, ε,KAMP,T) and ρ ∈ (0, ρ0) ρ = ρ(β, ε,KAMP,T) ensures that

A`+1 ≤
c
√
ε`δ

200KAMP6KAMP
,

where ε can be chosen an arbitrarily small constant. So by Lemma 3.8.1, we have with probability

1− oN (1),

∥∥ arctanh(AMP(A,y((`+ 1)δ);KAMP))− arctanh(AMP(A, ŷ`+1;KAMP))
∥∥

2
≤ KAMP6

KAMPA`+1

√
N

≤ c
√
ε`δN

200
.

By choosing ε ≤ ε0(β,T), we obtain that Lemma 3.7.1, part 4 applies. We thus find

‖m̂(A, ŷ`+1)−m∗(A, ŷ`+1)‖ ≤ ρ
√
`δN .

Using parts 3 and 2 respectively of Lemma 3.7.1 on the other terms below, by triangle inequality

we obtain (writing for simplicity q` := q∗(β, `δ))

‖m̂(A, ŷ`+1)−m(A,y((`+ 1)δ))‖ ≤ ‖m̂(A, ŷ`+1)−m∗(A, ŷ`+1; q`+1)‖

+ ‖m∗(A, ŷ`+1; q`+1)−m∗(A,y((`+ 1)δ); q`+1)‖

+ ‖m∗(A,y((`+ 1)δ); q`+1)−m(A,y((`+ 1)δ))‖

≤
(
ρ
√
`δ + c−1A`+1 + ρ

√
`δ + α(N)

)√
N .

(3.8.9)

In other words with probability 1− oN (1),

B`+1 ≤ c−1A`+1 + 2ρ
√
`δ + α(N) .

Using this together with the bound (3.8.6) for `+1 verifies the inductive step for (3.8.7) and concludes

the proof.

Finally we show that standard randomized rounding is continuous in W2,N .

Lemma 3.8.3. Suppose probability distributions µ1, µ2 on [−1, 1]N are given. Sample m1 ∼ µ1 and

m2 ∼ µ2 and let x1,x2 ∈ {−1,+1}N be standard randomized roundings, respectively of m1 and m2.

(Namely, the coordinates of xi are conditionally independent given mi, with E[xi|mi] = mi.) Then

W2,N (L(x1),L(x2)) ≤ 2
√
W2,N (µ1, µ2) .

Proof. Let (m1,m2) be distributed according to a W2,N -optimal coupling between µ1, µ2. Couple
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the roundings x1,x2 by choosing i.i.d. uniform random variables ui ∼ Unif([0, 1]) for i ∈ [n], and for

(i, j) ∈ [n]× {1, 2} setting

(xj)i =

+1, if u ≤ 1+(mj)i
2 ,

−1, else.

Then it is not difficult to see that

1

N
E
[
‖x1 − x2‖2 |(m1,m2)

]
=

2

N

N∑
i=1

|(m1)i − (m2)i|

≤ 2

√
1

N
‖m1 −m2‖2.

Averaging over the choice of (m1,m2) implies the result.

Proof of Theorem 37. Set ` = L = T/δ and ρ =
√
δ in Eq. (3.8.7). With all laws L( · ) conditional

on A below, we find

EW2,N (µA,L(m̂(A, ŷL))) ≤ EW2,N (µA,L(m(A,y(T)))) + EW2,N (L(m(A,y(T)))),L(m̂(A, ŷL)))

≤ T−1/2 + C(β,T)
√
δ + oN (1).

Here the first term was bounded by Eq. (3.3.4) in Section 3.3 and the second by Eq. (3.8.7). Taking

T sufficiently large, δ sufficiently small, and N sufficiently large, we may obtain

EW2,N

(
µA,L(m̂NGD(A, ŷL))

)
≤ ε2

4

for any desired ε > 0. Applying Lemma 3.8.3 shows that

EW2,N (µA,x
alg) ≤ ε .

The Markov inequality now implies that (7.2.6) holds with probability 1− oN (1) as desired.

3.9 Algorithmic stability and disorder chaos

In this section we prove Theorem 10 establishing that our sampling algorithm, Algorithm 2 is stable.

Next, we prove that the Sherrington-Kirkpatrick measure µA,β exhibits W2-disorder chaos for β > 1,

proving Theorem 11 and deduce that no stable algorithm can sample in normalized W2 distance for

β > 1, see Theorem 12.
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3.9.1 Algorithmic stability: Proof of Theorem 10

Recall Definition 3.2.1, defining sampling algorithms as measurable functions ALGN : (A, β, ω) 7→
ALGN (A, β, ω) ∈ [−1, 1]N where β ≥ 0 and ω is an independent random variable taking values in

some probability space.

Remark 3.9.1. In light of Lemma 3.8.3, we can always turn a stable sampling algorithm ALG with

codomain [−1, 1]N into a stable sampling algorithm with binary output:

ÃLGN (A, β, ω̃) ∈ {−1,+1}N .

Indeed this is achieved by standard randomized rounding, i.e., drawing a (conditionally independent)

random binary value with mean
(
ÃLG(A, β, ω̃)

)
i

for each coordinate 1 ≤ i ≤ N .

Recall the definition of the interpolating family (As)s∈[0,1] whereby A0,A1 ∼ GOE(N) i.i.d. and

As =
√

1− s2A0 + sA1 , s ∈ [0, 1] , (3.9.1)

We take µAs,β(x) ∝ exp
{

(β/2)〈x,As x〉
}

to be the corresponding Gibbs measure.

We start with the following simple estimate.

Lemma 3.9.1. There exists an absolute constant C > 0 such that

inf
s∈(0,1)

P
(∥∥A0u−Asv

∥∥ ≤ C(‖u− v‖+ s
√
N) , ∀ u,v ∈ [−1, 1]N

)
= 1− oN (1) . (3.9.2)

Proof. We write

∥∥A0u−Asv
∥∥ ≤ ∥∥A0u−A0v

∥∥+
∥∥A0v −Asv

∥∥
≤ ‖A0‖op

∥∥u− v∥∥+
∥∥(1−

√
1− s2)A0 − sA1

∥∥
op
‖v‖ .

We note that (1 −
√

1− s2)A0 − sA1
d
=
√

2(1−
√

1− s2)A0 and
√

2(1−
√

1− s2) ∼ s for small

s and this quantity is bounded above by a constant for any s ∈ [0, 1]. The result follows since

‖A0‖op ≤ 2.1 with probability 1− oN (1).

Proposition 3.9.2. Suppose an algorithm ALG is given by an iterative procedure

zk+1 = Gk
(
(zj , βAmj ,Amj , β2mj ,wj)0≤j≤k

)
, 0 ≤ k ≤ K − 1,

mk = ρk(zk), 0 ≤ k ≤ K − 1,

ALGN (A, β, ω) := mK ,
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where the sequence ω = (w0, . . . ,wK−1) ∈ (RN )K , the initialization z0 ∈ RN , and A are mutually

independent, and the functions Gk : (RN )5k+5 → RN and ρk : RN → [−1, 1]N are L0-Lipschitz for

L0 ≥ 0 an N -independent constant. Then ALG is both disorder-stable and temperature-stable.

Proof. Let us generate iterates zk = zk(A0, β) and z̃k = zk(As, β̃) for 0 ≤ k ≤ K using the same

initialization z0 = z̃0 and external randomness ω = (w0, . . . ,wK−1), but with different Hamiltonians

and inverse temperatures. Similarly let mk = ρk(zk) and m̃k = ρk(z̃k). We will allow C to vary

from line to line in the proof below.

First by Lemma 3.9.1, with probability 1− oN (1),

‖βA0m
k − β̃Asm̃

k‖ ≤ ‖βA0m
k − βAsm̃

k‖+ ‖βAsm̃
k − β̃Asm̃

k‖

≤ Cβ‖mk − m̃k‖+ Cβs
√
N + |β − β̃| · ‖Asm̃

k‖

≤ C(‖mk − m̃k‖+ s
√
N + |β − β̃|

√
N) .

Similarly as long as β̃ ≤ 2β so that |β2 − β̃2| ≤ 3β|β − β̃|, we have

‖β2mk − β̃2m̃k‖ ≤ ‖β2mk − β2m̃k‖+ ‖β2m̃k − β̃2m̃k‖

≤ β2‖mk − m̃k‖+ 3β|β − β̃|
√
N.

It follows that the error sequence

Ak =
1√
N

max
j≤k
‖zj+1(A0, β)− zj+1(As, β̃)‖

satisfies with probability 1− oN (1) the recursion

Ak+1 ≤ L0k
1/2C(Ak + s+ |β − β̃|) ,

A0 = 0 ,

for a suitable C = C(β). It follows that with probability 1− oN (1),

AK ≤
K∑
k=1

(L0k
1/2C)k(s+ |β − β̃|) ≤ K(L0KC)K(s+ |β − β̃|) . (3.9.3)

Since ‖mK(A0)−mK(As)‖ ≤ 2
√
N almost surely, we obtain for any η > 0

n−1 E
[∥∥mK(A0)−mK(As)

∥∥2
]
≤
(
L0K(L0KC)K(s+ |β − β̃|)

)2
+ η

if N ≥ N0(η) is large enough so that Eq. (3.9.3) holds with probability at least 1− η
4 . The stability

of the algorithm follows.
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Proof of Theorem 10. We show that Algorithm 2 withN -independent parameters (β, η,KAMP,KNGD, L, δ)

is of the form in Proposition 3.9.2 for a constant L0 = L0(β, η,KAMP,KNGD, L, δ). Indeed note that

the algorithm goes through L iterations, indexed by ` ∈ {0, . . . , L− 1}.

During each of these iterations, two loops are run (here we modify the notation introduced in

Algorithm 1 and Algorithm 2, to account for the dependence on `, and to get closer to the notation

of Proposition 3.9.2):

1. The AMP loop, whereby, for k = 0, · · · ,KAMP − 1,

m̂`,k = tanh(z`,k), b(m̂`,k) =
β2

N

N∑
i=1

tanh′(z`,ki ) , (3.9.4)

z`,k+1 = βAm̂`,k + ŷ` − b(z`,k) m̂`,k−1 . (3.9.5)

(Here tanh′(x) denotes the first derivative of tanh(x).)

2. The NGD loop, whereby, for k = KAMP, · · · ,KAMP +KNGD − 1, setting q` = qKAMP
(β, t = `δ),

m̂`,k = tanh(z`,k) , (3.9.6)

z`,k+1 = z`,k + η
[
βAm̂`,k + y` − z`,k − β2 (1− q`) m`,k

]
. (3.9.7)

Further, recalling line 6 of Algorithm 2, ŷ` is updated via

ŷ`+1 = ŷ` + m̂`,KAMP+KNGD δ +
√
δw`+1 . (3.9.8)

These updates take the same form as in Proposition 3.9.2, with iterations indexed by (`, k),

ω = (w`)`≤L, ρ`,k(z) = tanh(z) for all `, k, and

G`,k

(
(z`
′,j , βAm̂`′,j ,Am̂`′,j , β2m̂`′,j ,w`′)`′,j

)
= βAm̂`,k + ŷ` − b(z`,k)m̂`,k−1 , 0 ≤ k ≤ KAMP − 1 ,

(3.9.9)

G`,k

(
(z`
′,j , βAm̂`′,j ,Am̂`′,j , β2m̂`′,j ,w`′)`′,j

)
=

= z`,k + η
[
βAm̂`,k + y`−z`,k − β2 (1− q`) m`,k

]
, KAMP ≤ k ≤ KAMP +KNGD − 1 .

(3.9.10)

Notice that these functions depend on previous iterates both explicitly, as noted, and implicitly

through ŷ`. By summing up Eq. (3.9.8), we obtain

ŷ` =

`−1∑
j=0

m̂j,KAMP+KNGD δ +
√
δ
∑̀
j=1

w`+1 , (3.9.11)
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which is Lipschitz in the previous iterates (mj,k)j≤`−1,k<KAMP+KNGD
. Since both (3.9.9) and (3.9.10)

depend linearly on ŷ` (with N -independent coefficients), it is sufficient to consider the explicit

dependence on previous iterates of G`,k. Namely, it is sufficient to control the Lipschitz modulus of

the following functions

G̃`,k

(
z`,k, βAm̂`,k, m̂`,k−1

)
= βAm̂`,k − b(z`,k)m̂`,k−1 , k < KAMP (3.9.12)

G̃`,k
(
z`,k, βAm`,k, β2m`,k

)
= z`,k + η

[
βAm̂`,k − z`,k − β2 (1− q`) m̂`,k] , k > KAMP . (3.9.13)

Consider first Eq. (3.9.12). Since | tanh′′(x)| ≤ 2 for all x ∈ R, it follows that

|b(z)− b(z̃)| ≤ 2β2

N

N∑
i=1

|zi − z̃i| ≤
2β2

√
N
‖z − z̃‖2.

Therefore, that for any (u,v, β, ũ, ṽ, β̃) (Noting explicitly the dependence of b upon β):

‖bβ(u) tanh(v)− bβ̃(ũ) tanh(ṽ)‖ ≤ ‖bβ(u) tanh(v)− bβ(ũ) tanh(v)‖+ ‖bβ(ũ) tanh(v)− bβ̃(ũ) tanh(ṽ)‖

≤ 2β2

√
N
‖u− ũ‖ · ‖ tanh(v)‖+

( 1

N

N∑
i=1

tanh′(ũi)
)
‖β2 tanh(v)− β̃2 tanh(ṽ)‖

≤ 2β2‖u− ũ‖+ ‖β2 tanh(v)− β̃2 tanh(ṽ)‖.

Using this bound implies that the function G̃ of Eq. (3.9.12) satisfies the Lipschitz assumption of

Proposition 3.9.2.

Consider next Eq. (3.9.13). Since this function is linear in its arguments, with coefficients inde-

pendent of N , it follows that it satisfies Lipschitz assumption of Proposition 3.9.2. This completes

the proof.

3.9.2 Hardness for stable algorithms: Proof of Theorems 11 and 12

Before proving Theorem 11 and Theorem 12 we recall a known result about disorder chaos, already

stated in Eq. (3.2.11). Draw x0 ∼ µA,β independently of xs ∼ µAs,β , and denote by µ
(0,s)
A,β :=

µA,β ⊗ µAs,β their joint distribution. Then [Cha14, Theorem 1.11] implies that, for all β ∈ (0,∞),

lim
s→0

lim
N→∞

Eµ(0,s)
A,β

{( 1

N
〈x0,xs〉

)2}
= 0 . (3.9.14)

The following simple estimate will be used in our proof.

Lemma 3.9.3. Recall that P({−1,+1}N ) denotes the space of probability distributions over {−1,+1}N ,
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and let the function f : P({−1,+1}N )2 → R be defined as

f(µ, µ′) = E
(x,x′)∼µ⊗µ′

{ 1

N
|〈x,x′〉|

}
. (3.9.15)

Then, for all µ1, µ2, ν1, ν2 ∈P({−1,+1}N ), we have

∣∣f(µ1, ν1)− f(µ2, ν2)
∣∣ ≤W2,N (µ1, µ2) +W2,N (ν1, ν2) .

Proof. Let the vector pairs (xµ1 ,xµ2) and (xν1 ,xν2) be independently drawn from the optimal

W2,N -couplings of the pairs (µ1, µ2) and (ν1, ν2), respectively. Then we have:∣∣∣E [|〈xµ1 ,xν1〉|
]
− E

[
|〈xµ2 ,xν2〉|

]∣∣∣ ≤ ∣∣∣E [|〈xµ1 ,xν1〉| − |〈xµ2 ,xν1〉|
]∣∣∣+

∣∣∣E [|〈xµ2 ,xν1〉| − |〈xµ2 ,xν2〉|
]∣∣∣

≤
√
N
(
E
∥∥xµ1 − xµ2

∥∥+ E
∥∥xν1 − xν2∥∥)

≤
√
N
(
E
[∥∥xµ1 − xµ2

∥∥2
]1/2

+ E
[∥∥xν1 − xν2∥∥2

]1/2)
,

where the second inequality follows from the fact that x 7→ |〈v,x〉| is Lipschitz continuous with

Lipschitz constant ‖v‖2.

We are now in position to prove Theorem 11.

Proof of Theorem 11. Using the notations of the last lemma Eq. (3.9.14) implies that for all s ∈ (0, 1],

lim
N→∞

E f(µAs,β , µA0,β) = 0 . (3.9.16)

Therefore, Theorem 11 follows from Lemma 3.9.3 if we can show that f(µA0,β , µA0,β) remains

bounded away from zero. This is in turn a well-known consequence of the Parisi formula, as we

recall below.

Define the free energy density of the SK model as

FN (β) =
1

N
E log

{ ∑
x∈{−1,+1}N

eβ〈x,Ax〉/2
}
. (3.9.17)

The free energy FN is convex in β and one obtains by Gaussian integration parts that

d

dβ
FN (β) =

β

2

(
1− EµA0,β ⊗ µA0,β

{( 1

N
〈x1,x2〉

)2})
. (3.9.18)

Moreover, the limit of FN (β) for large N is known to exist for all β > 0 and its value is given by
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the Parisi formula [Tal06d]:

lim
N→∞

FN (β) = inf
ζ∈P([0,1])

Pβ(ζ) , (3.9.19)

where P([0, 1]) denotes the set of Borel probability measures supported on [0, 1], and Pβ is the Parisi

functional at inverse temperature β; see for instance [Tal06d] or [Pan13b, Chapter 3] for definitions.

The following properties are known:

1. A unique minimizer ζ∗β ∈P([0, 1]) of Pβ exists for all β [AC15].

2. If β > 1, then ζ∗β is not an atom on 0: ζ∗β 6= δ0. This follows from Toninelli’s theorem [Ton02]

that lim supN→∞ FN (β) ≤ log 2 + β2/4− ε(β) for some continuous ε(β), with ε(β) > 0 when

β > 1.

3. The function β 7→ Pβ(ζ∗β) is convex and differentiable at all β > 0, and

d

dβ
Pβ(ζ∗β) =

β

2

(
1−

∫
q2ζ∗β(dq)

)
. (3.9.20)

See for instance [Pan13b, Theorem 3.7] or [Tal06c, Theorem 1.2] for a proof.

The convexity of FN implies that for almost all β > 0, limN→∞ F ′N (β) = d
dβPβ(ζ∗β). Using

Eq. (3.9.18) and Eq. (3.9.20) we obtain

lim
N→∞

β

2

(
1− EµA0,β ⊗ µA0,β

{( 1

N
〈x1,x2〉

)2)}
=
β

2

(
1−

∫
q2ζ∗β(dq)

)
<
β

2
− ε(β) , (3.9.21)

where the last inequality holds for almost all β > 1 by Property 2 above. Since the both sides

are non-decreasing and the right hand side is continuous, the inequality holds for all β. This is

equivalent to

lim
N→∞

E f(µA0,β , µA0,β) > 0 . (3.9.22)

Now, using Eq. (3.9.16) and Eq. (3.9.22), together with the continuity of f (Lemma 3.9.3) implies

the claim of the theorem.

We next prove that Theorem 12 is an immediate consequence of Theorem 11.

Proof of Theorem 12. Fix s ∈ (0, 1) and µalg

As,β
be the law of ALGN (As, β, ω) conditional on As. By

the triangle inequality,

W2,N (µAs,β,s, µA0,β) ≤W2,N (µAs,β , µ
alg

As,β
) +W2,N (µalg

As,β
, µalg

A0,β
) +W2,N (µalg

A0,β
, µA0,β,0) .

Taking expectations over A and As, we have E
[
W2,N (µAs,β , µ

alg

As,β
)
]

= E
[
W2,N (µalg

A0,β
, µA0,β)

]
.

Further, by stability of the algorithm, E
[
W2,N (µalg

As,β
, µalg

A0,β
)
]
→ 0 when N →∞ followed by s→ 0.
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Therefore, using Theorem 11 and choosing s sufficiently small, we obtain

lim inf
N→∞

E
[
W2,N (µalg

A0,β
, µA0,β)

]
≥W∗ > 0 .

3.10 Convergence analysis of Natural Gradient Descent

The main objective of this appendix is to prove Lemma 3.7.1, which we will do in Section 3.10.2,

after some technical preparations in Section 3.10.1.

3.10.1 Technical preliminaries

Definition 3.10.1. Let Q ⊆ (−1, 1)N be a convex set. We say that a twice differentiable function

F : Q→ R is relatively c-strongly convex if it satisfies

∇2F (m) � cD(m) ∀m ∈ Q . (3.10.1)

We say it is relatively C-smooth if it satisfies

∇2F (m) � CD(m) ∀m ∈ Q . (3.10.2)

As D(m) = ∇2(−h(m)) � IN , it follows that (3.10.1) implies ordinary c-strong convexity

in Euclidean norm. The next proposition connects relative strong convexity with the Bregman

divergence introduced in Eq. 3.7.10.

Proposition 3.10.2 (Proposition 1.1 in [LFN18]). A twice differentiable function F : Q → R is

relatively c-strongly convex if and only if

F (m) ≥ F (n) + 〈∇F (n),m− n〉+ cD−h(m,n), ∀m,n ∈ Q . (3.10.3)

Lemma 3.10.3. For m,n ∈ (−1, 1)N ,

D−h(m,n) ≥ ‖m− n‖
2
2

2
, (3.10.4)

D−h(m,n) ≤ 10N

(
1 +
‖ arctanh(n)‖2√

N

)
, (3.10.5)

D−h(m,n) ≤ ‖ arctanh(m)− arctanh(n)‖22 . (3.10.6)

Proof. Observe that h′′(x) = −1/(1−x2) ≤ −1 for all x ∈ (−1, 1) with equality if and only if x = 0.
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Therefore

D−h(m,n) =

N∑
i=1

∫ Ni

mi

(x−mi)(−h′′(x)) dx

=

N∑
i=1

(Ni −mi)
2

2
.

This proves Eq. (3.10.4).

Next, Eq. (3.10.5) follows from Eq. (3.7.10) and the fact that the binary entropy h : R → R is

uniformly bounded.

Finally Eq. (3.10.6) follows from

D−h(m,n) ≤ 〈∇h(n)−∇h(m),m− n〉

=
〈

arctanh(m)− arctanh(n),m− n
〉

≤
∥∥ arctanh(m)− arctanh(n)

∥∥2

2
.

Here in the last step we used that tanh(·) is 1-Lipschitz.

Lemma 3.10.4. If F : Q → R is relatively c-strongly convex for some convex set Q ⊆ (−1, 1)N ,

and ∇F(m∗) = 0 for m∗ ∈ Q, it follows that

F (m)− F (m∗) ≥
c‖m−m∗‖22

2
.

for all m ∈ Q.

Proof. Using (3.10.3) and (3.10.4), and observing that ∇F(m∗) = 0, we obtain

F(m)−F(m∗)

‖m−m∗‖22
≥ F(m)−F(m∗)

2 ·D−h(m,m∗)
≥ c

2
.

Lemma 3.10.5. Suppose F : Q∗ → R is c-strongly convex in the convex set Q∗ := B(m, ρ) ∩
(−1, 1)N . If x∗ ∈ ∂Q∗, x∗,k = +1 (respectively, x∗,k = −1) and |xj | < 1 for all j ∈ [n] \ {k}, then

limt→0+ ∂xkF (x∗ − tek) = +∞ (respectively limt→0+ ∂xkF (x∗ + tek) = −∞.)

Proof. Consider the case xk = +1 (as the case xk = −1 follows by symmetry.) Then there exists
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t0 > 0 such that x∗ − tek ∈ Q∗ for all t ∈ (0, t0]. Let x(s) := x∗ − (t0 − s)ek, s ∈ [0, t0). Then

∂xkF (x(s)) = ∂xkF (x(0)) +

∫ s

0

∂2
xk
F (x(u)) du

= ∂xkF (x(0)) +

∫ s

0

〈ek,∇2F (x(u))ek〉du

≥ ∂xkF (x(0)) + c

∫ s

0

(1− xk(u)2)−1 du

≥ ∂xkF (x(0)) + c

∫ s

0

(1− (1− t0 + u)2)−1 du, .

The last integral diverges as s ↑ t0, thus proving the claim.

Lemma 3.10.6. Suppose F : Q→ R is c-strongly convex for a convex set Q ⊆ (−1, 1)N . Moreover

suppose that

‖∇F(m)‖ ≤ c
√
εN

for some m ∈ Q with

B
(
m, 2
√
εN
)
∩ (−1, 1)N ⊆ Q .

Then there exists a unique m∗ ∈ B
(
m, 2
√
εN
)
∩ (−1, 1)N satisfying ∇F (m∗) = 0, which is in fact

a global minimizer of F on Q. Moreover

F (m)− F (m∗) ≤ 2cεN . (3.10.7)

Proof. Let Q≤ := {x ∈ Q : F (x) ≤ F (m)}. Then, for any x ∈ Q0, we have

0 ≥ F (x)− F (m)

≥ −c
√
εN‖x−m‖2 + cD−h(x; m)

≥ −c
√
εN‖x−m‖2 +

c

2
‖x−m‖22 .

Hence Q≤ ⊆ Q∗ := B
(
m,
√
εN
)
∩(−1, 1)N , Q∗ ⊆ Q. By continuity three cases are possible: (i) The

minimum of F is achieved in the interior of Q≤; (ii) The minimum is achieved along a sequence

(xi)i≥0, ‖xi‖∞ → 1; (iii) the minimum is achieved at m∗ 6= m such that F (m∗) = F (m). Case

(iii) cannot hold by strong convexity, and case (ii) cannot hold by Lemma 3.10.5.

Uniqueness of m∗ follows by strong convexity, and ∇F (m∗) = 0 by differentiability. Finally

F (m)− F (m∗) ≤ ‖∇F (m)‖ · ‖m−m∗‖ ≤ 2cεN .
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Lemma 3.10.7. Suppose F : Q → R is relatively c-strongly convex. Let m∗ be a local minimum

of F belonging to the interior of Q, and suppose that B
(
m∗, 2

√
εN
)
∩ (−1, 1)N ⊆ Q. Consider for

y ∈ RN the function

F y(m) = F (m)− 〈y,m〉.

Then F y is relatively c-strongly convex on Q for any y ∈ RN . If ‖y‖ ≤ (c/2)
√
εN , then F y has a

unique stationary point and minimizer m∗(y) ∈ Q. Moreover if ‖y‖, ‖ŷ‖ ≤ c
√
εN
2 then

‖m∗(y)−m∗(ŷ)‖ ≤ ‖y − ŷ‖
c

. (3.10.8)

Proof. The relative c-strong convexity of F y is clear as the Hessian of F y does not depend on y.

For ‖y‖ ≤ (c/2)
√
εN , because

‖∇F y(m∗)‖ = ‖y‖ ≤ c
√
εN

2
and B

(
m∗,
√
εN
)
∩ (−1, 1)N ⊆ Q ,

Lemma 3.10.6 implies the existence of a unique minimizer

m∗(y) ∈ B
(
m∗,
√
εN
)
∩ (−1, 1)N ⊆ Q .

If ‖ŷ‖ ≤ (c/2)
√
εN also holds, F ŷ is c-strongly convex on

B
(
m∗(ŷ),

√
εN
)
∩ (−1, 1)N ⊆ B

(
m∗, 2

√
εN
)
∩ (−1, 1)N ⊆ Q.

Moreover since ‖y − ŷ‖ ≤ c
√
εN , we obtain

‖∇F ŷ(m∗(y))‖ = ‖y − ŷ‖ = c
√
ε′N ,

for ε′ = ‖y−ŷ‖2
c2N ≤ ε. Therefore the conditions of Lemma 3.10.6 are satisfied with (F ŷ,m∗(y), ε′) in

place of (F ,m, ε). Equation (3.10.8) now follows since

‖m∗(y)−m∗(ŷ)‖ ≤
√
ε′N =

‖y − ŷ‖
c

.

We now analyze the convergence of Algorithm 3 from a good initialization.

Lemma 3.10.8. Suppose F (·) = FTAP( · ;y, qK(β, t)) has a local minimum at m∗ and is relatively

c-strongly-convex on B(m∗,
√
εN) ∩ (−1, 1)N , and also C-relatively smooth on (−1, 1)N . Suppose

m̂0 ∈ B
(
m∗,
√
εN
)
∩ (−1, 1)N (3.10.9)
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satisfies

F (m̂0) < F (m∗) +
cεN

8
. (3.10.10)

Then there exist constants η0, C
′ > 0 depending only on (C, c, ε) such that the following holds. If

Algorithm 3 is initialized at m̂0 with learning rate η = 1/L ∈ (0, η0), then, for every K ≥ 1

F (m̂K) ≤ F (m∗) + C ′N

(
1 +
‖ arctanh(m̂0)‖2√

N

)
(1− cη)K , (3.10.11)

‖m̂K −m∗‖2 ≤ C ′
√
N

(
1 +
‖ arctanh(m̂0)‖2√

N

)
(1− cη)K/2. (3.10.12)

Proof. Recall Eq. (3.7.11), which we copy here for the reader’s convenience:

m̂i+1 = arg minx∈(−1,1)N
〈
∇F (m̂i),x− m̂i〉+ L ·D−h(x, m̂i). (3.10.13)

If η0 ≤ 1
2C then [LFN18, Lemma 3.1] applied to the linear (hence convex) function 〈∇F (m̂i), · 〉

states that for all m ∈ (−1, 1)N ,

〈∇F (m̂i), m̂i+1〉+ LD−h(m̂i+1, m̂i) + LD−h(m, m̂i+1) ≤ 〈∇F (m̂i),m〉+ LD−h(m, m̂i).

(3.10.14)

Moreover the global relative smoothness shown in (3.7.8) implies that for m,m′ ∈ (−1, 1)N ,

F (m) ≤ F (m′) + 〈∇F (m′),m−m′〉+ C ·D−h(m,m′). (3.10.15)

Combining Eqs. (3.10.14) and (3.10.15) yields

F (m̂i+1) ≤ F (m̂i) + 〈∇F (m̂i), m̂i+1 − m̂i〉+ LD−h(m̂i+1, m̂i)

≤ F (m̂i) + 〈∇F (m̂i),m− m̂i〉+ LD−h(m, m̂i)− LD−h(m, m̂i+1).
(3.10.16)

Setting m = m̂i, we find

F (m̂i+1) ≤ F (m̂i), ∀ i ∈ [K].

We next prove by induction that for each i ≥ 1,

F (m̂i) < F (m∗) +
cεN

8
, ‖m̂i −m∗‖ <

√
εN. (3.10.17)

The base case i = 0 holds by assumption. Suppose (3.10.17) holds for i. It follows that

F (m̂i+1) ≤ F (m̂i) ≤ F (m∗) +
cεN

8
.
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In fact, local c-strong convexity

∇2F (m) � cD(m) � cIN , m ∈ B(m∗,
√
εN) ∩ (−1, 1)N

implies m̂i is even closer to m∗ than required by (3.10.17):

‖m̂i −m∗‖2 ≤

√
F (m̂i)− F (m∗)

c
≤
√
εN

2
.

Next we bound the movement from a single NGD step. Comparing values of (3.10.13) at m̂i and

the minimizer m̂i+1 implies

〈∇F (m̂i), m̂i+1 − m̂i〉+ LD−h(m̂i+1, m̂i) ≤ 0. (3.10.18)

From definition of Bregman divergence and the fact that (on the high probability event ‖A‖op ≤ 3)

‖∇F +∇h‖2 ≤ C
√
N (thanks to the special form of F ( · ) = FTAP( · ;y, qK(β, t)),

|〈∇F (m̂i), m̂i+1 − m̂i〉+D−h(m̂i+1, m̂i)| = |〈∇F (m̂i) +∇h(m̂i), m̂i+1 − m̂i〉 − h(m̂i+1) + h(m̂i)|

≤ C1N

(
1 +
‖m̂i+1 − m̂i‖√

N

)
.

Moreover assuming L > 1, (3.10.4) implies

(L− 1)D−h(m̂i+1, m̂i) ≥ L− 1

2
‖m̂i+1 − m̂i‖2.

Substituting the previous two displays into (3.10.18) yields

0 ≥ L− 1

2
‖m̂i+1 − m̂i‖2 − C2

√
N‖m̂i+1 − m̂i‖2 − C2n

and so

‖m̂i+1 − m̂i‖2 ≤
C3

√
N√

L− 1
.

Taking L large enough, it follows that

‖m̂i+1 −m∗‖ ≤ ‖m̂i+1 − m̂i‖2 + ‖m̂i −m∗‖2 ≤
√
εN.

This completes the inductive proof of Eq. (3.10.17), which we now use to analyze convergence of

Algorithm 3. Indeed from the first part of (3.10.17), the local relative strong convexity of F implies

F (m̂i) + 〈∇F (m̂i),m∗ − m̂i〉 ≤ F (m∗)− cD−h(m∗, m̂
i), ∀ i ∈ [K].
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Setting m = m∗ in (3.10.16) and combining yields

F (m̂i+1) ≤ F (m∗) + (L− c)D−h(m∗, m̂
i)− LD−h(m∗, m̂

i+1).

Multiplying by
(

L
L−c

)i+1

and summing over i gives

K−1∑
i=0

(
L

L− c

)i+1

F (m̂i+1) ≤
K−1∑
i=0

(
L

L− c

)i+1

F (m∗) + LD−h(m∗, m̂
0).

Since the values F (m̂i) are decreasing, we find

F (m̂K) ≤ F (m∗) + L

(
K−1∑
i=0

(
L

L− c

)i+1
)−1

D−h(m∗, m̂
0)

≤ F (m∗) + L (1− cη)
K
D−h(m∗, m̂

0).

Using Eq. (3.10.5) together with the last display proves Eq. (3.10.11).

It was shown above by induction that m̂K is in a c-strongly convex neighborhood of m∗. Using

strong convexity in Euclidean norm yields

‖m̂k −m∗‖ ≤

√
F (m̂K)− F (m∗)

c

and so (3.10.12) follows as well.

Lemma 3.10.9. Assume ‖A‖op ≤ 3. For any m,n ∈ (−1, 1)N , and y, ŷ ∈ RN , and q ∈ [0, 1] :

‖∇FTAP(m,y, q)−∇FTAP(n, ŷ, q)‖ ≤ (4β2 + 4)‖ arctanh(m)− arctanh(n)‖+ ‖y − ŷ‖. (3.10.19)

Proof. The inequality (3.10.19) follows with the smaller constant factor β2 + 3β+ 1 ≤ 4β2 + 4 using

(3.7.4) and the fact that tanh(·) is 1-Lipschitz.

3.10.2 Proof of Lemma 3.7.1

We split the proof into four parts.

Proof of Lemma 3.7.1, Part 1. Fix c = (1/4) − (β/2) > 0. Lemma 3.7.2 implies that for KAMP =
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KAMP(β,T, ε) sufficiently large, we have with probability 1− oN (1)

‖∇FTAP(m̂AMP;y, q∗)‖ ≤
c
√
εtN

4
, (3.10.20)

m̂AMP := AMP(A,y(t);KAMP), q∗ := q∗(β, t) .

Therefore, if ‖y(t)− ŷ‖ ≤ (c
√
εtN)/4 then

‖∇FTAP(m̂AMP; ŷ, q∗)‖ ≤ ‖∇FTAP(m̂AMP;y(t), q∗)‖+ ‖y − ŷ‖ ≤ c

2

√
εt

Moreover Lemma 3.7.3 implies that there exist ε0, c > 0 such that for all ε ∈ (0, ε0),

∇2FTAP(m; ŷ, q∗) = ∇2FTAP(m;y(t), q∗) � cD(m), ∀ m ∈ B
(
m̂AMP,

√
εtN

)
∩ (−1, 1)N .

Using εt/4 in place of ε in Lemma 3.10.6, it follows that there exists a local minimum

m∗(A, ŷ; q∗) ∈ B

(
m̂AMP,

√
εtN

2

)
∩ (−1, 1)N

of FTAP( · , ŷ; q∗) which is also the unique stationary point in B
(
m̂AMP, (1/2)

√
εtN

)
∩ (−1, 1)N .

We next claim that, for any K > KAMP, with probability 1−oN (1), this local minimum is also the

unique stationary point in B
(
AMP(A,y(t); k), (1/2)

√
εtN

)
∩ (−1, 1)N . Indeed for KAMP sufficiently

large (writing for simplicity y = y(t)):

p-lim
N→∞

sup
k1,k2∈[KAMP,K]

‖AMP(A,y; k1)− AMP(A,y; k2)‖2 = sup
k1,k2∈[kalg,K]

p-lim
N→∞

‖AMPβ(A,y; k1)− AMPβ(A,y; k2)‖2

≤ N · sup
k1,k2≥KAMP

|qk1(β, t)− qk2(β, t)|.

From Eq. (3.6.8), by eventually increasing KAMP, we have

sup
k1,k2≥KAMP

|qk1(β, t)− qk2(β, t)| ≤ εt

16
.

For such KAMP, with probability 1− oN (1), all k ∈ [KAMP,K] satisfy

‖m∗(A,y; qKAMP
)− AMP(A,y; k)‖ ≤ ‖m∗(A,y; qAMP)− AMP(A,y;KAMP)‖

+ ‖AMP(A,y; k)− AMP(A,y;KAMP)‖

≤
√
εtN

2
+

√
εtN

4

≤ 3

4

√
εtN.
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Let

S(k, ρ) := B (AMPβ(A,y; k), ρ) ∩ (−1, 1)N , ρN,t :=
√
εnt

Recall that m∗(A,y; q∗) is the unique stationary point of FTAP( · ;y, q∗) in S(KAMP, ρN,t). By the

above, it is also a stationary point in S(k, ρN,t), for k ∈ [KAMP,K]. Repeating the same argu-

ment as before, there is only one stationary point inside S(k, ρN,t), hence this must coincide with

m∗(A,y; q∗).

Proof of Lemma 3.7.1, Part 2. Because KAMP is large depending on δ0, Lemma 3.7.2 implies that

with probability 1− oN (1),

‖∇FTAP(AMP(A,y;KAMP),y; q∗)‖ ≤
cδ0
√
tN

4
.

Using δ0
√
t

4 in place of ε in Lemma 3.10.6, it follows that the local minimizer m∗(A,y; q∗) of

FTAP( · ;y, q∗) satisfies

‖AMP(A,y;KAMP)−m∗(A,y; q∗)‖ ≤
δ0
√
tN

2
.

Since K is sufficiently large depending on δ0, Lemma implies that with probability 1− oN (1),

‖m(A,y)− AMP(A,y;KAMP)‖ ≤
δ0
√
tN

2
.

Combining, we obtain that with probability 1− oN (1),

‖m(A,y)−m∗(A,y; q∗)‖ ≤ ‖m(A,y)− AMP(A,y;KAMP)‖+ ‖AMP(A,y;KAMP)−m∗(A,y; q∗)‖

≤ δ0
√
tN.

Proof of Lemma 3.7.1, Part 3. The result is immediate from (3.10.8).

Proof of Lemma 3.7.1, Part 4. We apply Lemma 3.10.8 with F ( · ) = FTAP( · ; ŷ, q∗) and m∗ =

m∗(A, ŷ; q∗)) (with q∗ = q∗(β, t)). We need to check that assumptions (3.10.9), (3.10.10) of

Lemma 3.10.8 hold for m̂0 = tanh(u0) with u0 satisfying Eq. (3.7.2).
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To check assumption (3.10.9), we take KAMP sufficiently large and δ0 sufficiently small, obtaining

‖m̂0 −m∗(A, ŷ; q∗)‖ ≤ ‖m̂0 − AMP(A,y;KAMP)‖+ ‖AMP(A,y;KAMP)−m(A,y)‖

+ ‖m(A,y)−m∗(A,y; q∗)‖+ ‖m∗(A,y; q∗)−m∗(A, ŷ; q∗)‖
(a)

≤ c
√
εtN

96(β2 + 1)
+

1

100

√
εtN + δ0

√
tN +

‖y − ŷ‖
c

≤
√
εtN

3

where inequality (a) holds with probability 1− oN (1). In the last step we used c ≤ 1.

To check Eq. (3.10.10), we use (3.10.19) we find that with probability 1− oN (1),

‖∇FTAP(m̂0; ŷ, q∗)‖ ≤ ‖∇FTAP(AMP(A,y;KAMP);y, q∗)‖+ ‖y − ŷ‖

+ (4β2 + 4)‖ arctanh(m̂0)− arctanh(AMP(A, ŷ;KAMP))‖

≤ ‖∇FTAP(AMP(A,y;KAMP);y, q∗)‖+
c
√
εtN

24
+
c
√
εtN

4
.

Combining with Eq. (3.10.20), we find that with probability 1− oN (1),

‖∇FTAP(m̂0; ŷ, q∗)‖ ≤
c
√
εtN

6
.

Finally, we apply Lemma 3.10.6 with εt
9 in place of ε, to get

FTAP(m̂0; ŷ, q∗) ≤ FTAP(m∗(A, ŷ; q∗); ŷ, q∗) +
Ncεt

9
.

Lemma 3.10.8 now applies for η0 sufficiently small. Moreover, with probability 1 − oN (1) the

initialization x0 satisfies

‖ arctanh(m̂0)‖ ≤ ‖ arctanh(m̂0)− arctanh(AMP(A,y;KAMP))‖+ ‖ arctanh(AMP(A,y;KAMP))‖

≤ c
√
εtN

96(β2 + 1)
+
√

3(γ∗(β, t) + t)
√
N

≤ C(β, c,T)
√
tN.

Thus, (3.10.12) implies (3.7.3) for a sufficiently large number KNGD of natural gradient iterations.
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Chapter 4

Optimizing Mean-Field Spin

Glasses via Approximate Message

Passing

4.1 Introduction

Optimizing non-convex functions in high dimensions is well-known to be computationally intractible

in general. In this chapter we study the optimization of a natural class of random non-convex

functions, namely the Hamiltonians of mean-field spin glasses. These functions HN are defined on

either the cube ΣN = {−1, 1}N or the sphere SN−1(
√
N) of radius

√
N and have been studied since

[SK75] as models for the behavior of disordered magnetic systems.

The distribution of an N -dimensional mean-field spin glass Hamiltonian HN is described by

an exponentially decaying sequence (cp)p≥2 of non-negative real numbers as well as an external

field probability distribution Lh on R with finite second moment. Given these data, one samples

h1, . . . , hN ∼ Lh and standard Gaussians gi1,...,ip ∼ N(0, 1) and then defines HN : RN → R by

HN (x) =
∑
i

hixi + H̃N (x),

H̃N (x) =

∞∑
p=2

cp
N (p−1)/2

N∑
i1,...,ip=1

gi1,...,ipxi1 . . . xip .

128
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The distribution of the non-linear part H̃N is characterized by the mixture function ξ(z) =∑
p≥2 c

2
pz
p - there are no issues of convergence for |z| ≤ 1 + η thanks to the exponential decay

assumption. We assume throughout that ξ is not the zero function so that we study a genuine spin

glass. H̃N is then a centered Gaussian process with covariance

E
[
H̃N (x1)H̃N (x2)

]
= Nξ

(
〈x1,x2〉
N

)
.

Spin glasses were introduced to model the magnetic properties of diluted materials and have

been studied in statistical physics and probability since the seminal work [SK75]. In this context,

the object of study is the Gibbs measure eβHN (x)dµ(x)
ZN,β

where β > 0 is the inverse-temperature, µ(x)

is a fixed reference measure and ZN,β is a random normalizing constant known as the partition

function. The most common choice is to take µ(·) the uniform measure on ΣN = {−1, 1}N , and

another canonical choice is the uniform measure on SN−1(
√
N). These two choices define Ising and

spherical spin glasses. The quantity of primary interest is the free energy

FN (β) = logEx∼µ[eβHN (x)].

The in-probability normalized limit F (β) = p-limN→∞
FN (β)
N of the free energy at temperature β

is famously given by an infinite-dimensional variational problem known as the Parisi formula (or

the Cristanti-Sommers formula in the spherical case) as we review in the next section. These free

energies are well-concentrated and taking a second limit limβ→∞
F (β)
β yields the asymptotic ground

state energies

GS(ξ,Lh) = p-lim
N→∞

max
x∈ΣN

HN (x)

N
,

GSsph(ξ,Lh) = p-lim
N→∞

max
x∈SN−1(

√
N)

HN (x)

N
.

From the point of view of optimization, spin glass Hamiltonians serve as natural examples of highly

non-convex functions. Indeed, the landscape of HN can exhibit quite complicated behavior. For

instance HN may have exponentially many near-maxima on ΣN [Cha09, DEZ15, CHL18]. The

structure of these near-maxima is highly nontrivial; the Gibbs measures on ΣN are approximate

ultrametrics in a certain sense, at least in the so-called generic models [Jag17, CS21]. Moreover

spherical spin glasses typically have exponentially many local maxima and saddle points, which are

natural barriers to gradient descent and similar optimization algorithms [ABA13, ABAČ13, Sub17,

AMMN19]. The utility of a rich model of random functions is made clear by a comparison to the

theory of high-dimensional non-convex optimization in the worst-case setting. In the black-box

model of optimization based on querying function values, gradients, and Hessians, approximately

optimizing an unknown non-convex function in high-dimension efficiently is trivially impossible and
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substantial effort has gone towards the more modest task of finding a local optimum or stationary

point [CDHS17, JGN+17, AAZB+17, CDHS18, CDHS19]. Even for quadratic polynomials in N

variables, it is quasi-NP hard to reach within a factor log(N)ε of the optimum [ABE+05]. For

polynomials of degree p ≥ 3 on the sphere, [BBH+12] proves that even an approximation ratio

e(logN)ε is computationally infeasible to obtain.

Despite the worst-case obstructions just outlined, a series of recent works have found great

success in approximately maximizing certain spin glass Hamiltonians. By approximate maximization

we always mean maximization up to a factor (1 + ε), where ε > 0 is an arbitrarily small positive

constant; we similarly refer to a point x ∈ ΣN or x ∈ SN−1(
√
N) achieving such a nearly optimal

value as an approximate maximizer (where the small constant ε is implicit). Subag showed in [Sub21]

how to approximately maximize spherical spin glasses by using top eigenvectors of the Hessian

∇2HN . Subsequently [Mon21] developed a message passing algorithm with similar guarantees for

the Ising case. These works all operate under an assumption of no overlap gap, a condition which is

expected (known in the spherical setting) to hold for some but not all models (ξ,Lh) - otherwise they

achieve an explicit, sub-optimal energy value. Such a no overlap gap assumption is expected to be

necessary to find approximate maxima efficiently. Indeed, the works [BAJ18, GJ21, GJW20b] rule

out various algorithms for optimizing spin glasses when an overlap gap holds. Variants of the overlap

gap property have been shown to rule out (1 + ε)-approximation by certain classes of algorithms

for random optimization problems on sparse graphs [MMZ05, ACORT11, GS14, RV17b, GS17,

CGPR19, Wei22]. Overlap-gaps have also been proposed as evidence of computational hardness

for a range of statistical tasks including planted clique, planted dense submatrix, sparse regression,

and sparse principal component analysis [GZ17, GL18, GJS19, GZ19, AWZ20]. The overlap gap

property is extensively discussed and generalized in the next chapter.

Our main algorithm consists of two stages of message passing. The first stage is inspired by the

work [Bol14] which constructs solutions to the TAP equations for the SK model at high temperature.

We construct approximate solutions to the generalized TAP equations of [Sub18, CPS22, CPS19],

which heuristically amounts to locating the root of the ultrametric tree of approximate maxima.

The second stage extends the algorithm of [Mon21], using incremental approximate message passing

to descend the ultrametric tree by simulating the SDE corresponding to a candidate solution for the

Parisi variational problem.

While the primary goal in this line of work is to construct a single approximate maximizer, Subag

beautifully observed in [Sub21, Remark 6] that an extension of his Hessian-based construction for

spherical models produces approximate maximizers arranged into a completely arbitary ultrametric

space obeying an obvious diameter upper bound. The overlap gap property essentially states that

distances between approximate maximizers cannot take certain values, and so this is a sort of

constructive converse result. In Section 4.4 we give a branching version of our main algorithm,

following a suggestion of [AM20], which constructs an arbitrary ultrametric space of approximate
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maximizers in the Ising case (again subject to a diameter upper bound). This is a converse to and

major motivation for the results of the next chapter on the branching overlap gap property.

4.1.1 Optimizing Ising Spin Glasses

To state our results we require the Parisi formula for the ground state of a mean field Ising spin

glass as given in [AC17b]. Let U be the function space

U =

{
γ : [0, 1)→ [0,∞) : γ is non-decreasing,

∫ 1

0

γ(t)dt <∞
}
.

The functions γ are meant to correspond to cumulative distribution functions - for finite β the

corresponding Parisi formula requires γ(1) = 1, but this constraint disappears in renormalizing to

obtain a zero-temperature limit. For γ ∈ U we take Φγ(t, x) : [0, 1] × R → R to be the solution of

the following Parisi PDE:

∂tΦγ(t, x) +
1

2
ξ′′(t)

(
∂xxΦγ(t, x) + γ(t)(∂xΦγ(t, x))2

)
= 0, (4.1.1)

Φγ(1, x) = |x|. (4.1.2)

Intimately related to the above PDE is the stochastic differential equation

dXt = ξ′′(t)γ(t)∂xΦγ(t,Xt)dt+
√
ξ′′(t)dBt, X0 ∼ Lh. (4.1.3)

which we call the Parisi SDE. The Parisi functional P : U → R with external field distribution Lh
is given by:

Pξ,Lh(γ) = Eh∼Lh [Φγ(0, h)]− 1

2

∫ 1

0

tξ′′(t)γ(t)dt. (4.1.4)

The Parisi formula for the ground state energy is as follows.

Theorem 14 ([Tal06d, Pan14, AC17b, CHL18]).

GS(ξ,Lh) = inf
γ∈U

Pξ,Lh(γ).

Moreover the minimum is attained at a unique γU
∗ ∈ U .

Throughout this chapter, γU
∗ will always refer to the minimizer of Theorem 14. We now turn

to algorithms. In [Mon21], Montanari introduced the class of incremental approximate message
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passing (IAMP) algorithms to optimize the SK model. These are a special form of the well-studied

approximate message passing (AMP) algorithms, reviewed in Subsection 4.2.1. The work [AMS21]

showed that the maximum asympototic value of HN achievable by IAMP algorithms is given by the

minimizer of P, assuming it exists, over a larger class of non-monotone functions, when Lh = δ0 so

there is no external field. This larger class is:

L =

{
γ : [0, 1)→ [0,∞) : γ is right-continuous, ‖ξ′′ · γ‖TV [0,t] <∞∀t ∈ [0, 1),

∫ 1

0

ξ′′(t)γ(t)dt <∞
}
.

(4.1.5)

Here TV [0, t] denotes the total variation norm

‖f‖TV [0,t] ≡ sup
n

sup
0≤t0<t1<···<tk≤t

k∑
i=1

|f(ti)− f(ti−1)| .

The Parisi PDE (4.1.4) and associated SDE extend also to L . We denote by γL
∗ ∈ L the minimizer

of P over L , assuming that it exists. Note that uniqueness always holds by Lemma 4.1.3 below.

We define the support supp(γ) of γ ∈ L to be the closure in [0, 1) of S(γ) ≡ {x ∈ [0, 1) : γ(x) > 0}.
Note that this is not the same as the support of the signed measure with CDF γ.

Theorem 15 ([Mon21]). For the Sherrington-Kirkpatrick model with Lh = δ0 and ξ(x) = x2/2,

suppose infγ∈U P(γ) is achieved at a strictly increasing function γU
∗ . Then for any ε > 0 there

exists an efficient AMP algorithm which outputs σ ∈ ΣN satisfying

HN (σ)

N
∈
[
P(γU
∗ )− ε,P(γU

∗ ) + ε
]

with probability tending to 1 as N →∞.

The Parisi formula implies that P(γU
∗ ) coincides with the ground state energy in the SK model.

Thus, under the hypothesis that the minimizer γU
∗ is strictly increasing (which is supported by

numerical simulations [CR02, OSS07, SO08]), Theorem 15 succeeds in efficient optimization up to

o(1) relative error.

We expand upon our use of the word “efficient” in Subsection 4.2.1 – in short, it means that

Oε(1) evaluations of ∇H̃N and first or second partial derivatives of Φγ∗ are required. In general,

minimizing over the larger space L instead of U may decrease the infimum value of P, so that

IAMP algorithms fail to approximately maximize HN . However if γU
∗ is strictly increasing, then

the infima are equal.

We now present our new results for more general mixed p-spin models in the presence of a

non-trivial external field h with coordinate distribution Lh 6= δ0. We first point out the external

field requires a qualitatively new idea. Indeed the following proposition shows that any nonzero h

forces γU
∗ (t) = 0 in a neighborhood of t = 0, hence the strictly increasing assumption above cannot
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apply. The proof is exactly the same as [Pan, Lemma A.19] (the same result stated for positive

temperature).

Proposition 4.1.1. We have 0 ∈ supp(γU
∗ ) if and only if Lh = δ0.

Despite this, we will show that approximate maximization is still possible if γU
∗ is strictly in-

creasing on [q, 1) for q = inf(supp(γU
∗ )). If this condition holds, we give a two-phase approximate

message passing algorithm which first locates a suitable point m` with L2 norm ‖m`‖ ≈
√
qN , and

then proceeds as in the no-external-field case. The relevant condition is precisely defined as follows.

Definition 4.1.2. For γ∗ ∈ L , let q = inf(supp(γ∗)). We say γ∗ is q-optimizable if, with Xt

given by (4.1.3):

E[∂xΦγ∗(t,Xt)
2] = t, t ∈ [q, 1). (4.1.6)

We say γ∗ ∈ L is optimizable if it is q-optimizable for q = inf(supp(γ∗)). We say that (ξ,Lh) is

optimizable, or equivalently that the no overlap gap property holds for (ξ,Lh), if the function γU
∗

is optimizable.

Our preliminary numerical simulations suggest that the SK model retains the no overlap gap

property with any constant external field Lh = δh. However proving this conjecture rigorously for

any value of h seems difficult.

For q ∈ [0, 1), let Lq = {γ ∈ L : inf(supp(γ)) ≥ q} consist of functions in L vanishing on

[0, q). The next lemma shows optimizability is equivalent to minimizing P over either L or Lq. It

is related to results in [AC15, JT16] which show that (4.1.6) holds at points of increase t for γU
∗ .

The proof is given in Appendix B.

Lemma 4.1.3. For γ∗ ∈ L and q = inf(supp(γ∗)), the following are equivalent:

1. γ∗ is optimizable.

2. P(γ∗) = infγ∈L P(γ).

3. P(γ∗) = infγ∈Lq
P(γ).

Moreover if a minimizer exists in either variational problem just above, then it is unique.

Lemma 4.1.3 implies that any optimizable γ∗ is in fact the unique minimizer γL
∗ ∈ L of the Parisi

functional. However throughout much of the chapter we will use γ∗ to denote a general optimizable

function without making use of this result. We made this choice because while Lemma 4.1.3 is

important to make sense of our results, it is not necessary for proving e.g. Theorem 37 below.
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Theorem 16. Suppose γ∗ ∈ L is optimizable. Then for any ε > 0 there exists an efficient AMP

algorithm which outputs σ ∈ ΣN such that

HN (σ)

N
∈ [P(γ∗)− ε,P(γ∗) + ε]

with probability tending to 1 as N →∞.

Lemma 4.1.4. If γU
∗ strictly increases on [q, 1) for q = inf(supp(γU

∗ )), then no overlap gap holds,

i.e. γU
∗ is optimizable.

Corollary 4.1.5. Suppose no overlap gap holds. Then for any ε > 0 an efficient AMP algorithm

outputs σ ∈ ΣN satisfying

HN (σ)

N
∈ [GS(ξ,Lh)− ε,GS(ξ,Lh) + ε]

with probability tending to 1 as N →∞.

Remark 4.1.1. Unlike for U the infimum infγ∈L P(γ) need not be achieved, i.e. an optimizable

γ∗ need not exist. For instance, one has ξ′′(0) = 0 whenever c2 = 0. On the other hand if γ is

optimizable, Corollary B.1.6 and Lemma B.2.5 (with q = 0) yield

∫ t

0

ξ′′(s)E[∂xxΦγ∗(s,Xs)
2]ds = E[∂xΦγ∗(t,Xt)

2] ≥ t, t ≥ 0.

In light of Lemma B.1.7 the integrand on the left-hand side is O(ξ′′(s)) = o(1) so the above cannot

hold for small t. Hence if c2 = 0 there exists no optimizable γ∗. We conjecture that conversely a

minimizing γL
∗ ∈ L exists whenever c2 > 0, but we do not have a proof.

Remark 4.1.2. By the symmetry of H̃N , the external field can also be a deterministic vector

h = (h1, . . . , hN ). As long as the empirical distribution of the values (hi)i∈[N ] is close to Lh in

W2 distance and the external field is independent of H̃N , exactly the same results hold. Indeed, in

Theorem 39 we establish state evolution in this generality.

We conclude this subsection with some comments regarding our choices of terminology. Our

definition of optimizability is closely related to “full” or “continuous” replica symmetry breaking. For

example, the definitions of full RSB used in [Mon21, Sub21] essentially coincide with 0-optimizability.

However these terms seem to be slightly ambiguous, as they can also refer to functions γU
∗ which

are strictly increasing on any nontrivial interval instead of being piece-wise constant as in finite

replica symmetry breaking. For example, the physics paper [CKP+14] describes “the case where

the function ∆(x) is allowed to have a continuous part: this can be thought as an appropriate limit

of the k-RSB construction when k →∞ and is therefore called ‘fullRSB’ or ‘∞-RSB’ ”. Adding to
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the potential confusion, [ACZ17] uses the term “infinite step” RSB to refer to functions γU
∗ with

infinity many points of increase, possibly at a discrete set. We therefore use “no overlap gap” as an

unambiguous term for the condition that γU
∗ is optimizable, while keeping in mind that it closely is

implied via Lemma 4.1.4 by a strong, specific form of full replica symmetry breaking.

4.1.2 Branching IAMP and Spherical Spin Glasses

Under no overlap gap, one expects that any finite ultrametric space of diameter at most
√

2(1− q)
(with size independent of N) can be realized by approximate maximizers of HN . In fact a modifi-

cation of our q-IAMP algorithm is capable of explicitly producing such realizations. In Section 4.4

we give a branching q-IAMP algorithm which for any finite ultrametric space X and optimizable γ∗

constructs points (σx)x∈X such that HN (σx)
N ' P(γ∗) and

‖σx−σy‖2√
N

' dX(x, y) for each x, y ∈ X.

The idea is to occasionally reset the IAMP part of the algorithm with external randomness. A

similar strategy was proposed but not analyzed in [AM20].

Theorem 17. Let γ∗ ∈ L be optimizable, and fix a finite ultrametric space (X, dX) with diameter

at most
√

2(1− q) as well as ε > 0. Then an efficient AMP algorithm constructs points {σx|x ∈ X}
in ΣN satisfying

HN (σx)

N
∈ [P(γ∗)− ε,P(γ∗) + ε] , x ∈ X,

‖σx − σy‖√
N

∈ [dX(x, y)− ε, dX(x, y) + ε] , x, y ∈ X

with probability tending to 1 as N →∞.

In Section 4.5 we give corresponding results for spherical spin glasses, extending [Sub21] to the

case of non-trivial external field. At zero temperature, [CS17, Theorem 1] determines the free energy

in spherical spin glasses based on a positive, non-decreasing function α : [0, 1)→ [0,∞) as well as a

constant L. (See also [JT17] for related results.) More precisely, they show the asymptotic ground

state energy is given by the unique minimizer to the variational problem:

GSsph(ξ, h) = min
L,α∈K

Q(L,α); (4.1.7)

K =

{
(L,α) ∈ (0,∞)×U : L >

∫ 1

0

α(s)ds

}
;

2Q(L,α) = (ξ′(1) + h2)L−
∫ 1

0

ξ′′(q)

(∫ q

0

α(s)ds

)
dq +

∫ 1

0

dq

L−
∫ q

0
α(s)ds

.

The associated definition of no overlap gap is as follows.
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Definition 4.1.6. The spherical mixed p-spin model is said no overlap gap if for some q
sph
∈ [0, 1),

the unique minimizing α ∈ U in (4.1.7) is strictly increasing on [q
sph
, 1) and satisfies α(q) = 0 for

q ≤ q
sph

.

Unlike the Ising case, we do not formulate a generalized variational principle and only show how

to achieve a natural energy value, which coincides with the ground state energy when no overlap

gap holds by [CS17, Proposition 2]. We also exactly characterize the spherical models exhibiting no

overlap gap, which slightly extends the same result.

Theorem 18. Suppose ξ and Lh satisfy E[h2] + ξ′(1) < ξ′′(1), and let q
sph
∈ (0, 1) be the unique

solution to E[h2] + ξ′(q
sph

) = q
sph
ξ′′(q

sph
). Then the spherical spin glass with parameters ξ,Lh has

no overlap gap if and only if ξ′′(q)−1/2 is concave on q ∈ [q
sph
, 1], in which case α is supported on

[q
sph
, 1] and takes the explicit form

α(s) =

{
0, s ∈ [0, q

sph
)

ξ′′′(s)
2ξ′′(s)3/2

, s ∈ [q
sph
, 1].

Moreover the ground-state energy satisfies

GSsph(ξ,Lh) ≥ q
sph

√
ξ′′(q

sph
) +

∫ 1

q
sph

√
ξ′′(q)dq

with equality if and only if no overlap gap occurs.

Theorem 19. Suppose ξ and h ∼ Lh satisfy E[h2]+ξ′(1) < ξ′′(1), and let q
sph
∈ (0, 1) be the unique

solution to E[h2] + ξ′(q
sph

) = q
sph
ξ′′(q

sph
). Then there exists an efficient AMP algorithm outputting

σ ∈ SN−1(
√
N) such that

HN (σ)

N
' q

sph

√
ξ′′(q

sph
) +

∫ 1

q
sph

√
ξ′′(q)dq.

If on the other hand E[h2] + ξ′(1) ≥ ξ′′(1), then there is an efficient AMP algorithm outputting

σ ∈ SN−1(
√
N) with

HN (σ)

N
'
√

E[h2] + ξ′(1).

Remark 4.1.3. If E[h2] + ξ′(1) ≥ ξ′′(1) then the model is replica-symmetric by [CS17, Proposition

1]. When E[h2] + ξ′(1) < ξ′′(1), the function f(q) = qξ′′(q)− ξ′(q)−E[h2] is increasing and satisfies

f(0) < 0 < f(1), hence has a unique root q
sph
∈ (0, 1).
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4.2 Technical Preliminaries

We will use ordinary lower-case letters for scalars (m,x, . . . , ) and bold lower-case for vectors (m,x).

Ordinary upper-case letters are used for the state-evolution limits of AMP as in Proposition 4.2.3

such as (Xδ
j , Z

δ
j , N

δ
j ) as well as for continuous-time stochastic processes such as (Xt, Zt, Nt). We

denote limits in probability as N → ∞ by p-limN→∞(·). We write x ' y to indicate that

p-limN→∞(x− y) = 0 where x, y are random scalars.

We will use the ordinary inner product 〈x,y〉 =
∑N
i=1 xiyi as well as the normalized inner product

〈x,y〉N =
∑N
i=1 xiyi
N . Here x = (x1, . . . , xN ) ∈ RN and similarly for y. Associated with these are

the norms ‖x‖ =
√
〈x,x〉 and ‖x‖N =

√
〈x,x〉N . We will also use the notation 〈x〉N =

∑N
i=1 xi
N .

Often, for example in (4.2.2), we apply a scalar function f to a vector x ∈ RN . This will always

mean that f is applied entrywise, i.e. f(x1, . . . , xN ) = (f(x1), . . . , f(xN )). Similarly for a function

f : R`+1 → R, we define

f(x0,x1, . . . ,x`) =
(
f(x0

1, x
1
1, . . . , x

`
1), f(x0

2, x
1
2, . . . , x

`
2), . . . f(x0

N , x
1
N , . . . , x

`
N )
)
∈ RN . (4.2.1)

The following useful a priori estimate shows that all derivatives of HN
N have order 1 in the ‖ · ‖N

norm. Note that we do not apply any non-standard normalization in the definitions of gradients,

Hessians, etc.

Proposition 4.2.1 ([BASZ20, Corollary 59]). Fix a mixture function ξ, external field distribution

Lh, k ∈ Z+, η ∈ R+, and assume that the coefficients of ξ decay exponentially. Then for suitable

C = C(ξ,Lh, k, η),

P

[
sup

‖x‖≤(1+η)
√
N

‖∇kH̃N (x)‖ ≤ CN1− k2

]
≥ 1− e−Ω(N).

4.2.1 Review of Approximate Message Passing

Here we review the general class of approximate message passing (AMP) algorithms. AMP algo-

rithms are a flexible class of efficient algorithms based on a random matrix or, in our setting, mixed

tensor. To specify an AMP algorithm, we fix a probability distribution p0 on R with finite second

moment and a sequence f0, f1, . . . of Lipschitz functions f` : R`+1 → R, with f−1 = 0. The functions

f` will often be referred to as non-linearities. We begin by taking z0 ∈ RN to have i.i.d. coordinates
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(z0
i )i∈[N ] ∼ p0. Then we recursively define z1, z2, . . . via

z`+1 = ∇H̃N (f`(z
0, . . . ,z`))−

∑̀
j=1

d`,jfj−1(z0, . . . ,zj−1), (4.2.2)

d`,j = ξ′′
(〈
f`(z

0, . . . ,z`), fj−1(z0, . . . ,zj−1)
〉
N

)
· E
[
∂f`
∂Zj

(Z0, . . . , Z`)

]
. (4.2.3)

Here the non-linearity f` is applied coordinate-wise as in (4.2.1). Moreover Z0 ∼ p0 while (Z`)`≥1

is an independent centered Gaussian process with covariance Q`,j = E[Z`Zj ] defined recursively by

Q`+1,j+1 = ξ′
(
E
[
f`
(
Z0, · · · , Z`

)
fj
(
Z0, · · · , Zj

)])
, `, j ≥ 0. (4.2.4)

The key property of AMP, stated below in Proposition 4.2.3, is that for any ` the empirical

distribution of the N sequences (z1
i , z

2
i , . . . ,z

`
i)i∈[N ] converges in distribution to the law of the

Gaussian process (Z1, . . . , Z`) as N →∞. This is called state evolution.

Definition 4.2.2. For non-negative integers n,m the function ψ : R` → R is pseudo-Lipschitz if

for some constant L and any x, y ∈ R`,

‖ψ(x)− ψ(y)‖ ≤ L(1 + ‖x‖+ ‖y‖)‖x− y‖.

Proposition 4.2.3. For any pseudo-Lipschitz ψ : R`+1 → R, the AMP iterates satisfy

p-lim
N→∞

〈
ψ
(
z0, · · · , z`

)〉
N

= E
[
ψ
(
Z0, · · · , Z`

)]
. (4.2.5)

The first version of state evolution was given for Gaussian random matrices in [Bol14, BM11b].

Since then it has been extended to more general situations in many works including [JM13, BLM15,

BMN19, CL21, Fan22]. As state evolution holds for essentially arbitrary non-linearities f`, it allows

a great deal of flexibility in solving problems involving random matrices or tensors.

We remark that when proving state evolution in Theorem 39, we phrase the result in terms of a

random mixed tensor W , i.e. a sequence of p-tensors (W (p) ∈ (RN )⊗p)p≥2. The two descriptions

are equivalent because W is constructed so that
∑
p≥2 cp〈W

(p),x⊗p〉 = H̃N (x). While the tensor

language is better suited to proving state evolution, for our purposes it is more convenient to express

AMP just in terms of H̃N and ∇H̃N .

Let us finally discuss the efficiency of our AMP algorithms. The algorithms we give are described

by parameters q̄ and ` and require oracle access to the function Φγ∗(t, x) and its derivatives. We do

not address the complexity of computing Φγ∗(t, x). However as stated in [Mon21] it seems unlikely to

present a major obstacle because solving for γU
∗ is a convex problem which only must be solved once

for each (ξ,Lh). Moreover [AM20] demonstrates that these algorithms are practical to implement.
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In the end, our algorithms output rounded points σ with σi = sign(f`(z
0
i , . . . ,z

`
i)) for a large

value ` = `(q̄, `). The outputs satisfy

lim
q̄→1

lim
`→∞

p-lim
N→∞

HN (σ)

N
= H∗

for some asymptotic energy value H∗. To achieve an ε-approximation to the value H∗, the parameters

q̄ and ` must be sent to 1 and ∞ which requires a diverging number of iterations. In particular

let χ denote the complexity of computing ∇H̃N at a point and let χ1 denote the complexity of

computing a single coordinate of ∇H̃N at a point. Then the total complexity needed to achieve

energy H∗− ε is C(ε)(χ+N) +Nχ1. When ξ is a polynomial this complexity is linear in the size of

the input specifying HN . In the statements of our results, we refer to such algorithms as “efficient

AMP algorithms”.

4.2.2 Initializing AMP

Here we explain some technical points involved in initializing our AMP algorithms and why they

arise. First, we would like to use a random external field hi which varies from coordinate to coor-

dinate. In the most natural AMP implementation, this requires that the non-linearities f` corre-

spondingly depend on the coordinate rather than being fixed, which is not allowed in state evolution.

Second we would like to use many i.i.d. Gaussian vectors throughout the branching version of the

algorithm. However Proposition 4.2.3 allows only a single initial vector z0 as a source of external

randomness independent of HN . One could prove a suitable generalization of Proposition 4.2.3,

but we instead build these additional vectors into the initialization of the AMP algorithm as a

sort of preprocessing phase. To indicate that our constructions here are preparation for the “real

algorithm”, we reparametrize so the preparatory iterates have negative index.

We begin by taking p0 = Lh to be the distribution of the external field itself, and initial-

ize (z−K)i = hi ∼ Lh for some constant K ∈ Z+. We then set f−K(z−K) = z−K√
Eh∼Lh [h2]

and

f−k(z−K , . . . ,z−k) = z−k for 2 ≤ k ≤ K. Finally we set f−1(z−K , . . . ,z−1) = cz−1 for some

constant c > 0 which the algorithm is free to choose. (Note that the functions f−k correspond to

entry-wise applications of the form in (4.2.1).) State evolution immediately implies the following

Proposition 4.2.4. In the state evolution N → ∞ limit, (z−Ki , . . . , z0
i ) converges in distribu-

tion to the law of an independent (K + 1)-tuple (Z−K , Z−K+1, . . . , Z−1, Z0) with Z−K ∼ Lh,

(Z−K+1, . . . , Z−1) ∼ N(0, IK−1) i.i.d. standard Gaussian, and Z0 ∼ N(0, c2).

In fact taking K = 1 suffices for the main construction of this chapter. In Section 4.4 we require

larger values of K for branching IAMP, where the iterates (z−K+1, . . . ,z−1) serve as proxies for

i.i.d. Gaussian vectors.
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Remark 4.2.1. Because the sum defining the Onsager correction term in (4.2.2) starts at j = 1,

the effect of the external field hi on future AMP iterates does not enter into any Onsager correction

terms in this chapter.

4.2.3 Properties of the Parisi PDE and SDE

Quite a lot is known about the solution Φγ to the Parisi PDE. The next results hold for any γ ∈ L

and are shown in the Appendix. Similar results for γ ∈ U appear in [AC15, JT16]. The following

two propositions are shown (with some rearrangement) in Lemmas B.1.2 and B.1.4.

Proposition 4.2.5. For any γ ∈ L , the solution Φγ(t, x) to the Parisi PDE is continuous on

[0, 1]× R, convex in x, and further satisfies the following regularity properties for any ε > 0.

(a) ∂jxΦ ∈ L∞
(
[0, 1− ε];L2(R) ∩ L∞(R)

)
for j ≥ 2.

(b) ∂tΦ ∈ L∞([0, 1]× R) and ∂t∂
j
xΦ ∈ L∞

(
[0, 1− ε];L2(R) ∩ L∞(R)

)
for j ≥ 1.

Proposition 4.2.6. For any γ ∈ L , Φγ satisfies

|∂xΦγ(t, x)| ≤ 1

for all (t, x) ∈ [0, 1]× R.

The next proposition is shown in Lemma B.1.5.

Proposition 4.2.7. For any γ ∈ L , the Parisi SDE (4.1.3) has unique strong solution (Xt)t∈[0,1]

which is a.s. continuous and satisfies

∂xΦγ(t,Xt) =

∫ t

0

√
ξ′′(s) ∂xxΦγ(s,Xs) dBs . (4.2.6)

Finally we give two additional properties for optimizable γ∗, which are proved in Chapter B.

Lemma 4.2.8. If γ∗ ∈ L is q-optimizable then it satisfies:

E[∂xxΦγ∗(t,Xt)
2] =

1

ξ′′(t)
, t ≥ q, (4.2.7)

E[∂xxΦγ∗(t,Xt)] =

∫ 1

t

γ∗(s)ds, t ∈ [0, 1]. (4.2.8)
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4.3 The Main Algorithm

In this section we explain our main AMP algorithm and prove Theorem 37. Throughout we take

γ∗ ∈ L to be q-optimizable for q = inf(supp(γ∗)) ∈ [0, 1).

4.3.1 Phase 1: Finding the Root

Here we give the first phase of the algorithm, which proceeds for a large constant number ` of

iterations after initialization and approximately converges to a fixed point. The AMP iterates

during this first phase are denoted by (wk)−K≤k≤`. We rely on the function

f(x) = ∂xΦγ∗(q, x)

and use non-linearities

fk(h,w−K+1, . . . ,w0,w1, . . . ,wk) = f(h+wk)

for all k ≥ 1. (As a reminder, if f is a scalar function, f(xk) is evaluated entrywise as explained in

(4.2.1).) Proposition 4.2.5 implies that each fk is Lipschitz, so that state evolution applies to the

AMP iterates. In the initialization phase we take c =
√
ξ′(q) as described in Subsection 4.2.2, so

that the coordinates w0
i are asymptotically distributed as centered Gaussians with variance ξ′(q) in

the N → ∞ limit. Moreover we set mk = f(xk) where xk = wk + h. This yields the following

iteration.

wk+1 = ∇H̃N (f(xk))− f(xk−1)ξ′′
(
〈f(xk), f(xk−1)〉N

)
〈∇f(xk)〉N (4.3.1)

= ∇H̃N (mk)−mk−1ξ′′
(
〈mk,mk−1〉N

)
〈∂xxΦγ∗(q,x

k)〉N ,

xk+1 = wk+1 + h

mk = f(xk) = fk(wk).

Lemma 4.3.1. For f as defined above, h ∼ Lh and Z ∼ N(0, 1) an independent standard Gaussian,

Eh,Z
[
f
(
h+ Z

√
ξ′(q)

)2
]

= q (4.3.2)

Eh,Z
[
f ′
(
h+ Z

√
ξ′(q)

)2
]

=
1

ξ′′(q)
. (4.3.3)

Proof. The identities follow by taking t = q in the definition of optimizability as well as Lemma 4.2.8.

Here we use the fact that Xt = X0 + Z
√
ξ′(t) is a time-changed Brownian motion started from X0

for t ≤ q.
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Next with (Z,Z ′, Z ′′) ∼ N(0, I3) independent of h ∼ Lh, define for t ≤ ξ′(q) the function

φ(t) = Eh,Z,Z
′,Z′′

[
f
(
h+ Z

√
t+ Z ′

√
ξ′(q)− t

)
f
(
h+ Z

√
t+ Z ′′

√
ξ′(q)− t

)]
. (4.3.4)

Define also ψ(t) = ξ′(φ(t)). It follows from (4.3.2) that

φ(ξ′(q)) = q. (4.3.5)

Lemma 4.3.2. The function ψ is strictly increasing and strictly convex on [0, ξ′(q)]. Moreover

ψ(ξ′(q)) = ξ′(q), ψ′(ξ′(q)) = 1.

Finally ψ(t) > t for all t < ξ′(q).

Proof. Using Gaussian integration by parts as in [Bol14, Lemma 2.2], we find

φ′(t) =
h,Z,Z′,Z′′

E
[
f ′
(√

tZ +
√
ξ′(q)− tZ ′

)
f ′
(√

tZ +
√
ξ′(q)− tZ ′′

)]
=
h,Z

E
[
Z′

E
[
f ′
(√

tZ +
√
ξ′(q)− tZ ′

)]2]
,

φ′′(t) = E
[
f ′′
(√

tZ +
√
ξ′(q)− tZ ′

)
f ′′
(√

tZ +
√
ξ′(q)− tZ ′′

)]
=
h,Z

E
[
Z′

E
[
f ′′
(√

tZ +
√
ξ′(q)− tZ ′

)]2]
.

These expressions are each strictly positive, as the optimizability of γ∗ implies that f ′, f ′′ are not

identically zero. Therefore φ is increasing and convex. Since ξ′ is also increasing and convex (being

a power series with non-negative coefficients) we conclude the same about their composition ψ. The

values ψ(ξ′(q)) = ξ′(q) and ψ′(ξ′(q)) = 1 follow from Lemma 4.3.1 and the chain rule. Finally the

last claim follows by strict convexity of ψ and ψ′(ξ′(q)) = 1.

Next, let h,W−1, (W j , Xj ,M j)j≥0 be the state evolution limit of the coordinates of

(h,w−1,w0,x0,m0, . . . ,wk,xk,mk)

as N → ∞. Hence each W j is a centered Gaussian and Xj = W j + h, M j+1 = f(Xj) hold for

j ≥ 0. Define the sequence (a0, a1, . . . ) recursively by a0 = 0 and ak+1 = ψ(ak).
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Lemma 4.3.3. For all non-negative integers 0 ≤ j < k, the following equalities hold:

E[(W j)2] = ξ′(q) (4.3.6)

E[W jW k] = aj (4.3.7)

E[(M j)2] = q (4.3.8)

E[M jMk] = φ(aj). (4.3.9)

Moreover (W j)j≥0 is independent of h.

Proof. We proceed by induction on j, first showing (4.3.6) and (4.3.8) together. As a base case,

(4.3.6) holds for j = 0 by initialization. For the inductive step, assume first that (4.3.6) holds for j.

Then state evolution and (4.3.5) yield

E
[
(M j)2

]
= φ

(
ξ′(q)

)
= q

so that (4.3.6) implies (4.3.8) for each j ≥ 0. On the other hand, state evolution directly implies

that if (4.3.8) holds for j then (4.3.6) holds for j + 1. This establishes (4.3.6) and (4.3.8) for all

j ≥ 0.

We similarly show (4.3.7) and (4.3.9) together by induction, beginning with (4.3.7) when j = 0.

By the initialization of Subsection 4.2.2 it follows that the random variables h,W−1,W 0 are jointly

independent. State evolution implies that W k−1 is independent of W−1 for any k ≥ 0. Then state

evolution yields for any k ≥ 1:

E[W 0W k] = ξ′(E[M−1Mk−1])

= ξ′
(
E
[
W−1f(W k−1

])
= ξ′(0)

= 0.

Just as above, it follows from state evolution that (4.3.7) for (j, k) implies (4.3.9) for (j, k) which

in turn implies (4.3.7) for (j+ 1, k+ 1). Hence induction on j proves (4.3.7) and (4.3.9) for all (j, k).

Finally the last independence assertion is immediate from state evolution just because h is the first

step in the AMP iteration.

Lemma 4.3.4.

lim
k→∞

ak = ξ′(q).
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Proof. Since ψ is strictly increasing and maps [0, ξ′(q)] → [0, ξ′(q)], it follows that (ak)k≥0 is a

strictly increasing sequence with limiting value in [0, ξ′(q)]. Let a∞ = limk→∞ ak be this limit.

Then continuity implies ψ(a∞) = a∞ which by the last part of Lemma 4.3.2 implies a∞ = ξ′(q).

This concludes the proof.

We now compute the limiting energy

lim
k→∞

p-lim
N→∞

HN (mk)

N

from the first phase. Since the first phase is similar to many “standard” AMP algorithms, this step

is comparable to the computation of their final objective value, for example [DAM17, Lemma 6.3].

This computation is straightforward when H̃N is a homogeneous polynomial of degree p, because

one can just rearrange the equation for an AMP iteration to solve for

H̃N (mk) = p−1〈mk,∇H̃N (mk)〉.

However it requires more work in our setting because ∇H̃N acts differently on terms of different

degrees. We circumvent this mismatch by applying state evolution to a t-dependent auxiliary AMP

step and integrating in t.

Lemma 4.3.5. With Xt the Parisi SDE (4.1.3),

lim
k→∞

p-lim
N→∞

HN (mk)

N
= ξ′(q) · E

[
∂xxΦγ∗

(
q, h+ Z

√
ξ′(q)

)]
+ E

[
h · ∂xΦγ∗

(
q, h+ Z

√
ξ′(q)

)]
= ξ′(q) · E

[
∂xxΦγ∗

(
q,Xq

)]
+ E

[
h · ∂xΦγ∗

(
q,Xq

)]
.

Proof. The equivalence of the latter two expressions follows from the fact that Xq ∼ X0 +N(0, ξ′(q))

so we focus on the first equality. Observe that

HN (mk)

N
= 〈h,mk〉N +

∫ 1

0

〈mk,∇H̃N (tmk)〉Ndt (4.3.10)

holds for any vector mk by considering each monomial term of HN . Our main task now reduces to

computing the in-probability limit of the integrand as a function of t. Proposition 4.2.1 ensures that

t→ 〈mk,∇H̃N (tmk)〉N is Lipschitz assuming ‖mk‖N ≤ 1 + o(1). This holds with high probability

for each k as N → ∞ by state evolution and Proposition 4.2.6, so we may freely interchange the

limit in probability with the integral.

To compute the integrand 〈mk,∇H̃N (tmk)〉N we analyze a modified AMP which agrees with

the AMP we have considered so far up to step k, whereupon we replace the non-linearity fk(h,xk) =
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f(xk + h) by

f̃k(h,xk) ≡ t · fk(xk)

for arbitrary t ∈ (0, 1). We obtain the new iterate

yk+1(t) ≡ ∇H̃N (tmk)− tmk−1ξ′′(t〈mk,mk−1〉N )〈f ′(xk)〉N .

Rearranging yields

〈mk,∇H̃N (tmk)〉N = 〈mk,yk+1(t)〉N + t〈mk,mk−1〉Nξ′′(t〈mk,mk−1〉N )〈′(xk)〉N

' 〈mk,yk+1(t)〉N + tak−1ξ
′′(tφ(ak−1))〈′(xk)〉N.

We evaluate the N → ∞ limit in probability of the first term, via the state evolution limits

W k, Xk, Y k+1(t). State evolution directly implies

E[W kY k+1(t)] = ξ′(t · E[Mk−1Mk]) = ξ′(tφ(ak−1)).

Since h is independent of (W k, Y k+1) we use Gaussian integration by parts to derive

E[f(Xk)Y k+1(t)] = E[f(h+W k)Y k+1(t)]

= E[f ′(h+W k)] · E[W kY k+1(t)]

= E
[
f ′
(
h+ Z

√
ξ′(q)

)]
· ξ′(tφ(ak−1)).

Integrating with respect to t yields∫ 1

0

〈mk,∇H̃N (tmk)〉Ndt ' E
[
f ′
(
h+ Z

√
ξ′(q)

)]
·
∫ 1

0

ξ′(tφ(ak−1)) + tφ(ak−1)ξ′′(tφ(ak−1))

(4.3.11)

= E
[
∂xxΦγ∗

(
q, h+ Z

√
ξ′(q)

)]
· [tξ′(tφ(ak−1))] |t=1

t=0 (4.3.12)

Finally the first term in (4.3.10) gives energy contribution

〈h,mk〉N ' E[h · f(Z
√
ξ′(q))]

= E
[
h · ∂xΦγ∗

(
q, h+ Z

√
ξ′(q)

)]
.

Since limk→∞ ak−1 = ξ′(q) and ψ(ξ′(q)) = ξ′(q) combining concludes the proof.
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4.3.2 Phase 2: Incremental AMP

We now switch to IAMP, which has a more complicated definition. We will begin from the iterates

x`,m` from phase 1 for a large ` ∈ Z+. We relegate several proofs to Section 4.6. First define the

functions

u(t, x) = ∂xxΦγ∗(t, x), v(t, x) = ξ′′(t)γ∗(t)∂xΦγ∗(t, x).

Set ε0 =
q

φ(a`−1) − 1 and δ = ξ′(q(1 + ε0)2) − ξ′(q); observe that ε0, δ → 0 as ` → ∞.1 Define

the sequence (qδ` )`≥` by qδ` = q + (` − `)δ. Fix q̄ ∈ (q, 1); the value q̄ will be taken close to 1 after

sending ` → ∞. In particular we will assume δ < 1 − q̄ holds and set ` = min{` ∈ Z+ : qδ` ≥ q̄}.
Also define

n` ≡ (1 + ε0)m`.

Set z` = w`. So far, we have defined (x`, z`,n`). We turn to inductively defining the triples

(x`, z`,n`) for ` ≤ ` ≤ `. First, the values (z`)`≥` are defined as AMP iterates via

z`+1 = ∇H̃N (f`(z
0, · · · , z`))−

∑̀
j=0

d`,jfj−1(z0, · · · , zj−1),

d`,j = ξ′′
(
E
[
f`(Z

0, . . . , Z`)fj−1(Z0, . . . , Zj−1
])
· E
[
∂f`
∂zj

(Z0, · · · , Z`)
]
.

(4.3.13)

(The non-linearities f` will be specified below). The sequence (x`+1)`≥` is defined by

x`+1 ≡ x` +
∑̀
j=`

v
(
qδj ,x

j
)
δ +

∑̀
j=`

(
zj+1 − zj

)
= x` + v

(
qδ` ,x

`
)
δ +

(
z`+1 − z`

)
, ` ≤ ` ≤ `− 1.

As usual, v(qδj , ·) is applied component-wise so that v(qδj ,x
j)i = v(qδj , x

j
i ). Next define the scalar

function

uδ`(x) =
δu(qδ` , x)(

ξ′(qδ` )− ξ′(qδ`−1)
)
E
[
u(qδ` ;X

δ
` )2
]

and consider for ` ≥ ` the recursive definition

n`+1 ≡ n` +
∑̀
j=`

uδj
(
xj
) (
zj+1 − zj

)
(4.3.14)

= n` + uδ`
(
x`
) (
z`+1 − z`

)
.

1When q = 0, ε0 is not defined. In this case we simply take δ > 0 small and begin IAMP at n` = (
√
δ,
√
δ, . . . ,

√
δ).
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We define the non-linearity f` : R`+1 → R to recursively satisfy

f`(z
0, . . . ,z`) = n`, ` > `.

It is not difficult to verify that the equations above form a “closed loop” uniquely determining

the sequence (x`, z`,n`)`≥`. Since (x`i , n
`
i) is determined by the sequence (z

`
i , . . . , z

`
i ) we may define

the state evolution limiting random variables (Xδ
` , N

δ
` , Z

δ
` )`≥`. We emphasize that the IAMP just

defined is part of the same q-AMP algorithm as the first phase defined in the previous subsection.

However the variable naming has changed so that the main iterates are z` for ` ≥ ` rather than w`

for ` ≤ `. In particular there is no problem in applying state evolution even though the two AMP

phases take different forms.

To complete the algorithm, we output the coordinate-wise sign σ = sign(n`) where

sign(x) =

 1, x ≥ 0

−1, x ≤ 0.

The key to analyzing the AMP algorithm above is an SDE description in the δ → 0 limit. Define

the filtration

Fδ` = σ
(
(Zδk , N

δ
k )0≤k≤`

)
(4.3.15)

for the state evolution limiting process.

Lemma 4.3.6. The sequences (Zδ` , Z
δ
`+1, . . . ) and (Nδ

` , N
δ
`+1, . . . ) satisfy for each ` ≥ `:

E[(Zδ`+1 − Zδ` )Zδj ] = 0, for all `+ 1 ≤ j ≤ `

E[(Zδ`+1 − Zδ` )2|Fδ` ] = ξ′(qδ`+1)− ξ′(qδ` )

E[(Zδ` )2] = ξ′(qδ` )]

E[(Nδ
`+1 −Nδ

` )|Fδ` ] = 0

E[(Nδ
`+1 −Nδ

` )2] = δ

E[(Nδ
` )2] = qδ`+1.

From Lemma 4.3.6 and the fact that (Zδ` , Z
δ
`+1, . . . ) form a Gaussian process, it follows that there

is a coupling with a standard Brownian motion (Bt)t∈[0,1] such that
∫ qδ`

0

√
ξ′′(t)dBt = Zδ` for each

`. Denote by (Ft)t∈[0,1] the associated natural filtration. Recall that Xt is defined as the solution

to the SDE

dXt = γ∗(t)∂xΦγ∗(t,Xt)dt+
√
ξ′′(t)dBt
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with initialization X0 ∼ Lh. Recalling Proposition 4.2.7, define processes (Nt, Zt)t∈[0,1] by

Nt ≡ ∂xΦγ∗(t,Xt)

= ∂xΦγ∗(q,Xq) +

∫ t

q

√
ξ′′(s)u(s,Xs)dBs,

Zt ≡
∫ t

0

√
ξ′′(s)dBs.

The next lemma states that these continuous-time processes are the δ → 0 limit of (Xδ
` , N

δ
` , Z

δ
` )`≥`.

Lemma 4.3.7. Fix q̄ ∈ (q, 1). There exists a coupling between the families of triples {(Zδ` , Xδ
` , N

δ
` )}`≥0

and {(Zt, Xt, Nt)}t≥0 such that the following holds. For some δ0 > 0 and constant C > 0, for every

δ ≤ δ0 and ` ≥ ` with q` ≤ q̄ we have

max
`≤j≤`

E
[(
Xδ
j −Xqj

)2] ≤ Cδ,
max
`≤j≤`

E
[(
Nδ
j −Nqj

)2] ≤ Cδ.
Lemmas 4.3.6 and 4.3.7 are proved in Section 4.6.

4.3.3 Computing the Final Energy

In this subsection we establish Theorem 37 by showing limq̄→1 lim`→∞ p-limN→∞
HN (σ)
N = P(γ∗).

First we show that the replacements m` → n` and n` → σ have negligible effect on the asymptotic

value attained.

Lemma 4.3.8.

lim
q̄→1

lim
`→∞

p-lim
N→∞

∣∣∣∣∣∣
HN (σ)−HN

(
n`
)

N

∣∣∣∣∣∣ = 0, (4.3.16)

lim
`→∞

p-lim
N→∞

∣∣∣∣HN (m`)−HN (n`)

N

∣∣∣∣ = 0. (4.3.17)

Proof. Proposition 4.2.6 implies that Nt ∈ [−1, 1] almost surely, while optimizability of γ∗ implies

that E[(Nt)
2] = t for t ∈ [q, q̄]. It follows that

lim
q̄→1

lim
`→∞

p-lim
N→∞

‖n` − sign(n`)‖N = lim
q̄→1

√
E
[
(Nq̄ − sign(Nq̄))

2
]

= 0.
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The limit (4.3.16) follows from Proposition 4.2.1 with k = 1. (4.3.17) follows similarly as

n` −m` = ε0m
`

and ε0 → 0 as `→∞ while p-limN→∞ ‖m`‖N ≤ 1 thanks to Proposition 4.2.6.

In the next lemma, proved in Section 4.6, we compute the energy gain during IAMP.

Lemma 4.3.9.

lim
q̄→1

lim
`→∞

p-lim
N→∞

HN

(
n`
)
−HN

(
n`
)

N
=

∫ 1

q

ξ′′(t)E [u (t,Xt)] dt. (4.3.18)

We now put everything together. Recall from Lemma 4.3.5 that

lim
`→∞

p-lim
N→∞

HN (m`)

N
= ξ′(q) · E

[
∂xxΦγ∗

(
q,Xq

)]
+ E

[
h · ∂xΦγ∗

(
q,Xq

)]
.

Proposition 4.2.7 implies that the process ∂xΦγ∗(t,Xt) is a martingale, while Lemma 4.2.8 states

that E[u(t,Xt)] = E[∂xxΦγ∗(t,Xt)] =
∫ 1

t
γ∗(s)ds. Substituting, we find

lim
`→∞

p-lim
N→∞

HN (m`)

N
= ξ′(q)

∫ 1

q

γ∗(s)ds+ E[h∂xΦγ∗(0, h)].

Using again that E[u(t,Xt)] =
∫ 1

t
γ∗(s)ds, the right-hand side of (4.3.18) is

lim
q̄→1

lim
`→∞

p-lim
N→∞

HN

(
n`
)
−HN

(
n`
)

N
=

∫ 1

q

ξ′′(t)

∫ 1

t

γ∗(s)dsdt

=

∫ 1

q

∫ s

q

ξ′′(t)γ∗(s)dtds

=

∫ 1

q

(ξ′(s)− ξ′(q))γ∗(s)ds

=

∫ 1

0

ξ′(s)γ∗(s)ds− ξ′(q)
∫ 1

q

γ∗(s)ds.
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Combining with Lemma 4.3.8 yields

lim
q̄→1

lim
`→∞

p-lim
N→∞

HN (σ)

N
= lim
q̄→1

lim
`→∞

p-lim
N→∞

1

N
·

(
HN

(
sign

(
n`
))
−HN

(
n`
)

+HN

(
n`
)
−HN

(
n`
)

+HN

(
n`
)
−HN

(
m`
)

+HN

(
m`
))

= Eh∼Lh [h · ∂xΦγ∗(0, h)] +

∫ 1

0

ξ′(s)γ∗(s)ds. (4.3.19)

Having computed the limiting energy achieved by our q-AMP algorithm, it remains to verify

that the value in Equation (4.3.19) is equal to Pξ,h(γ∗). Define

Ψγ∗(t, x) = Φγ∗(t, x)− x∂xΦγ∗(t, x)

for (t, x) ∈ [0, 1]× R.

Lemma 4.3.10. For h ∼ Lh, q̄ ≥ q, and Xt as in (4.1.3),

E[Φγ∗(0, h)] = E[h · ∂xΦγ∗(0, h)] + E [Ψγ∗(q̄, Xq̄)]

+
1

2

∫ q̄

0

ξ′′(t)γ∗(t)E
[
∂xΦγ∗(t,Xt)

2
]

dt+

∫ q̄

0

ξ′′(t)E [∂xxΦγ∗(t,Xt)] dt.

Proof. We write

E[Ψγ∗(q̄, Xq̄)−Ψγ∗(0, X0)] =

∫ q̄

0

d

ds
E [Ψγ∗(s,Xs)] |s=tdt

=

∫ q̄

0

d

ds
E [Φγ∗(s,Xs)−Xs∂xΦγ∗(s,Xs)] |s=tdt

= −1

2

∫ q̄

0

ξ′′(t)γ∗(t)E
[
∂xΦγ∗(t,Xt)

2
]

dt

−
∫ q̄

0

ξ′′(t)E [∂xxΦγ∗(t,Xt)] dt.

Rearranging shows:

E[Φγ∗(0, X0)] = E[X0∂xΦγ∗(0, X0)] + E[Ψγ∗(q̄, Xq̄)]

+
1

2

∫ q̄

0

ξ′′(t)γ∗(t)E
[
∂xΦγ∗(t,Xt)

2
]

dt+

∫ q̄

0

ξ′′(t)E [∂xxΦγ∗(t,Xt)] dt.

As X0 = h this concludes the proof.
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Proof of Theorem 37. Note that γ∗(t) > 0 implies t ≥ q and hence by optimizability

E[(∂xΦγ∗(t,Xt))
2] = t.

Meanwhile for any t ∈ [0, 1],

E[∂xxΦγ∗(t,Xt)] =

∫ 1

t

γ∗(t)dt.

Therefore

Φγ∗(0, h) = h∂xΦγ∗(0, h) + E [Ψγ∗(q̄, Xq̄)] +
1

2

∫ q̄

0

ξ′′(t)γ∗(t)tdt+

∫ q̄

0

ξ′′(t)

∫ 1

t

γ∗(s)dsdt .

Recalling (4.1.4), we find

P(γ∗) = E[Φγ∗(0, h)]− 1

2

∫ 1

0

ξ′′(t)γ∗(t)tdt

= h∂xΦγ∗(0, h) + E [Ψγ∗(q̄, Xq̄)] +

∫ q̄

0

ξ′′(t)

∫ 1

t

γ∗(s)dsdt + oq̄→1(1).

It is not hard to show that limq̄→1 Ψγ∗(q̄, x) = 0 holds uniformly in x. Moreover

lim
q̄→1

∫ q̄

0

ξ′′(t)

∫ 1

t

γ∗(s)dsdt =

∫ 1

0

ξ′′(t)

∫ 1

t

γ∗(s)dsdt

=

∫ 1

0

∫ s

0

ξ′′(t)γ∗(s)dtds

=

∫ 1

0

ξ′(s)γ∗(s)ds.

Combining the above and comparing with (4.3.19) yields

P(γ∗) = E [h∂xΦγ∗(0, h)] +

∫ 1

0

ξ′(s)γ∗(s)ds

= lim
q̄→1

lim
`→∞

p-lim
N→∞

HN (σ)

N
.

This completes the proof of Theorem 37.

4.4 Constructing Many Approximate Maximizers

Here we explain the modifications needed for branching IAMP and Theorem 17. The proofs are a

slight extension of those for the main algorithm, and in fact we give many proofs for IAMP directly

in this more general setting in Section 4.6. Let us fix values Q = (q1, . . . , qm) with q ≤ q1 < · · · <
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qm < 1 and an index B ∈ [m]. To construct a pair of approximate maximizers with overlap qB we

first construct n` exactly as in Subsection 4.3.1. For each i < B, set g(qi,1) = g(qi,2) = z−ki,1 =

z−ki,2 ∈ RN for some ki,1 = ki,2 ≤ K as in Subsection 4.2.2. For each B ≤ i ≤ m, set g(qi,1) = z−ki,1

and g(qi,2) = z−ki,2 where ki,1 6= ki,2. Because the vectors g(qi,a) are constructed using AMP, we

require some additional conditions. We insist that ki,a′ − `δqi > kj,a − `δqj > 0 for any i > j and

a, a′ ∈ {1, 2}, which is satisfied by choosing the values ki,a in increasing order of i. Finally we insist

that maxi,a(ki,a) + ` + 1 < K, where h = z−K was the AMP initialization, which is satisfied by

choosing K large at the end.

Having fixed this setup, we proceed by defining mk,1 = mk,2 = mk exactly as in the original first

phase. Next we generate two sequences of IAMP iterates using (4.3.14) except at times corresponding

to qi ∈ Q, altogether generating n`,a for ` > ` and a ∈ {1, 2} via:

n`,a =

n`−1,a +
√
δg(qi,a), ` = `δqi ≡ `+ d(qi − q)δe+ 1 for some i ∈ [m]

n`−1,a + uδ`−1

(
x`−1,a

) (
z` − z`−1,a

)
, else.

(4.4.1)

The definitions of x`,a, z`,a are the same as before. The following result follows immediately

from Lemmas 4.6.5, 4.6.6 and readily implies Theorem 17.

Lemma 4.4.1. For optimizable γ∗,

lim
q̄→1

lim
`→∞

p-lim
N→∞

HN (n`,aδ )

N
= P(γ∗), a ∈ {1, 2}

lim
q̄→1

lim
`→∞

p-lim
N→∞

〈n`,1δ ,n`,2δ 〉
N

= qB .

Theorem 17. Let γ∗ ∈ L be optimizable, and fix a finite ultrametric space (X, dX) with diameter

at most
√

2(1− q) as well as ε > 0. Then an efficient AMP algorithm constructs points {σx|x ∈ X}
in ΣN satisfying

HN (σx)

N
∈ [P(γ∗)− ε,P(γ∗) + ε] , x ∈ X,

‖σx − σy‖√
N

∈ [dX(x, y)− ε, dX(x, y) + ε] , x, y ∈ X

with probability tending to 1 as N →∞.

Proof. Recall that any finite ultrametric spaceX with all pairwise distances in the set {
√

2(1− qi)}i∈[m]

can be identified with a rooted tree T whose leaves ∂T are in bijection with X, and so that
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dX(xi, xj) =
√

2(1− qk) is equivalent to leaves i, j having least common ancestor at depth k.

Given T , we may assign to each non-root vertex u ∈ T a distinct initialization iterate g(u) = z−ku ,

where ku < ku′ if depth(u) < depth(u′) and again maxu(ku) + ` + 1 < K. Then for each path

root = v0, v1, . . . , vm = x ∈ ∂T = X, we compute the iteration (4.4.1) using g(kv1 ), . . . ,g(kvm ).

Applying Lemma 4.4.1 over all pairs of leaves (x, y) ∈ X × X implies that the AMP iterates n`,xδ

satisfy
HN (n`,xδ )

N ' P(γ∗) and 〈n`,xδ ,n`,yδ 〉N ' qj if dX(x, y) =
√

2(1− qj). The conclusion follows by

rounding n`,xδ → σx ∈ ΣN for each x ∈ X as in the main algorithm.

We remark that our construction differs from the one proposed in [AM20] only because we

construct the vectors g(u) using AMP rather than taking them to be literally independent Gaussian

vectors. While the latter construction almost certainly works as well, the analysis seems to require

a more general version of state evolution.

4.5 Spherical Models

We now consider the case of spherical spin glasses with external field. The law of the Hamiltonian

HN is specified according to the same formula as before depending on (ξ,L), however the state

space is the sphere SN−1(
√
N) instead of the hypercube. The free energy in this case is given by a

similar Parisi-type formula, however it turns out to dramatically simplify under no overlap gap so

we do not give the general formula. At positive temperature the spherical free energy was computed

non-rigorously in [CS92] and rigorously in [Tal06b, Che13b], but we rely on [CS17] which directly

treats the zero-temperature setting.

Remark 4.5.1. Due to rotational invariance, for spherical models all that matters about Lh is

the squared L2 norm Eh∼Lh [h2]. In particular unlike the Ising case there is no loss of generality

in assuming h is constant. We continue to work with coordinates hi sampled i.i.d. from Lh and

implicitly use this observation when interpreting the results of [CS17].

Our treatment of spherical models is less detailed and we simply show how to obtain the energy

value in Theorem 18 which is the ground state in models with supp(γ∗) = [q, 1). In the case that

E[h2] + ξ′(1) < ξ′′(1), we let q
sph
∈ [0, 1] be the unique solution to

q
sph
ξ′′(q

sph
) = E[h2] + ξ′(q

sph
).

When E[h2] + ξ′(1) ≥ ξ′′(1), we simply set q
sph

= 1.

Note that when h = 0 almost surely it follows that q
sph

= 0, which is the setting of [Sub21].

Generate initial iterates

(w−Ksph , . . . ,w
0
sph)
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as in Subsection 4.2.2. For non-zero h we take c =
√
E[h2] + ξ′(q

sph
) so that

‖w0
sph‖N '

√
E[h2] + ξ′(q

sph
).

Generate further iterates via the following AMP iteration.

wk+1
sph = ∇H̃N (mk

sph)−mk−1
sph ξ

′′
(
〈mk

sph,m
k−1
sph 〉

)√ q
sph

E[h2] + ξ′(q
sph

)
(4.5.1)

xksph = wk
sph + h

mk
sph = xksph ·

√
q

sph

E[h2] + ξ′(q
sph

)
.

The next lemma is the spherical analog of Lemmas 4.3.3, 4.3.4, 4.3.5 - the proof is similar to the

Ising case and is given in the next subsection.

Lemma 4.5.1. Using the AMP of (4.5.1), the asymptotic overlaps and energies satisfy

lim
k,`→∞

p-lim
N→∞

〈wk
sph,w

`
sph〉

N
= ξ′(q

sph
),

lim
k,`→∞

p-lim
N→∞

〈xksph,x`sph〉
N

= E[h2] + ξ′(q
sph

),

lim
k,`→∞

p-lim
N→∞

〈mk
sph,m

`
sph〉

N
= q

sph
,

lim
k,`→∞

p-lim
N→∞

HN (mk
sph)

N
=
√
q
sph

(E[h2] + ξ′(q
sph

)). (4.5.2)

Proof of Theorem 19. The latter two parts of Lemma 4.5.1 directly imply Theorem 19 in the case

that E[h2] + ξ′(1) ≥ ξ′′(1) (recall q
sph

= 1 in this case). Indeed, it suffices to take

σsph =
m`

sph

‖m`
sph‖N

∈ SN−1(
√
N) (4.5.3)

for a sufficiently large constant `. When E[h2] + ξ′(1) < ξ′′(1), we can conclude by mimicking the

IAMP phase using the simple non-linearities u(t, x) = u(t) = ξ′′(t)−1/2 and v(t, x) = 0 - see also

[AMS21, Remark 2.2]. Lemma 4.3.9 then shows the energy gain from IAMP is∫ 1

q

ξ′′(t)u(t)dt =

∫ 1

q

ξ′′(t)1/2.

As in the Ising case, we may start IAMP fromm = mk for a large constant k. Combining with (4.5.2)
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and defining σsph via (4.5.3) with m` an IAMP iterate, we obtain

p-lim
N→∞

HN (σsph)

N
≥ q

sph
ξ′′(q

sph
)1/2 +

∫ 1

q
sph

ξ′′(q
sph

)1/2dq.

Alternatively to IAMP, in the spherical setting it is possible to use the approach of [Sub21]. Indeed

[Sub21, Theorem 4] immediately extends to an algorithm taking in an arbitrary point m with

‖m‖N ≤ 1 and outputting a point m∗ ∈ SN−1(
√
N) (which may depend on HN ) satisfying

HN (m∗)−HN (m)

N
≥
∫ 1

‖m‖2N

√
ξ′′(q)dq − ε

with probability 1 − oN→∞(1) for any desired ε > 0. Either approach completes the proof of

Theorem 19.

4.5.1 Proof of Lemma 4.5.1

For t ∈ [0, ξ′(q
sph

)], take h ∼ Lh and (Z,Z ′, Z ′′) ∼ N(0, I3) and define the function

φsph(t) =
q

sph

E[h2] + ξ′(q
sph

)
· Eh,Z,Z

′,Z′′
[(
h+ Z

√
t+ Z ′

√
ξ′(q

sph
)− t

)(
h+ Z

√
t+ Z ′′

√
ξ′(q

sph
)− t

)]
=

q
sph

(E[h2] + t)

E[h2] + ξ′(q
sph

)
.

so that φsph(ξ′(q
sph

)) = q
sph

. Define ψsph(t) = ξ′(φsph(t)).

Lemma 4.5.2. ψsph is strictly increasing and convex on [0, ξ′(q
sph

)] and

ψsph(ξ′(q
sph

)) = ξ′(q
sph

), (4.5.4)

ψ′sph(ξ′(q
sph

)) = 1, (4.5.5)

ψsph(t) > t, ∀t < ξ′(q
sph

). (4.5.6)

Proof. Since ξ′ is strictly increasing and convex and φsph is affine and increasing, it follows that ψsph

is strictly increasing and convex. (4.5.4) is equivalent to the equation q
sph
ξ′′(q

sph
) = E[h2]+ ξ′(q

sph
)

defining q
sph
. To show (4.5.5) we use the chain rule to write

ψ′sph(ξ′(q
sph

)) = ξ′′(φsph(ξ′(q
sph

))) · φ′sph(ξ′(q
sph

)) = ξ′′(q
sph

) · (ξ′′(q
sph

))−1 = 1.

Equations (4.5.4) and (4.5.5) and the convexity of ψsph just shown imply (4.5.6)
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Let h,W−1
sph, (W

j
sph, X

j
sph,M

j
sph)kj=0 be the state evolution limit of the coordinates of

(
h,w−1

sph,w
0
sph,x

0
sph,m

0
sph, . . . ,w

k
sph,x

k
sph,m

k
sph

)
as N →∞. Define the sequence (b0, b1, . . . ) recursively by b0 = 0 and bk+1 = ψsph(bk).

Lemma 4.5.3. For all non-negative integers 0 ≤ j < k the following equalities hold:

E[(W j
sph)2] = ξ′(q

sph
)

E[W j
sphW

k
sph] = bj

E[(M j
sph)2] = q

sph

E[M j
sphM

k
sph] = φsph(bj).

Proof. Follows from state evolution and induction exactly as in Lemma 4.3.3.

Lemma 4.5.4.

lim
k→∞

bk = ξ′(q
sph

),

lim
k→∞

φsph(bk) = q
sph
.

Proof. As in the proof of Lemma 4.3.4, the sequence b1, b2, . . . , must converge up to a limit, and this

limit must be a fixed point for ψsph, implying the first claim. The second claim follows by continuity

of φsph.

Lemma 4.5.5.

lim
k→∞

p-lim
N→∞

HN (mk
sph)

N
=
√
q
sph

(E[h2] + ξ′(q
sph

)).

Proof. We use again the identity

HN (mk
sph)

N
=
〈
h,mk

sph〉N +

∫ 1

0

〈mk
sph,∇H̃N (tmk

sph)
〉
N

dt

and interchange the limit in probability with the integral. To compute the main term

p-lim
N→∞

〈mk
sph,∇H̃N ((tmk

sph)〉

we introduce an auxiliary AMP step

yk+1
sph = ∇H̃N (tmk

sph)− tmk−1
sph ξ

′′(t〈mk
sph,m

k−1
sph 〉)

√
q

sph

E[h2] + ξ′(q
sph

)
.
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Rearranging yields

〈mk
sph,∇H̃N (tmk

sph)〉N = 〈mk
sph,y

k+1
sph 〉N + t〈mk

sph,m
k−1
sph 〉Nξ

′′(t〈mk
sph,m

k−1
sph 〉N )

√
q

sph

E[h2] + ξ′(q
sph

)

' 〈mk
sph,y

k+1
sph 〉N + tbk−1ξ

′′(tφ(bk−1))

√
q

sph

E[h2] + ξ′(q
sph

)
.

For the first term, Gaussian integration by parts with

g(x) = (x+ h) ·
√

q
sph

E[h2] + ξ′(q
sph

)

yields

E[g(Xk
sph)Y k+1] = E[g′(Xk

sph)] · E[Xk
sphY

k+1
sph ] = ξ′(tφsph(bk−1))

√
q

sph

E[h2] + ξ′(q
sph

)
.

Integrating with respect to t, we find∫ 1

0

〈mk
sph,∇H̃N (tmk

sph)〉Ndt ' E
[
g′
(
Z
√
ξ′(q

sph
)
)]
·
∫ 1

0

ξ′(tφsph(bk−1)) + tφsph(bk−1)ξ′′(tφsph(bk−1))

= [tξ′(tφsph(bk−1))] |t=1
t=0 ·

√
q

sph

E[h2] + ξ′(q
sph

)

= ψsph(bk−1)

√
q

sph

E[h2] + ξ′(q
sph

)
.

Finally the first term gives energy contribution

h〈mk
sph〉N ' E

[
h
(
h+ Z

√
ξ′(bk−1)

)]√ q
sph

E[h2] + ξ′(q
sph

)

= E[h2]

√
q

sph

E[h2] + ξ′(q
sph

)
.

Since limk→∞ bk−1 = ξ′(q
sph

) and ψsph(ξ′(q
sph

)) = ξ′(q
sph

) we conclude

lim
k→∞

p-lim
N→∞

HN (mk
sph)

N
=
√
q

sph
(E[h2] + ξ′(q

sph
)).

Proof of Lemma 4.5.1. The result follows from the preceding lemmas.



CHAPTER 4. OPTIMIZING SPIN GLASSES VIA AMP 158

4.5.2 Proof of Theorem 18

It follows from our algorithm that GSsph(ξ,Lh) ≥ q
sph
ξ′′(q

sph
)1/2 +

∫ 1

q
sph

ξ′′(q
sph

)1/2dq. We now

characterize the models in which equality holds, which coincide with those exhibiting no overlap

gap. Moreover we give an alternate proof of the lower bound for GS(ξ,Lh)sph which shows that

equality holds exactly in no overlap gap models.

Theorem 18. Suppose ξ and Lh satisfy E[h2] + ξ′(1) < ξ′′(1), and let q
sph
∈ (0, 1) be the unique

solution to E[h2] + ξ′(q
sph

) = q
sph
ξ′′(q

sph
). Then the spherical spin glass with parameters ξ,Lh has

no overlap gap if and only if ξ′′(q)−1/2 is concave on q ∈ [q
sph
, 1], in which case α is supported on

[q
sph
, 1] and takes the explicit form

α(s) =

{
0, s ∈ [0, q

sph
)

ξ′′′(s)
2ξ′′(s)3/2

, s ∈ [q
sph
, 1].

Moreover the ground-state energy satisfies

GSsph(ξ,Lh) ≥ q
sph

√
ξ′′(q

sph
) +

∫ 1

q
sph

√
ξ′′(q)dq

with equality if and only if no overlap gap occurs.

Proof. We use the results and notation of [CS17]. If ξ′′(q)−1/2 is concave on [q
sph
, 1] then the proof

of Proposition 2 in [CS17] applies verbatim to show that the support of α is [q
sph
, 1]. In fact it

explicitly shows α(s) = ξ′′′(s)
2ξ′′(s)3/2

for s ∈ [q
sph
, 1]).

In the other direction, we show that if no overlap gap holds and E[h2] + ξ′(1) < ξ′′(1), then

ξ′′(q)−1/2 is concave on [q
sph
, 1]. we use the statement and notation of [CS17, Theorem 2]. Assume

α is supported on the interval [q
sph
, 1]. The last condition in [CS17, Theorem 2] states that g(u) =∫ 1

u
ḡ(s)ds = 0 for all u ∈ [q

sph
, 1], and therefore ḡ(s) = 0 for s ∈ [q

sph
, 1], where

ḡ(s) ≡ ξ′(s) + h2 −
∫ s

0

dq(
L−

∫ q
0
α(r)dr

)2 .
Setting s = q

sph
yields E[h2] + ξ′(q

sph
) = q

sph
L−2, i.e. L =

√
q
sph

E[h2]+ξ′(q
sph

) . Differentiating, all

s ≥ q
sph

satisfy

ξ′′(s) =
1

(L−
∫ s
q
sph

α(r)dr)2
. (4.5.7)
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Taking s = q
sph

in (4.5.7) shows L = ξ′′(q
sph

)−1/2, hence E[h2] + ξ′(q
sph

) = q
sph
ξ′′(q

sph
).

Rearranging (4.5.7) yields

L−
∫ s

q
sph

α(r)dr = ξ′′(s)−1/2, s ≥ q
sph
.

As α must be non-decreasing based on [CS17, Equation (9)] it follows that ξ′′(s)−1/2 is concave on

s ∈ [q
sph
, 1]. This completes the proof of the first equivalence. We turn to the value of GSsph(ξ,Lh),

first computing

E[h2] + ξ′(1) = qξ′′(q
sph

) +

∫ 1

q
sph

ξ′′(q
sph

)dq

=

∫ q
sph

0

ξ′′(q
sph

)dq +

∫ 1

q
sph

ξ′′(q
sph

)dq.

Letting L >
∫ 1

0
α(s)ds and let a(q) =

∫ q
0
α(s)ds, we find

2Q(L,α) = (E[h2] + ξ′(1))L−
∫ 1

0

ξ′′(q)a(q)dq +

∫ 1

0

dq

L− a(q)

=

∫ q
sph

0

(
ξ′′(q

sph
)L− ξ′′(q)a(q)

)
dq +

∫ q
sph

0

dq

L− a(q)

+

∫ 1

q
sph

(
ξ′′(q)

(
L− a(q)

)
+

1

L− a(q)

)
dq.

Since ξ′′ is increasing, AM-GM shows the second-to-last line is at most∫ q
sph

0

ξ′′(q)
(
L− a(q)

)
dq +

∫ q
sph

0

dq

L− a(q)
≥ 2

∫ q
sph

0

√
ξ′′(q

sph
)dq = 2q

√
ξ′′(q

sph
), (4.5.8)

and similarly ∫ 1

q
sph

(
ξ′′(q)

(
L− a(q)

)
+

1

L− a(q)

)
dq ≥ 2

∫ 1

q
sph

√
ξ′′(q)dq. (4.5.9)

Combining, we conclude the lower bound on GSsph(ξ,Lh). Moreover for equality to hold in (4.5.8)

and (4.5.9) we must have

ξ′′(q)−1/2 =

L− a(q), ∀q ∈ [0, q
sph

],

L− a(q), ∀q ∈ [q
sph
, 1).

The first equality forces α(s) = 0 on [0, q
sph

) and L = ξ′′(q0)−1/2, while the second equality implies
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α(q) = − d
dsξ
′′(q)−1/2 for all q ∈ [q

sph
, 1]. Taken together this means that equality in the GSsph

lower bound implies no overlap gap, completing the proof.

4.6 Incremental AMP Proofs

We will prove Lemma 4.6.3 which generalizes Lemma 4.3.6 to the setting of branching AMP and

describes the limiting Gaussian processes Nδ
`,a, Z

δ
`,a. We recall the setup of Section 4.4 and in partic-

ular continue to use the value qB ∈ (q, 1) to define the time `δqB at which Zδ`δqB ,1
= Zδ`δqB ,2

last holds.

For the branching setting we slightly generalize the filtration (4.3.15) to

Fδ` = σ
(
(Zδk,a, N

δ
k,a)0≤k≤`,a∈{1,2}

)
.

Crucially note that we restrict here to k ≥ 0, i.e. we do not include the preparatory iterates with

negative index. We remark that if we consider all the IAMP iterates (Zδ`,a, N
δ
`,a) together in the

linear order given by (`, a)→ 2`+a, then these are iterates of a standard AMP algorithm since each

iterate depends only on the previous ones. Moreover it is easy to see that the Onsager correction

terms are not affected by this rewriting. Therefore we may continue to use state evolution in the

natural way even though we do not think of the iterates as actually being totally ordered.

Lemma 4.6.1. In branching IAMP, Fδ` is jointly independent of the iterates (Z−j)J`<j≤K for

J` ≡ max
(
{`} ∪ {ki,a + `− `δqi : `δqi ≤ `, a ∈ {1, 2}}

)
.

Proof. We proceed by induction over `, the base case ` = 0 following from Proposition 4.2.4. Because

the random variables Z`k,a form a Gaussian process it suffices to verify that

E
[
Zδ`,aZ

−j] = 0

holds whenever j > J`. By state evolution,

E
[
Zδ`,aZ

−j] = ξ′
([
Nδ
`−1,aZ

−j−1
])
.

By definition Nδ
`−1,a is Fδ`−1-measurable. Since ξ′(0) = 0 it suffices to show that Fδ`−1 is independent

of Z−j−1. By the inductive hypothesis, this holds if j + 1 > J`−1. This in turn follows from the

easy-to-verify fact that J` − 1 ≥ J`−1, completing the proof.

Corollary 4.6.2. Let Gδqj ,a be the state evolution limit of g(qj ,a) for each (j, a) ∈ [m] × [2]. Then

the law of (Gδqi,1, G
δ
qi,2) conditioned on Fδ`δqi−1 is N(0, I2).
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Proof. Since ki,1 6= ki,2 it follows from Proposition 4.2.4 that (Gδqi,1, G
δ
qi,2) ∼ N(0, I2) holds as an

unconditional law. Since we chose the values ki,a such that ki,a − `δqi > kj,a′ − `δqj > 0 for any i > j

and a, a′ ∈ {1, 2}, it follows that ki,a > J`δqi−1. Applying Lemma 4.6.1 now concludes the proof.

Lemma 4.6.3. The sequences (Zδ`,a, Z
δ
`+1,a, . . . ) and (Nδ

`,a, N
δ
`+1,a, . . . ) satisfy for ` ≥ `:

E[(Zδ`+1,a − Zδ`,a)Zδj,a] = 0, for all `+ 1 ≤ j ≤ ` (4.6.1)

E[(Zδ`+1,a − Zδ`,a)2|Fδ` ] = ξ′(qδ`+1)− ξ′(qδ` ) (4.6.2)

E[(Zδ`+1,1 − Zδ`,1)(Zδ`+1,2 − Zδ`,2)|Fδ` ] =
(
ξ′(qδ`+1)− ξ′(qδ` )

)
· 1`<`δqB (4.6.3)

E[(Zδ`,a)2] = ξ′(qδ` ) (4.6.4)

E[(Nδ
`+1,a −Nδ

`,a)|Fδ` ] = 0 (4.6.5)

E[(Nδ
`+1,a −Nδ

`,a)2|Fδ` ] = δ (4.6.6)

E[(Nδ
`+1,1 −Nδ

`,1)(Nδ
`+1,2 −Nδ

`,2)|Fδ` ] = δ · 1`<`δqB (4.6.7)

E[(Nδ
`,a)2] = qδ`+1. (4.6.8)

Proof. We recall that (Zδ`,a)`≥`,a∈{1,2} is a Gaussian process, which means we can ignore the condi-

tioning on Fδ` in proving Equation (4.6.2). First we check that Equations (4.6.4) and (4.6.8) hold

for ` = `. For Equation (4.6.8),

E[(Nδ
`,a)2] = (1 + ε0)2E[(M `)2] = (1 + ε0)2q = q + δ = qδ1.

For Equation (4.6.4),

E[(Zδ`,a)2] = ξ′
(
E[(M `−1)2]

)
= ξ′(q).

Observe now that if Equations (4.6.1), (4.6.2), (4.6.5), (4.6.6) hold for ` ≤ ` ≤ k then so do

Equations (4.6.4) and (4.6.8), as

E[(Nδ
`+1,a)2] = E[(Nδ

`+1,a −Nδ
`,a)2] + 2 · E[(Nδ

`+1,a −Nδ
`,a)Nδ

`,a] + E[(Nδ
`,a)2]

and similarly for E[(Zδ`+1,a)2]. Therefore to show the six identities (4.6.1), (4.6.2), (4.6.5), (4.6.6),

(4.6.4) and (4.6.8) it suffices to check the base case ` = ` for Equations (4.6.1), (4.6.2), (4.6.5),

(4.6.6) and to perform an inductive step to show these four identities for ` = k + 1, assuming all

six of these equations as inductive hypotheses for ` ≤ k. We turn to doing this, and finally show

Equations (4.6.3), 4.6.7 at the end.
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Base Case for Equations (4.6.1), (4.6.2), (4.6.5), (4.6.6). Note that here, none of the pertur-

bations g(qi,a) appear yet. We begin with Equation (4.6.1):

E
[(
Zδ`+1,a − Zδ`,a

)
Zδ`,a

]
= ξ′

(
E
[
Nδ
`,aM

`−1
])
− ξ′

(
E
[
M `−1M `−1

])
= ξ′

(
(1 + ε0)E

[
M `M `−1

])
− ξ′(q)

= ξ′((1 + ε0)φ(a`−1))− ξ′(q)

= ξ′(q)− ξ′(q)

= 0.

This means E[Zδ`+1,a|Zδ`,a] = Zδ`,a. Hence

E
[(
Zδ`+2,a − Zδ`+1,a

)
Zδ`+1,a

]
= ξ′

(
E[Nδ

`+1N
δ
`,a]
)
− ξ′

(
E[Nδ

`,aN
δ
`,a]
)
.

To see that the above expression vanishes, it suffices to show that

E[(Nδ
`+1,a −Nδ

`,a)Nδ
`,a] = 0.

This follows since we just showed E[Zδ`+1,a|Zδ`,a] = Zδ`,a and we have

E[(Nδ
`+1,a −Nδ

`,a)Nδ
`,a] = E[uδ`,a(Xδ

`,a)(Zδ`+1,a − Zδ`,a)] = E[uδ`,a(Zδ`,a)(Zδ`+1,a − Zδ`,a)]

Next we verify the base case for Equation (4.6.2). Using the base case of Equation (4.6.1) in the

first step we compute:

E
[(
Zδ`+1,a − Zδ`,a

)2
]

= E
[(
Zδ`+1,a

)2
]
− E

[(
Zδ`,a

)2
]

= ξ′
(
E
[
(Nδ

`,a)2
])
− ξ′(q)

= (1 + ε0)2q − ξ′(q)

= ξ′
(

q2

φ(a`−1)2

)
− ξ′(q)

= ξ′(q + δ)− ξ′(q)

= ξ′(qδ`+1)− ξ′(q).

Continuing, we verify the base case for Equation (4.6.5). First note that

E
[(
Nδ
`+1,a −Nδ

`,a

)
|Fδ`
]

= E
[
uδ`(X

δ
`,a)(Zδ`+1,a − Zδ`,a) | Fδ`

]
= 0.
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The last line holds because Xδ
`,a is Fδ` -measurable and E[Zδ`+1,a − Zδ`,a|Fδ` ] = 0 as deduced above.

Finally for Equation (4.6.6) using the martingale property again we obtain:

E
[(
Nδ
`+1,a −Nδ

`,a

)2
]

= E
[
(uδ`(X

δ
`,a))2(Zδ`+1,a − Zδ`,a)2

]
= E

[
δ

ξ′(qδ`+1,a)− ξ′(qδ` )

(
ξ′(qδ`+1)− ξ′(qδ` )

)]
= δ.

Here the second line follows from the definition of uδ` , and we can multiply the two expectations

because E[(Zδ`+1,a − Zδ`,a)2|Fδ`,a] is constant while the other term is Fδ`,a measurable.

Inductive step We now induct, assuming all 6 identities (4.6.1), (4.6.2), (4.6.5), (4.6.6), (4.6.4)

and (4.6.8) up to ` and showing Equations (4.6.1), (4.6.2), (4.6.5), (4.6.6) for `+ 1. We begin with

Equation (4.6.1). Let `+ 1 ≤ j ≤ `. State evolution implies

E
[(
Zδ`+1,a − Zδ`,a

)
Zδj,a

]
= ξ′

(
E
[
Nδ
`,aN

δ
j−1,a

])
− ξ′

(
E
[
Nδ
`−1,aN

δ
j−1,a

])
.

To show this equals 0 we must show

E
[
Nδ
`,aN

δ
j−1,a

]
= E

[
Nδ
`−1,aN

δ
j−1,a

]
.

When ` = `δqi for some i ∈ [m] this follows from Corollary 4.6.2. Assuming ` 6= `δqi for all i, the

difference between the left and right sides is

E[uδ`−1(Xδ
`−1,a)(Zδ`,a − Zδ`−1,a)Nδ

j−1,a].

Since Nδ
j−1,a is Fδ`−1 measurable and E[Zδ`,a|Fδ`−1] = Zδ`−1,a holds by inductive hypothesis, we

conclude the inductive step for Equation (4.6.1).

We continue to Equation (4.6.2). Using Equation (4.6.1) just proven in the first step we get

E
[(
Zδ`+1,a − Zδ`,a

)2]
= E

[(
Zδ`+1,a

)2 − (Zδ`,a)2]
= ξ′

(
E[Nδ

`,aN
δ
`,a]
)
− ξ′

(
E[Nδ

`−1,aN
δ
`−1,a]

)
= ξ′

(
qδ`+1

)
− ξ′

(
qδ`
)

Next we show Equation (4.6.5) continues to hold. If ` + 1 = `δqi for some i ∈ [m] again follows

from Corollary 4.6.2. When `+1 6= `δqi for all i, it follows from the definition of the sequence Nδ
`,a and

the just proven fact that (Zδ`,a)`≥`+1 forms a martingale sequence. Finally we show Equation (4.6.6)
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continues to hold inductively. Again for `+ 1 = `δqi it follows from Corollary 4.6.2, and otherwise by

definition

E[(uδ`)
2] =

δ

ξ′(qδ` )− ξ′(qδ`−1)
.

Moreover what we showed before implies E[(Zδ`+1,a −Zδ`,a)2|Fδ` ] = ξ′(qδ` )− ξ′(qδ`−1). Applying these

observations to the identity

E[(Nδ
`+1,a −Nδ

` )2|F`] = (uδ`)
2E
[
(Zδ`+1,a − Zδ`,a)2

]
implies Equation (4.6.6) continues to hold.

Equations (4.6.3) and (4.6.7) Finally we consider (4.6.3) and (4.6.7). For ` < `δqi they follow

directly from (4.6.2), (4.6.6). For ` = `δqi , (4.6.7) is trivial while (4.6.3) immediately follows from

state evolution. For ` > `δqi , (4.6.7) follows from the inductive hypothesis and the computation

E[(Nδ
`+1,1 −Nδ

`,1)(Nδ
`+1,2 −Nδ

`,2)|Fδ` ] = (uδ`)
2E
[
(Zδ`+1,1 − Zδ`,1)(Zδ`+1,2 − Zδ`,2)|Fδ`

]
= 0.

Finally for ` > `δqi , (4.6.3) follows from the expansion

E[(Zδ`+1,1 − Zδ`,1)(Zδ`+1,2 − Zδ`,2)] = ξ′
(
E[Nδ

`,1N
δ
`,2]
)
− ξ′

(
E[Nδ

`−1,1N
δ
`,2]
)

− ξ′
(
E[Nδ

`−1,1N
δ
`,2]
)

+ ξ′
(
E[Nδ

`−1,1N
δ
`−1,2]

)
and the fact that all 4 terms on the right hand side are equal thanks to (4.6.5), (4.6.7).

4.6.1 Diffusive Scaling Limit

We begin with the following slight generalization of Lemma 4.3.7 which allows for the additional

perturbation steps of branching IAMP but still considers only a single sample path.

Lemma 4.6.4. Fix q̄ ∈ (q, 1) and an index a. There exists a coupling between the families of triples

{(Zδ`,a, Xδ
`,a, N

δ
`,a)}`≥0 and {(Zt, Xt, Nt)}t≥0 such that the following holds. For some δ0 > 0 and

constant C > 0, for every δ ≤ δ0 and ` ≥ ` with q` ≤ q̄ we have

max
`≤j≤`

E
[(
Xδ
j,a −Xqj

)2] ≤ Cδ, (4.6.9)

max
`≤j≤`

E
[(
Nδ
j,a −Nqj

)2] ≤ Cδ. (4.6.10)

Proof. We prove the scaling limits for Xδ
` and Nδ

` separately, inducting over ` in each proof. We

suppress the index a as it is irrevelant.
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Scaling limit for Xδ
` We begin by checking the claim for ` = `. Recalling that

∫ q`+1

0

√
ξ′′(t)dBt =

Z`+1, we have

E
[(
Xδ
` −Xq

)2
]

= E

[(
Zδ` −

∫ q`+1

0

√
ξ′′(t)dBt

)2
]

≤ 2E
[(
Zδ` − Zδ`+1

)2
]

+ 2E

[(∫ q`+1

q

√
ξ′′(t)dBt

)2
]

= 4(ξ′(q`+1)− ξ′(q))

≤ Cδ.

We continue using a standard self-bounding argument. Let ` ≥ ` + 1 such that q` ≤ q̄. Define

∆X
` = Xδ

` −Xq` . Then

∆X
` −∆X

`−1 =

∫ qδ`

qδ`−1

(
v(qδ`−1;Xδ

` )− v(t;Xt)
)
dt+ Zδ` − Zδ`−1 −

∫ qδ`

qδ`−1

√
ξ′′(s)dBs

=

∫ qδ`

qδ`−1

(
v(qδ`−1;Xδ

` )− v(t;Xt)
)
dt

=

∫ qδ`

qδ`−1

(
v(qδ`−1;Xδ

` )− v(qδ`−1;Xt)
)
dt+

∫ qδ`

qδ`−1

(
v(qδ`−1;Xt)− v(t;Xt)

)
dt.

The first term just above is at most C
∫ qδj
qδj−1

|Xδ
j −Xt|dt since v is Lipschitz in space uniformly for

t ∈ [0, 1]. For the second term we estimate

∑̀
k=`+1

∫ qδk

qδk−1

∣∣v(qδk−1;Xt)− v(t;Xt)
∣∣dt

≤
∑̀
k=`+1

∫ qδk

qδk−1

{∣∣v(qδk−1;Xt)− v(t;Xt)
∣∣+
∣∣v(t;Xt)− v(qδk;Xt)

∣∣}dt

≤ δ
∑̀
k=`+1

sup
qδk−1≤t≤q

δ
k

{∣∣v(qδk−1;Xt)− v(t;Xt)
∣∣+
∣∣v(t;Xt)− v(qδk;Xt)

∣∣}

≤ δ sup
t1,··· ,tk

∑̀
k=`+1

{∣∣v(qδk−1;Xtk)− v(tk;Xtk)
∣∣+
∣∣v(tk;Xtk)− v(qδk;Xtk)

∣∣}
≤ Cδ,

where the last inequality follows since |∂t(v(t, x))|, |∂x(v(t, x)) are uniformly bounded for t ∈ [0, q̄], x ∈
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R. Combining the bounds and summing over j, we find

∣∣∆X
`

∣∣ ≤ |∆X
` |+

∑̀
j=`+1

∣∣∆X
j −∆X

j−1

∣∣ ≤ C ∑̀
j=`+1

∫ qδj

qδj−1

|Xδ
j −Xt|dt+ 2Cδ.

Squaring and taking expectations,

E
[
(∆X

` )2
]
≤ 2C2 E

( ∑̀
j=`+1

∫ qδj

qδj−1

|Xδ
j −Xt|dt

)2

+ 10C2δ2

≤ 2C2(`− `)δ
∑̀
j=`+1

∫ qδj

qδj−1

E |Xδ
j −Xt|2dt+ 10C2δ2.

Furthermore, E |Xδ
j −Xt|2 ≤ 2E |Xδ

j −Xqδj
|2 +2E |Xqδj

−Xt|2. It is clear that E |Xt−Xs|2 ≤ C|t−s|
for all t, s, as ξ′′ is bounded on [0, 1]. Therefore

E
[
(∆X

` )2
]
≤ 4C2(`− `)δ2

∑̀
j=`+1

E
[
(∆X

j )2
]

+ 4C3(`− `)δ
∑̀
j=`+1

∫ qδj

qδj−1

δdt+ 10C2δ2.

The middle term is proportional to (`− `)2δ3. Using (`− `)δ ≤ 1 we obtain that for δ smaller than

an absolute constant, it holds that

E
[
(∆X

` )2
]
≤ Cδ

`−1∑
j=`+1

E
[
(∆X

j )2
]

+ Cδ,

for a different absolute constant C. This implies E
[
(∆X

` )2
]
≤ Cδ as desired.

Scaling limit for Nδ
` Again we begin by checking that ` = `. We compute:

E
[(
Nδ
` −Nq

)2]
= E

[(
(1 + ε0)∂xΦγ∗(q,X`)− ∂xΦγ∗(q,Xq)

)2]
≤ 2ε2

0 E
[(
∂xΦγ∗(q,X`)

)2]
+ 2E

[(
∂xΦγ∗(q,X`)− ∂xΦγ∗(q,Xq)

)2]
= Cε2

0 + C E
[(
Xδ
` −Xq

)2]
≤ Cδ.

Here we have used again the inequality (x− z)2 ≤ 2(x− y)2 + 2(y− z)2 and the fact that derivatives

of Φγ∗ are bounded, as well as ε2
0 ≤ δ/q. At the end we use the bound on E

[(
Xδ
` −Xq

)2
]

shown
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in the previous part of this proof. Next we turn to ` ≥ `+ 1. We have

(Nδ
j+1 −Nqδj+1

)− (Nδ
j −Nqδj ) = uδj(X

δ
j )(Zδj+1 − Zδj )−

∫ qδj+1

qδj

√
ξ′′(t)u(t,Xt)dBt

=

∫ qδj+1

qδj

√
ξ′′(t)

(
uδj(X

δ
j )− u(t,Xt)

)
dBt.

and so

E
[(
Nδ
` −Nqδ`

)2
]
≤ 2 · E

[(
Nδ
` −Nq

)2
]

+ 2 · E


`−1∑
j=`

∫ qδj+1

qδj

√
ξ′′(t)

(
uδj(X

δ
j )− u(t,Xt)

)
dBt

2


(4.6.11)

≤ 2Cδ + 2

`−1∑
j=`

∫ qδj+1

qδj

E
[(
uδj(X

δ
j )− u(t,Xt)

)2]
ξ′′(t)dt.

Recall that uδj(x) = u(qδj ;x)/Σδj for j ≥ 1 where Σδj is given by

(Σδj)
2 =

ξ′(qδj+1)− ξ′(qδj )
δ

E[u(qδj ;X
δ
j )2].

We first show the bound ∣∣(Σδj)2 − 1
∣∣ ≤ C√δ (4.6.12)

for δ small enough, which is of independent interest. Since u is bounded and ξ′′′ is bounded on [0, 1],

we have ∣∣(Σδj)2 − ξ′′(qδj )E[u(qδj ;X
δ
j )2]

∣∣ ≤ Cδ.
Observe now that

E
[
|Xδ

j −Xqδj
|
]
≤
√
δ +

E
[
|Xδ

j −Xqδj
|2
]

√
δ

≤ C
√
δ.

Since u is Lipschitz in space and bounded, this implies

∣∣(Σδj)2 − ξ′′(qδj )E[u(qδj ;Xqδj
)2]
∣∣ ≤ C√δ.

Since E[N2
t ] = t for all t ∈ [0, 1] and t 7→ u(t,Xt) is a.s. continuous, Lebesgue’s differentiation

theorem implies that for all t ∈ [0, 1],

ξ′′(t)E[u(t;Xt)
2] = 1,
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and hence
∣∣(Σδj)2 − 1| ≤ C

√
δ for δ smaller than some absolute constant. This implies the bound

|uδj(Xδ
j )− u(qδj ;X

δ
j )| ≤ C

∣∣ 1
Σδj
− 1
∣∣ ≤ C√δ. Now, going back to Eq. (4.6.11), we have

E
[(
Nδ
` −Nqδ`

)2
]
≤ 2

`−1∑
j=`

∫ qδj+1

qδj

E
[(
uδj(X

δ
j )− u(qδj ;X

δ
j )
)2]

ξ′′(t)dt

+ 2

`−1∑
j=`

∫ qδj+1

qδj

E
[(
u(qδj ;X

δ
j )− u(t,Xt)

)2]
ξ′′(t)dt

From what we just established the first term is at most C(` − `)δ2 ≤ Cδ. To estimate the second

term we compute:

`−1∑
j=`

∫ qδj+1

qδj

E
[(
u(qδj ;X

δ
j )− u(t,Xt)

)2]
ξ′′(t)dt

≤ C
`−1∑
j=`

∫ qδj+1

qδj

E
[(
u(qδj ;X

δ
j )− u(qδj , Xqδj

)
)2
]

dt

+ C

`−1∑
j=`

∫ qδj+1

qδj

E
[(
u(qδj ;Xqδj

)− u(qδj , Xt)
)2
]

dt

+ C

`−1∑
j=`

∫ qδj+1

qδj

E
[(
u(qδj ;Xt)− u(t,Xt)

)2]
dt

= I + II + III.

Since u is Lipschitz in space, we obtain I ≤ C(` − `)δ2. From E[|Xt −Xs|2] ≤ C|t − s|, we obtain

II ≤ C(`− `)δ2. Finally, since u is Lipschitz in time uniformly in space and (`− `)δ ≤ 1, it follows

that III ≤ Cδ. Altogether we obtain

E
[(
Nδ
` −Nqδ`

)2
]
≤ Cδ

concluding the proof.

We now extend Lemmas 4.3.7, 4.6.4 to describe the joint scaling limit of multiple branches, which

become independent at the branching time. Let (Bat )t∈[0,1],a∈{1,2} be standard Brownian motions

with B1
t = B2

t for t ≤ qB and with independent increments after time qB . Couple Bat with (Zδ`,a)`≥0

via

Zδj,a =

∫ qδj

0

√
ξ′′(t)dBat
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and natural filtration (Ft)t∈[0,1] with Ft = σ
(
(B1

s , B
2
s )s≤t

)
. We consider for a ∈ {1, 2} the SDE

dXa
t = γ∗(t)∂xΦγ∗(t,X

a
t )dt+

√
ξ′′(t)dBat

with initial condition Xa
0 = 0, and define

Na
t ≡ ∂xΦγ∗(q,X

a
q ) +

∫ t

q

√
ξ′′(s)u(s,Xa

s )dBas = ∂xΦγ∗(t,X
a
t ),

Zat ≡
∫ t

0

√
ξ′′(s)dBas .

Lemma 4.6.5. Fix q̄ ∈ (q, 1). There exists a coupling between the families of triples {(Zδ`,a, Xδ
`,a, N

δ
`,a)}`≥0,a∈{1,2}

and {(Zat , Xa
t , N

a
t )}t≥0,a∈{1,2} such that the following holds. For some δ0 > 0 and constant C > 0,

for every δ ≤ δ0 and ` ≥ ` with q` ≤ q̄ we have

max
`≤j≤`

E
[(
Xδ
j,a −Xa

qj

)2
]
≤ Cδ,

max
`≤j≤`

E
[(
Nδ
j,a −Na

qj

)2
]
≤ Cδ.

Proof. We generate the desired “grand coupling” by starting with (B1
t , B

2
t ) as above, generating

(Z1
t , Z

2
t ), and then setting Zδj,a = Za

qδj
for each a ∈ {1, 2} and j ≤ ` as in the coupling of Lemma 4.6.4.

It follows from Lemma 4.6.3 that this results in the correct law for (Zδj,a)j∈N,a∈{1,2}. Now, all 3

continuous-time functions in the coupling of Lemma 4.6.4 are determined almost surely by Zt.

Furthermore all 3 discrete-time functions are determined almost surely by the sequence Zδj . Therefore

the coupling just constructed between {Zδ`,a}`≥0,a∈{1,2} and {Zat }t≥0,a∈{1,2} automatically extends to

a coupling of {(Zδ`,a, Xδ
`,a, N

δ
`,a)}`≥0,a∈{1,2} and {(Zat , Xa

t , N
a
t )}t≥0,a∈{1,2}. Since the two a-marginals

of the coupling just constructed both agree with that of Lemma 4.6.4, the claimed approximation

estimates carry over as well, concluding the proof.

4.6.2 The Energy Gain of Incremental AMP

Here we prove Lemma 4.3.9, stated for the branching case.

Lemma 4.6.6.

lim
q̄→1

lim
`→∞

p-lim
N→∞

HN

(
n`,a

)
−HN

(
n`,a

)
N

=

∫ 1

q

ξ′′(t)E [u (t,Xt)] dt. (4.6.13)

Proof. We give the main part of the proof for the ordinary (non-branching) version of the algorithm
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and explain at the end why the same arguments apply in the branching case. Recall that δ = δ(`)→ 0

as ` → ∞, which we will implicitly use throughout the proof. Observe also that 〈h,n` − n`〉N ' 0

because the values (Nδ
` )`≥` form a martingale sequence. Therefore it suffices to compute the in-

probability limit of
H̃N

(
n`
)
−H̃N(n`)
N . The key is to write

H̃N

(
n`
)
− H̃N

(
n`
)

N
=

`−1∑
`=`

H̃N

(
n`+1

)
− H̃N

(
n`
)

N

and use a Taylor series approximation of the summand. In particular for F ∈ C3(R), applying

Taylor’s approximation theorem twice yields

F (1)− F (0) = aF ′(0) +
1

2
F ′′(0) +O( sup

a∈[0,1]

|F ′′′(a)|)

= F ′(0) +
1

2
(F ′(a)− F ′(0)) +O( sup

a∈[0,1]

|F ′′′(a)|)

=
1

2
(F ′(1) + F ′(0)) +O( sup

a∈[0,1]

|F ′′′(a)|).

Assuming sup`
|n`|√
N
≤ 2, which holds with high probability, we apply this estimate with F (a) =

H̃N

(
(1− a)n` + an`+1

)
. The result is:∣∣∣∣H̃N

(
n`+1

)
− H̃N

(
n`
)
− 1

2

〈
∇H̃N (n`) +∇H̃N (n`+1),n`+1 − n`

〉∣∣∣∣
≤ O

(
sup

|v|≤2
√
N

∥∥∥∇3H̃N (v)
∥∥∥

inj

)
|n`+1 − n`|3 .

Here ‖T‖inj = sup‖x‖=1〈T,x⊗3〉 denotes the injective tensor norm on (RN )⊗3. Proposition 4.2.1

implies that

sup
|v|≤2

√
N

∥∥∥∇3H̃N (v)
∥∥∥

inj
≤ O(N−1/2

with high probability. On the other hand p-limN→∞ |n`+1 − n`| =
√
δN for each ` ≤ ` ≤ ` − 1.

Summing and recalling that `− ` ≤ δ−1 yields the high-probability estimate

`−1∑
`=`

∣∣∣∣H̃N

(
n`+1

)
− H̃N

(
n`
)
− 1

2

〈
∇H̃N (n`) +∇H̃N (n`+1),n`+1 − n`

〉∣∣∣∣
≤

`−1∑
`=`

O

(
sup

|x|≤2
√
N

∥∥∥∇3H̃N (x)
∥∥∥

inj

)
· sup

`
|n`+1 − n`|3

≤ O(N
√
δ).
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Because `→∞ implies δ → 0 this term vanishes in the limit, and it remains to show

lim
q̄→1

lim
`→∞

p-lim
N→∞

`−1∑
`=`

1

2

〈
∇H̃N (n`) +∇H̃N (n`+1),n`+1 − n`

〉
N

=

∫ 1

q

ξ′′(t)E [u (t,Xt)] dt.

Next, observe by (4.3.13) that:

∇H̃N (n`) = z`+1 −
∑̀
j=0

d`,jn
j−1. (4.6.14)

Passing to the limiting Gaussian process (Zδk)k∈Z+ via state evolution, and ignoring for now the

constant number of branching updates,

p-lim
N→∞

〈
∇H̃N (n`),n`+1 − n`

〉
N

= E
[
Zδ`+1(Nδ

`+1 −Nδ
` )
]
−
∑̀
j=0

d`,jE
[
Nδ
j−1(Nδ

`+1 −Nδ
` )
]
,

p-lim
N→∞

〈
∇H̃N (n`+1),n`+1 − n`

〉
N

= E
[
Zδ`+2(Nδ

`+1 −Nδ
` )
]
−
`+1∑
j=0

d`+1,jE
[
Nδ
j−1(Nδ

`+1 −Nδ
` )
]
.

As (Nδ
k )k≥Z+ is a martingale process, it follows that the right-hand expectations all vanish.

Similarly it holds that

E[Zδ`+2(Nδ
`+1 −Nδ

` )] = E[Zδ`+1(Nδ
`+1 −Nδ

` )]

E[Zδ` (Nδ
`+1 −Nδ

` )] = 0.

Rewriting and using Lemma 4.6.3 in the last step,

p-lim
N→∞

1

2

〈
∇H̃N (n`) +∇H̃N (n`+1),n`+1 − n`

〉
N

= E[(Zδ`+1 − Zδ` )(Nδ
`+1 −Nδ

` )]

= E[uδ`(X
δ
` )(Zδ`+1 − Zδ` )2]

= E
[
E[uδ`(X

δ
` )(Zδ`+1 − Zδ` )2|Fδ` ]

]
= (ξ′(qδ`+1)− ξ′(qδ` )) · E[uδ`(X

δ
` )]

= (ξ′(qδ`+1)− ξ′(qδ` )) ·
E[uqδ` (Xδ

` )]

Σδ`
.

Recalling (4.6.12), the fact that ut(x) is uniformly Lipschitz in x for t ∈ [0, q̄], the fact that

ξ′(qδ`+1)− ξ′(qδ` ) = δξ′′(qδ` ) +O(δ2) and the coupling of Lemma 4.6.4, it follows that

p-lim
N→∞

1

2

〈
∇H̃N (n`) +∇H̃N (n`+1),n`+1 − n`

〉
N

= δξ′′(qδ` )E[uqδ` (Xqδ`
)] +Oq̄(δ

3/2).
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Summing over ` and using continuity of ut(x) in t, it follows that

lim
`→∞

p-lim
N→∞

H̃N (n`)− H̃N (n`)

N
=

∫ q̄

q

ξ′′(t)E[u(t,Xt)]dt.

Sending q̄ → 1 now concludes the proof when there are no branching steps. Extending the proof to

cover branching steps is not difficult and we explain it now. Everything up to (4.6.14) is still valid,

and if the number |Q| of branching steps is m, then the full analysis applies to all but m terms.

However the simple uniform bound

H̃N (n`+1)− H̃N (n`) ≤ ‖n`+1 − n`‖ · sup
‖x‖N≤1+ η

2

‖∇H̃N (x)‖

≤ O(
√
Nδ) ·O(

√
N)

≤ O(N
√
δ)

holds with high probability. Here we have used Proposition 4.2.6 to deduce ‖n`‖N , ‖n`+1‖N ≤
1 + o(1) with high probability, and also Proposition 4.2.1 and Equation (4.6.6). Therefore all

telescoping terms, branching or not, uniformly contribute O(N
√
δ) energy in probability. As a

result, even when a constant number of non-branching terms are replaced by branching terms,

the same analysis applies up to error O(N
√
δ), yielding the same asymptotic energy for branching

q-IAMP and completing the proof.



Chapter 5

Tight Lipschitz Hardness for

Optimizing Mean-Field Spin

Glasses

5.1 Introduction

For each p ∈ 2N, let G(p) ∈
(
RN
)⊗p

be an independent p-tensor with i.i.d. N (0, 1) entries. Let

h ≥ 0, and set h = (h, . . . , h) ∈ RN . Fix a sequence (γp)p∈2N with γp ≥ 0 and
∑
p∈2N 2pγ2

p < ∞.

The mixed even p-spin Hamiltonian HN is defined by

HN (σ) = 〈h,σ〉+ H̃N (σ), where (5.1.1)

H̃N (σ) =
∑
p∈2N

γp
N (p−1)/2

〈G(p),σ⊗p〉. (5.1.2)

We consider inputs σ in either the sphere SN = {σ ∈ RN :
∑N
i=1 σ

2
i = N} or the cube ΣN =

{−1, 1}N . These define, respectively, the spherical and Ising mixed p-spin glass models. The

coefficients γp are customarily encoded in the mixture function ξ(x) =
∑
p∈2N γ

2
px

p. Note that H̃N

is equivalently described as the Gaussian process with covariance

E H̃N (σ1)H̃N (σ2) = Nξ(〈σ1,σ2〉/N).

Our purpose is to shed light on a discrepancy between the in-probability limiting maximum

173
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values

OPTSp
ξ,h = p-lim

N→∞

1

N
max
σ∈SN

HN (σ), OPTIs
ξ,h = p-lim

N→∞

1

N
max
σ∈ΣN

HN (σ)

and the maximum efficiently computable values of HN over the same sets. We will write OPTSp =

OPTSp
ξ,h and OPTIs = OPTIs

ξ,h when ξ, h are clear from context. The values OPTSp and OPTIs are

given by the celebrated Parisi formula [Par79] which was proved for even models by [Tal06d, Tal06a]

and in more generality by [Pan14]. While most often stated as a formula for the limiting free energy

at inverse temperature β, the asymptotic maximum can be recovered as a β →∞ limit of the Parisi

formula. Restricting for concreteness to the Ising case (we will state the analogous result for the

spherical case in Section 5.2), the result can be expressed in the following form due to Auffinger and

Chen [AC17b].

Define the function space

U =

{
ζ : [0, 1)→ R≥0 : ζ is right-continuous and nondecreasing,

∫ 1

0

ζ(t)dt <∞
}
. (5.1.3)

For ζ ∈ U , define Φζ : [0, 1]× R→ R to be the solution of the following Parisi PDE.

∂tΦζ(t, x) +
1

2
ξ′′(t)

(
∂xxΦζ(t, x) + ζ(t)(∂xΦζ(t, x))2

)
= 0 (5.1.4)

Φζ(1, x) = |x|. (5.1.5)

Existence and uniqueness properties for this PDE are well established and are reviewed in Sub-

section 5.6.1. The Parisi functional PIs = PIs
ξ,h : U → R is given by

PIs(ζ) = Φζ(0, h)− 1

2

∫ 1

0

tξ′′(t)ζ(t) dt. (5.1.6)

Theorem 20 ([AC17b, Theorem 1]). The following identity holds.

OPTIs = inf
ζ∈U

PIs(ζ). (5.1.7)

The infimum over ζ ∈ U is achieved at a unique ζ∗ ∈ U as shown in [AC17b, CHL18], which

can be obtained as an appropriately renormalized zero-temperature limit of the corresponding min-

imizers in the positive temperature Parisi formula. These positive temperature minimizers roughly

correspond to cumulative distribution functions for the overlap 〈σ1,σ2〉/N of two replicas σ1,σ2

sampled from the Gibbs measure eβHN /ZN (β); this is why the functions ζ considered in the Parisi

formula are nondecreasing.

We recall the main result of the previous Chapter. For a function f : R→ R and interval J , let
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‖f‖TV(J) denote the total variation of f on J , expressed as the supremum over partitions:

‖f‖TV(J) = sup
n

sup
t0<t1<···<tn,ti∈J

n∑
i=1

|f(ti)− f(ti−1)|.

Let L ⊇ U denote the set of functions given by

L =


ζ : [0, 1)→ R≥0 : ζ right-continuous, ‖ξ′′ · ζ‖TV[0,t] <∞ for all t ∈ [0, 1),∫ 1

0

ξ′′(t)ζ(t) dt <∞

 . (5.1.8)

It turns out (see Subsection 5.6.1) that the definition of PIs above extends from U to L . Therefore

we may define ALGIs = ALGIs
ξ,h by

ALGIs = inf
ζ∈L

PIs(ζ). (5.1.9)

Note that ALGIs ≤ OPTIs trivially holds. We have ALGIs = OPTIs if the infimum in (5.1.9) is

attained by some ζ ∈ U , and otherwise ALGIs < OPTIs. The following result was shown in the

previous Chapter.

Theorem 21. Assume there exists ζ∗ ∈ L such that PIs(ζ∗) = ALGIs. Then for any ε > 0, there

exists an efficient AMP algorithm A : HN → CN such that

P[HN (A(HN ))/N ≥ ALGIs − ε] ≥ 1− o(1), c = c(ε) > 0.

Recall that the AMP algorithms of the previous Chapter use only a constant number of queries

of ∇HN (·); this results in computation time linear in the description length of HN when ξ is a

polynomial, assuming oracle access to ζ∗ and the function Φζ∗ . Because of the natural condition

under which ALG and OPT are equal, one might conjecture that the aforementioned AMP algorithms

achieve the best asymptotic energy possible for efficient algorithms.

This belief was also aligned with results on the “critical point complexity” of pure spherical spin

glasses with ξ(x) = xp and h = 0. In this case, the analogous value ALGSp is the one obtained

by [Sub21] and coincides with the onset of exponentially many bounded index critical points, as

established in [ABAČ13, Sub17]. In this case almost all local optima have energy value ALGSp±o(1)

with high probability, which suggests from another direction that exceeding the energy ALGSp might

be computationally intractable. On the other hand, it is not clear whether this threshold coincides

with ALGSp beyond the pure case.

It unfortunately seems difficult to establish any limitations on the power of general polynomial-

time algorithms for such a task. However one might still hope to characterize the power of natural

classes of algorithms that include gradient descent and AMP. To this end, we define the following



CHAPTER 5. LIPSCHITZ HARDNESS FOR OPTIMIZING SPIN GLASSES 176

distance on the space HN of Hamiltonians HN . We identify HN with its disorder coefficients

(G(p))p∈2N, which we concatenate (in an arbitrary but fixed order) into an infinite vector g(HN ).

We equip HN with the (possibly infinite) distance

‖HN −H ′N‖2 = ‖g(HN )− g(H ′N )‖2.

Let BN = {σ ∈ RN :
∑N
i=1 σ

2
i ≤ N} and CN = [−1, 1]N be the convex hulls of SN and ΣN , which

we equip with the standard ‖·‖2 distance. A consequence of our main result is that no suitably

Lipschitz function A : HN → CN can surpass the asymptotic value ALGIs. (And similarly in the

spherical case for A : HN → BN and an analogous ALGSp.)

Theorem 22. Let τ, ε > 0 be constants. For N sufficiently large, any τ -Lipschitz A : HN → CN

satisfies

P
[
HN (A(HN ))/N ≥ ALGIs + ε

]
≤ exp(−cN), c = c(ξ, h, ε, τ) > 0.

Note that the Lipschitz condition ‖A(HN )−A(H ′N )‖2 ≤ τ‖HN −H ′N‖2 holds vacuously when

the latter distance is infinite.

The IAMP algorithms of the previous Chapter are O(1)-Lipschitz in the sense above1. While the

approach of [Sub21] is not Lipschitz, its performance is captured by AMP as explained in [AMS21,

Remark 2.2].2 Hence in tandem with these constructive results, Theorem 22 identifies the exact

asymptotic value achievable by Lipschitz functions A : HN → CN (assuming the existence of a

minimizer ζ∗ ∈ L as required in Theorem 21). We also give an analogous result for spherical spin

glasses, in which there is no question of existence of a minimizer on the algorithmic side. Let us

remark that the rate e−cN in Theorem 22 is best possible up to the value of c, being achieved even

for the trivial algorithm A(HN ) = (1, 1, . . . , 1) which ignores its input entirely.

Abstractly, the assumption that A is Lipschitz is geometrically natural and brings us near the

well-studied setting of Lipschitz selection [Shv84, PY95, Shv02, FS18]. Here one is given a metrized

family S of subsets inside a metric space X. The goal is to find a function f : S → X with the

selection property that f(S) ∈ S for all S ∈ S, and such that f has a small Lipschitz constant.

Indeed a Lipschitz function A : HN → CN achieving energy E is almost the same as a Lipschitz

selector for the level sets

SE(HN ) = {σ ∈ CN : HN (σ)/N ≥ E}

metrized by the norm on HN defined above (and leaving aside the fact that SE(HN ) may not

determine HN ). Of course we can only hope for A(HN ) ∈ SE(HN ) to hold with high probability,

since SE(HN ) is empty with small but positive probability. See the next Chapter for a problem in

online Lipschitz selection.

1Technically we rounded the output to the discrete set ΣN at the end, making the algorithm discontinuous.
Removing the rounding step yields Lipschitz maps A : HN → CN with the same performance.

2We also outline a similar impossibility result for a family of variants of [Sub21] in Subsection 5.3.7.
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Many natural optimization algorithms satisfy the Lipschitz property above on a set KN ⊆ HN

of inputs with 1 − exp(−Ω(N)) probability; this suffices just as well for Theorem 22 thanks to the

Kirszbraun extension theorem (see Subsection C.1.1). As explained in Section C.1, algorithms with

this property include the following examples, all run for a constant (i.e. dimension-independent)

number of iterations or amount of time.

• Gradient descent and natural variants thereof;

• Approximate message passing;

• More general “higher-order” optimization methods with access to ∇kHN (·) for constant k;

• Langevin dynamics for the Gibbs measure eβHN with suitable reflecting boundary conditions

and any positive constant β.

In fact we will not require the full Lipschitz assumption on A, but only a consequence that we call

overlap concentration. Roughly speaking, overlap concentration of A means that given any fixed

correlation between the disorder coefficients of H1
N and H2

N , the overlap 〈A(H1
N ),A(H2

N )〉/N tightly

concentrates around its mean. This property holds automatically for τ -Lipschitz A thanks to con-

centration of measure on Gaussian space. It also might plausibly be satisfied for some discontinuous

algorithms such as the Glauber dynamics.

5.1.1 Further Background

We now describe some other results on algorithmically optimizing spin glass Hamiltonians. First, in

the worst case over the disorder G(p), achieving any constant approximation ratio to the true opti-

mum value is known to be quasi-NP hard even for degree 2 polynomials [ABE+05, BBH+12]. For the

Sherrington-Kirkpatrick model with ξ(t) = t2/2 on the cube, it was recently shown to be NP-hard

on average to compute the exact value of the partition function [GK21b]. Of course, these computa-

tional hardness results demand much stronger guarantees than the approximate optimization with

high probability that we consider.

Another important line of work, alluded to above, has studied the complexity of the landscape

of HN on the sphere, defined as the exponential growth rate for the number of local optima and

saddle points of finite-index at a given energy level. These are understood to serve as barriers to

efficient optimization, and a non-rigorous study was undertaken in [CLR03, CLR05, Par06] followed

by a great deal of recent progress in [ABAČ13, ABA13, Sub17, McK21, Kiv21, SZ21]. Notably

because the true maximum value of HN is nothing but its largest critical value, the first moment

results of [ABAČ13] combined with the second moment results of [Sub17] gave an alternate self-

contained proof of the Parisi formula for the ground state in pure spherical models. In a related
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spirit, [Cha09, DEZ15, CS17, CHL18] have shown that mixed even p-spin Hamiltonians typically

contain exponentially many well-separated near-global maxima.

Other works such as [CK94, BCKM98, BADG06, BAGJ20, CCM21] have studied natural algo-

rithms such as Langevin and Glauber dynamics on short (independent of N) time scales. These

approaches yield (often non-rigorous) predictions for the energy achieved after a fixed amount of

time. However these predictions involve complicated systems of differential equations, and to the

best of our knowledge it is not known how to cleanly describe the long-time limiting energy achieved.

Let us also mention the recent results of [EKZ21, AJK+21] showing that the Glauber dynamics for

the Sherrington-Kirkpatrick model mix rapidly at high temperature. By contrast the problem of

optimization considered in this work is related to the low temperature behavior of the model.

5.1.2 The Overlap Gap Property as a Barrier to Algorithms

Optimizing a spin glass Hamiltonian is one example of a random optimization problem, where one

aims to find an input achieving a large value for a random objective function. These problems

include finding a large independent set in a random graph, the Number Partitioning Problem, and

constraint satisfaction problems (CSPs) such as random k-SAT and q-coloring a random graph.

Like spin glass optimization, random optimization problems often have information-computation

gaps, where the maximum objective that exists is larger than the maximum objective that can be

found by any known efficient algorithm. Since the early 2000s, there has emerged a large body

of evidence that suggests that these gaps are inherent. This evidence has also produced heuristics

predicting the optimal objective achieved by efficient algorithms.

We will focus on a line of work linking the failure of algorithms to phase transitions in the prob-

lem’s solution geometry. One version of this connection was proposed in [ACO08, COE15] based on

a shattering phase transition: at large constraint density the solution space breaks into exponen-

tially many small components, for suitable random instances of k-SAT, q-coloring, and maximum

independent set. Shattering defeats local search heuristics, suggesting that polynomial-time algo-

rithms should not succeed. Other predictions based on the clustering, condensation [KMRT+07]

and freezing [ZK07] transitions have also been suggested.

Another recent line of work [GS14, RV17a, GS17, CGPR19, GJ21, GJW20a, Wei22, GK21a,

BH21, GJW21] on the Overlap Gap Property (OGP) has made substantial progress on rigorously

linking solution geometry clustering in random optimization problems to algorithmic hardness. A

survey can be found in [Gam21]. Initiated by Gamarnik and Sudan in [GS14], this line of work

formalizes clustering as an “overlap gap,” the absence of a pair of solutions with medium overlap,

and proves that this condition implies failure of various classes of stable algorithms. In its original

form, an OGP argument consists of two parts. First, it shows that above some constraint density or
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objective value, with high probability there exists no pair of solutions with medium overlap. Then,

it argues that a stable algorithm solving the problem can be used to construct such a solution pair,

implying that such an algorithm cannot exist if the OGP holds. An important difference from the

predictions above is that the shattering, clustering, and freezing transitions describe properties of a

typical solution, while an OGP requires that solution pairs with medium overlap do not exist at all.

Over many problems, a pattern has emerged where the classic OGP argument shows the failure

of stable algorithms above an intermediate objective value, smaller than the maximum objective

that exists but larger than the maximum objective that algorithms can find. To improve the value

beyond which stable algorithms are proven to fail, subsequent works have considered “multi-OGPs”:

enhancements of OGP that use more complex forbidden structures involving more than two solutions.

The strategy is similar: one shows that an appropriately chosen structure of solutions does not

occur with high probability, and that a putative stable algorithm solving the problem can be used

to construct this structure. This technique improves on the classic OGP if the structure becomes

forbidden at a lower objective value than the classic OGP forbidden structure.

Multi-OGPs have the potential to show nearly-tight algorithmic hardness for stable algorithms.

For maximum independent sets on G(N, d/N) in the limit N → ∞ followed by d → ∞, [Wei22]

proved by a multi-OGP that low degree polynomial algorithms cannot attain any objective asymptot-

ically larger than the believed algorithmic limit. Previously [RV17a] showed the same impossibility

result for the more restricted class of local algorithms. Similarly, [BH21] used a multi-OGP to prove

that low degree polynomials fail to solve random k-SAT at a clause density a constant factor above

where algorithms are known to succeed.

For pure spherical and Ising p-spin glasses where h = 0 and p ≥ 4 is even, ALG < OPT always

holds (recall (5.1.7), (5.1.9)). In such models, [GJW20a] showed using a (2-solution) OGP that low

degree polynomials cannot achieve some objective strictly smaller than OPT, extending a similar

hardness result of [GJ21] for approximate message passing. [GJW21] extended the conclusions of

[GJW20a] to Boolean circuits of depth less than logn
2 log logn . As pointed out in [Sel21b, Section 6], these

results extend in the Ising case to any mixed even model where ALGIs < OPTIs. In this chapter,

we will use a multi-OGP to show that overlap concentrated algorithms cannot optimize mixed even

spherical or Ising spin glasses to any objective larger than ALG.

The design of our multi-OGP is a significant departure from previous work. Previous OGPs and

multi-OGPs all use one of the following three forbidden structures, see Figure 5.1.

• Classic OGP: two solutions with medium overlap [GS14, CGPR19, GJ21, GJW20a, GJW21].

• Star OGP: several solutions with approximately equal pairwise overlap [RV17a, GS17, GK21a].

• Ladder OGP: several solutions, where the i-th solution (i ≥ 2) has medium “multi-overlap”

with the first i− 1 solutions, for a problem-specific notion of multi-overlap [Wei22, BH21].
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(a) Classic OGP: σ1,σ2 have medium overlap. (b) Star OGP: many solutions, medium overlaps.

(c) Ladder OGP: medium “multi-
overlaps” between σi and {σ1, . . . ,σi−1}.

(d) Branching OGP: many solutions in an ultrametric tree.

Figure 5.1: Schematics of forbidden structures in OGP arguments.

In contrast, the forbidden structure in our multi-OGP is an arbitrarily complicated ultrametric

branching tree of solutions. We call this the Branching OGP. Informally, the Branching OGP is

the condition that for any fixed ε > 0, no constellation of configurations with a certain ultrametric

overlap structure has average energy ALG + ε. The definition involves a family of “ultrametrically

correlated” Hamiltonians, with one input in the constellation per Hamiltonian.

We establish this branching OGP as follows. Using a version of the Guerra-Talagrand interpola-

tion, which we take to zero temperature, we derive an upper bound for the maximum average energy

of configurations arranged into the desired structure. This upper bound is a multi-dimensional ana-

logue of the Parisi formula, and depends on an essentially arbitrary increasing function ζ : [0, 1]→ R+

(which we are free to minimize over). We show that for a symmetric branching tree, the resulting

estimate can be upper bounded by P(κζ). Here P is the Parisi functional PIs or its spherical analogue

PSp, and κ is a decreasing piecewise-constant function that depends on the tree. By making the

tree branch rapidly, the function κ can be arranged to decrease as rapidly as desired. As a result,

the functions κζ are dense in the space L . Thus, we may choose a tree and ζ such that P(κζ) is

arbitrarily close to ALG.
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Roughly speaking, we show that an overlap concentratedA allows the construction of an arbitrary

ultrametric constellation of outputs. Consequently, if A outputs points with energy at least ALG+ε,

then A run on the appropriate family of ultrametrically correlated Hamiltonians will output the

forbidden structure above, a contradiction. Some additional complications are created by the fact

that E[A(HN )] may be arbitrary, and that A(HN ) may be in the interior of CN (or in the spherical

case, BN ). The former issue requires us to control the maximum average energy of ultrametric

constellations of points that all have approximately a fixed overlap with E[A(HN )]. We deal with

the latter issue by composing A with an additional phase that grows each output of A into its

own ultrametric tree of points in ΣN (or SN ), so that the resulting set of points has the forbidden

ultrametric structure.

We also show that the full strength of the branching OGP is necessary to establish Lipschitz

hardness at all objectives above ALG, in the sense that any less complex ultrametric structure fails

to be forbidden at an energy bounded away from ALG. More precisely, consider a spherical model ξ

without external field; we restrict to this case for convenience. Consider a fixed ultrametric overlap

structure of inputs, whose corresponding rooted tree (cf. Subsection 5.7.2) does not contain a

full depth-D binary tree. We prove that if ALGSp < OPTSp, with high probability there exists a

constellation of inputs with this overlap structure where each input achieves energy at least ALGSp +

εξ,D, for a constant εξ,D > 0 depending only on ξ,D.

Remark 5.1.1. To our knowledge, this is the first hardness result in any natural random optimiza-

tion problem that is tight in the strong sense of characterizing the exact point ALG where hardness

occurs. The aforementioned hardness results for maximum independent set on G(N, d/N) are tight

in the sense of matching the best algorithms within a 1 + od(1) factor in the limit d→∞. In fact,

prior to this work, all outstanding predictions for the algorithmic threshold in any random optimiza-

tion problem have only matched the best algorithms within a 1 + od(1) factor in the large-degree

limit. Consequently we believe that the branching OGP elucidates the fundamental reason for al-

gorithmic hardness and may provide a framework for exact algorithmic thresholds in other random

optimization problems.

Remark 5.1.2. The significance of ultrametricity in mean-field spin glasses began with [Par79] and

has played an enormous role in guiding the mathematical understanding of the low temperature

regime in works such as [Rue87, Pan13a, Jag17, CS21]. Ultrametricity also appears naturally in the

context of optimization algorithms. Indeed in [Sub21, Remark 6], [AM20, Section 3.4] and [Sel21b,

Theorem 4] it was realized that the aforementioned algorithms achieving asymptotic energy ALG

are capable of more. Namely, they can construct arbitrary ultrametric constellations of solutions

(subject to a suitable diameter upper bound), each with energy ALG. Our proof via branching OGP

establishes a sharp converse — the existence of essentially arbitrary ultrametric configurations at a

given energy level is equivalent to achievability by Lipschitz A.
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Remark 5.1.3. Since the algorithm of Subag in [Sub21] uses the top eigenvector of the Hessian

∇2HN (x) for various x ∈ BN , it is not Lipschitz in HN in the sense we require. However a different

branching OGP argument shows that a stylized class of algorithms which includes a natural variant

of Subag’s approach is also incapable of achieving energy ALG + ε. This argument uses only a

single Hamiltonian, constructing a branching tree structure using the internal randomness of the

algorithm. In this sense, it bears resemblance to the original OGP analysis of [GS14]. An outline is

given in Subsection 5.3.7.

5.2 The Optimal Energy of Overlap Concentrated Algorithms

5.2.1 Overlap Concentrated Algorithms

For any p ∈ [0, 1], we may construct two correlated copies H
(1)
N , H

(2)
N of HN as follows. Construct

three i.i.d. Hamiltonians H̃
[0]
N , H̃

[1]
N , H̃

[2]
N with mixture ξ, as in (5.1.2). Let

H̃
(1)
N =

√
pH̃

[0]
N +

√
1− pH̃ [1]

N and H̃
(2)
N =

√
pH̃

[0]
N +

√
1− pH̃ [2]

N

and define

H
(1)
N (σ) = 〈h,σ〉+ H̃

(1)
N (σ) and H

(2)
N (σ) = 〈h,σ〉+ H̃

(2)
N (σ).

We say the pair of Hamiltonians H
(1)
N , H

(2)
N is p-correlated. Note that pairs of corresponding entries

in g(1) = g(H
(1)
N ) and g(2) = g(H

(2)
N ) are Gaussian with covariance

[ 1 p
p 1

]
.

We will determine the maximum energy attained by algorithms AN : HN → BN or AN : HN →
CN (always assumed to be measurable) obeying the following overlap concentration property.

Definition 5.2.1. Let λ, ν > 0. An algorithm A = AN is (λ, ν) overlap concentrated if for any

p ∈ [0, 1] and p-correlated Hamiltonians H
(1)
N , H

(2)
N ,

P
[∣∣∣R(A(H

(1)
N ),A(H

(2)
N )
)
− ER

(
A(H

(1)
N ),A(H

(2)
N )
)∣∣∣ ≥ λ] ≤ ν. (5.2.1)

5.2.2 The Spherical Zero-Temperature Parisi Functional

We introduce a Parisi functional PSp for the spherical setting, analogous to the Parisi functional PIs

for the Ising setting introduced in (5.1.6). Similarly to Theorem 20, Auffinger and Chen [AC17a], see

also [CS17], characterize the ground state energy of the spherical spin glass by a variational formula

in terms of this Parisi functional. Recall the set U defined in (5.1.3). Let

V (ξ) =

{
(B, ζ) ∈ R+ ×U : B >

∫ 1

0

ξ′′(t)ζ(t) dt

}
.
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Define the spherical Parisi functional PSp = PSp
ξ,h : V (ξ)→ R by

PSp(B, ζ) =
1

2

[
h2

Bζ(0)
+

∫ 1

0

(
ξ′′(t)

Bζ(t)
+Bζ(t)

)
dt

]
, (5.2.2)

where for t ∈ [0, 1]

Bζ(t) = B −
∫ 1

t

ξ′′(q)ζ(q) dq. (5.2.3)

Theorem 23 ([AC17a, Theorem 10]). The following identity holds.

OPTSp = inf
(B,ζ)∈V (ξ)

PSp(B, ζ). (5.2.4)

The infimum is attained at a unique (B∗, ζ∗) ∈ V (ξ).

5.2.3 Main Results

We defined ALGIs in (5.1.9) by a non-monotone extension of the variational formula in (5.1.7). We

can similarly define ALGSp by a non-monotone extension of (5.2.4). Recall the set L defined in

(5.1.8). Let K (ξ) ⊇ V (ξ) denote the set

K (ξ) =

{
(B, ζ) ∈ R+ ×L : B >

∫ 1

0

ξ′′(t)ζ(t) dt

}
.

The Parisi functional PSp can clearly be defined on K (ξ). We define ALGSp = ALGSp
ξ,h by

ALGSp = inf
(B,ζ)∈K (ξ)

PSp(B, ζ). (5.2.5)

Note that ALGSp ≤ OPTSp trivially.

We are now ready to state the main result of this work. We will show that for any mixed even

spherical or Ising spin glass, no overlap concentrated algorithm can attain an energy level above the

algorithmic thresholds ALGSp and ALGIs with nontrivial probability.

Theorem 24 (Main Result). Consider a mixed even Hamiltonian HN with model (ξ, h). Let ALG =

ALGSp (resp. ALGIs). For any ε > 0 there are λ, c,N0 > 0 depending only on ξ, h, ε such that the

following holds for any N ≥ N0 and any ν ∈ [0, 1]. For any (λ, ν) overlap concentrated A = AN :

HN → BN (resp. CN ),

P
[

1

N
HN (A(HN )) ≥ ALG + ε

]
≤ exp(−cN) + 3(ν/λ)c.

Remark 5.2.1. If A is τ -Lipschitz, (λ, ν) overlap concentration holds with ν = exp(−cλ,τN) by
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concentration of measure on Gaussian space, see Proposition C.1.2. Hence in this case the probability

on the right-hand side above is exponentially small in N . The same property holds when A is τ -

Lipschitz on a set of inputs with 1− exp(−Ω(N)) probability, see Proposition C.1.3.

In tandem with Theorem 21 and its spherical analogue Theorem 25 below, Theorem 37 exactly

characterizes the maximum energy attained by overlap concentrated algorithms (again with the

caveat on the algorithmic side in the Ising case that a minimizer γ∗ ∈ L exists in Theorem 21). We

will see in Section C.1 that the algorithms in these two theorems are overlap concentrated.

Theorem 25 ([AMS21, Sel21b]). For any ε > 0, there exists an efficient and Oε(1)-Lipschitz AMP

algorithm A : HN → BN such that

P[HN (A(HN ))/N ≥ ALGSp − ε] ≥ 1− exp(−cN), c = c(ε) > 0.

In the case of the spherical spin glass, the value of ALGSp is explicit, and is given by the following

proposition. We will prove this proposition in Appendix C.3.

Proposition 5.2.2. If h2 + ξ′(1) ≥ ξ′′(1), then

ALGSp = (h2 + ξ′(1))1/2,

and the infimum in (5.2.5) is uniquely attained by B = (h2 + ξ′(1))1/2, ζ = 0. Otherwise,

ALGSp = q̂ξ′′(q̂)1/2 +

∫ 1

q̂

ξ′′(q)1/2 dq

where q̂ ∈ [0, 1) is the unique number satisfying h2 + ξ′(q̂) = q̂ξ′′(q̂). If h > 0, the infimum in (5.2.5)

is uniquely attained by B = ξ′′(1)1/2 and

ζ(q) = I{q ≥ q̂} ξ′′′(q)

2ξ′′(q)3/2
= −I{q ≥ q̂} d

dq
ξ′′(q)−1/2. (5.2.6)

If h = 0, the infimum is not attained. It is achieved by B = ξ′′(1)1/2 and ζ given by (5.2.6) in the

limit as q̂ → 0+.3

Note that ALGSp = OPTSp if and only if the infimum in (5.2.5) is attained at a pair (B, ζ) ∈ V (ξ).

Thus, Proposition 5.2.2 implies that ALGSp = OPTSp if and only if h2 + ξ′(1) ≥ ξ′′(1) or ξ′′(q)−1/2

is concave on [q̂, 1]. In the former case, the model is replica symmetric at zero temperature; in the

latter case it is full replica symmetry breaking on [q̂, 1] at zero temperature. Interestingly, in the

case h2 + ξ′(1) > ξ′′(1), [Fyo13, BČNS21] showed that HN has “trivial complexity”: no critical

points on SN with high probability except for the unique global maximizer and minimizer.

3When h = 0, we cannot take q̂ = 0 in (5.2.6) because then B =
∫ 1
0 ξ
′′(q)ζ(q) dq, so (B, ζ) 6∈ K (ξ).
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In the important case of the pure p-spin model, with h = 0 and ξ(x) = xp for p ≥ 4 even,

ALGSp =

∫ 1

0

ξ′′(q)1/2 dq = 2

√
p− 1

p
.

This coincides with the threshold E∞(p) identified in [ABAČ13]. As conjectured in [ABAČ13] and

proved in [Sub17], with high probability an overwhelming majority of local maxima of HN on SN

have energy value E∞(p)±o(1). This suggests that it may be computationally intractable to achieve

energy at least E∞(p) + ε for any ε > 0; our results confirm this hypothesis for overlap concentrated

algorithms.

Remark 5.2.2. Our results generalize with no changes in the proofs to arbitrary external fields

h = (h1, . . . , hN ) which are independent of H̃N — one only needs to replace h2 by ‖h‖
2

N in (5.2.2)

and replace Φ(0, h) by 1
N

∑N
i=1 Φ(0, hi) in (5.1.6). This includes for instance the natural case of

Gaussian external field h ∼ N (0, IN ). Here A can depend arbitrarily on h as long as overlap

concentration holds conditionally on h.

5.2.4 Notation and Preliminaries

We generally use ordinary lower-case letters (x, y, . . .) for scalars and bold lower-case (x,y, . . .) for

vectors. For x,y ∈ RN , we denote the ordinary inner product by 〈x,y〉 =
∑N
i=1 xiyi and the

normalized inner product by R(x,y) = 1
N 〈x,y〉. We associate with these inner products the norms

‖x‖22 = 〈x,x〉 and ‖x‖2N = R(x,x). There is no confusion between the ‖·‖N norm and the `p norm,

which will not appear in this chapter. We use the standard notations O(·),Ω(·), o(·) to indicate

asymptotic behavior in N .

Ensembles of scalars over an index set L are denoted with an arrow (~x, ~y, . . .), and the entry of

~x indexed by u ∈ L is denoted x(u). Similarly, ensembles of vectors are written in bold and with

an arrow (~x, ~y, . . .), and the entry of ~x indexed by u ∈ L are denoted x(u). Sequences of scalars

parametrizing these ensembles are also denoted with an arrow, for example ~k = (k1, . . . , kD).

We reiterate that SN = {x ∈ RN :
∑N
i=1 x

2
i = N} and ΣN = {−1, 1}N , and that BN = {x ∈

RN :
∑N
i=1 x

2
i ≤ N} and CN = [−1, 1]N are their convex hulls. The space of Hamiltonians HN is

denoted HN . We identify each Hamiltonian HN with its disorder coefficients (G(p))p∈2N, which we

concatenate into a vector g = g(HN ).

For any tensor Ap ∈ (RN )⊗p, where p ≥ 1, we define the operator norm

‖Ap‖op =
1

N
max

σ1,...,σp∈SN

∣∣〈Ap,σ1 ⊗ · · · ⊗ σp〉
∣∣ .

Note that when p = 1, ‖Ap‖op = ‖Ap‖N . The following proposition shows that with exponentially
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high probability, the operator norms of all constant-order gradients of HN are bounded and O(1)-

Lipschitz. We will prove this proposition in Appendix C.2.

Proposition 5.2.3. For fixed model (ξ, h) and r ∈ [1,
√

2), there exists a constant c > 0, sequence

(KN )N≥1 of sets KN ⊆ HN , and sequence of constants (Ck)k≥1 independent of N , such that the

following properties hold.

1. P[HN ∈ KN ] ≥ 1− e−cN ;

2. If HN ∈ KN and x,y ∈ RN satisfy ‖x‖N , ‖y‖N ≤ r, then

∥∥∇kHN (x)
∥∥

op
≤ Ck, (5.2.7)∥∥∇kHN (x)−∇kHN (y)

∥∥
op
≤ Ck+1‖x− y‖N . (5.2.8)

Organization. The rest of this chapter is structured as follows. In Section 5.3, we formulate

Proposition 5.3.2, which establishes our main branching OGP, and prove Theorem 37 assuming this

proposition. Sections 5.4 through 5.6 prove Proposition 5.3.2 using a many-replica version of the

Guerra-Talagrand interpolation. Section 5.7 shows that (for spherical models with h = 0) the full

strength of our branching OGP is necessary to show tight algorithmic hardness. Section C.1 shows

that approximately Lipschitz algorithms are overlap concentrated, and that natural optimization

algorithms including gradient descent, AMP, and Langevin dynamics are approximately Lipschitz.

5.3 Proof of Main Impossibility Result

In this section, we prove Theorem 37 assuming Proposition 5.3.2, which establishes the main OGP.

Throughout, we fix a model (ξ, h) and ε > 0. Let HN be a Hamiltonian (5.1.1) with model (ξ, h).

Let λ > 0 be a constant we will set later, and let A : HN → BN (resp. CN ) be (λ, ν) overlap

concentrated.

5.3.1 The Correlation Function

We define the correlation function χ : [0, 1]→ R by

χ(p) = ER
(
A(H

(1)
N ),A(H

(2)
N )
)
, (5.3.1)

where H
(1)
N , H

(2)
N are p-correlated copies of HN . The following proposition establishes several prop-

erties of correlation functions, which we will later exploit.

Proposition 5.3.1. The correlation function χ has the following properties.
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(i) For all p ∈ [0, 1], χ(p) ∈ [0, 1].

(ii) χ is either strictly increasing or constant on [0, 1].

(iii) For all p ∈ [0, 1], χ(p) ≤ (1− p)χ(0) + pχ(1).

We call any χ : [0, 1]→ R satisfying the conclusions of Proposition 5.3.1 a correlation function.

Proof. In this proof, we will write A(g) to mean A(HN ) for the Hamiltonian HN with disorder

coefficients g = g(HN ). We introduce the Fourier expansion of A. For each nonnegative integer j,

let Hej denote the j-th univariate Hermite polynomial. These are defined by He0(x) = 1 and for

n ≥ 0,

Hen+1(x) = xHen(x)−He′n(x).

Recall that the renormalized Hermite polynomials H̃en = 1√
n!

Hen form an orthonormal basis of

L2(R) with the standard Gaussian measure, i.e. they form a complete basis and satisfy

E
g∼N (0,1)

H̃en(g)H̃em(g) = I[n = m].

For each multi-index α = (α1, α2, . . . , ) of nonnegative integers that are eventually zero, define the

multivariate Hermite polynomial

H̃eα(g) =
∏
i

H̃eαi(gi),

These polynomials form an orthonormal basis of L2(RN) with the standard Gaussian measure, see

e.g. [LMP15, Theorem 8.1.7]. Hence for each 1 ≤ i ≤ N , we can write

Ai(g) =
∑
α

Âi(α)H̃eα(g) where Âi(α) = E
[
Ai(g)H̃eα(g)

]
.

For each multi-index α, let |α| =
∑
i≥1 αi. For each nonnegative integer j, introduce the Fourier

weight

Wj =
1

N

N∑
i=1

∑
|α|=j

Âi(α)2 ≥ 0.

For i = 1, 2, let g(i) = g(H
(i)
N ). Let Tp denote the Ornstein-Uhlenbeck operator. We compute that

χ(p) =
1

N
E
〈
A(g(1)),A(g(2))

〉
=

1

N
E 〈A(g), TpA(g)〉 =

1

N
E
∥∥T√pA(g)

∥∥2

2

=
1

N

N∑
i=1

∥∥T√pAi(g)
∥∥2

2
=

1

N

N∑
i=1

∑
α

p|α|Âi(α)2 =
∑
j≥0

pjWj .

It is now clear that 0 ≤ χ(p) ≤ χ(1). Since χ(1) = E ‖A(HN )‖2N ≤ 1, this proves the first claim.
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The second claim follows because χ(p) is strictly increasing unless Wj = 0 for all j ≥ 1, in which

case χ(p) is constant. Finally, the last claim follows since χ is manifestly convex.

5.3.2 Hierarchically Correlated Hamiltonians

Here we define the hierarchically organized ensemble of correlated Hamiltonians that will play a

central role in our proofs of impossibility. Let D be a nonnegative integer and ~k = (k1, . . . , kD) for

positive integers k1, . . . , kD. For each 0 ≤ d ≤ D, let Vd = [k1]× · · · × [kd] denote the set of length d

sequences with j-th element in [kj ]. The set V0 consists of the empty tuple, which we denote ∅. Let

T(~k) denote the depth D tree rooted at ∅ with depth d vertex set Vd, where u ∈ Vd is the parent of

v ∈ Vd+1 if u is an initial substring of v. For nodes u1, u2 ∈ T(~k), let

u1 ∧ u2 = max
{
d ∈ Z≥0 : u1

d′ = u2
d′ for all 1 ≤ d′ ≤ d

}
,

where the set on the right-hand side always contains 0 vacuously. This is the depth of the least

common ancestor of u1 and u2. Let L(~k) = VD denote the set of leaves of T(~k). When ~k is clear

from context, we denote T(~k) and L(~k) by T and L. Finally, let K = |L| =
∏D
d=1 kd.

Let sequences ~p = (p0, p1, . . . , pD) and ~q = (q0, q1, . . . , qD) satisfy

0 = p0 ≤ p1 ≤ · · · ≤ pD = 1,

0 ≤ q0 < q1 < · · · < qD = 1.

The sequence ~p controls the correlation structure of our ensemble of Hamiltonians, while the sequence

~q controls the overlap structure that we will require the inputs to these Hamiltonians to have.

We now construct an ensemble of Hamiltonians (H
(u)
N )u∈L, such that each H

(u)
N is marginally

distributed as HN and each pair of Hamiltonians H
(u1)
N , H

(u2)
N is pu1∧u2 -correlated. For each u ∈ T,

including non-leaf nodes, let H̃
[u]
N be an independent copy of H̃N , generated by (5.1.2). For each

u ∈ L, we construct

H
(u)
N (σ) = 〈h,σ〉+ H̃

(u)
N (σ), where

H̃
(u)
N =

D∑
d=1

√
pd − pd−1 · H̃ [(u1,...,ud)]

N . (5.3.2)

It is clear that this ensemble has the stated properties. Consider a state space of K-tuples

~σ = (σ(u))u∈L ∈ (RN )K .
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We define a grand Hamiltonian on this state space by

H~k,~pN (~σ) ≡
∑
u∈L

H
(u)
N (σ(u)).

We will denote this by HN when ~k, ~p are clear from context. For states ~σ1, ~σ2 ∈ (RN )K , define the

overlap matrix R = R(~σ1, ~σ2) ∈ RK×K by

Ru1,u2 = R(σ1(u1),σ2(u2))

for all u1, u2 ∈ L. We now define an overlap matrix Q = Q
~k,~q ∈ RK×K ; we will control the maximum

energy of HN over inputs ~σ with approximately this self-overlap. Let Q have rows and columns

indexed by u1, u2 ∈ L and entries

Qu1,u2 = qu1∧u2 .

Fix a point m ∈ RN such that ‖m‖2N = q0, which we will later take to be m = E[A(HN )]. For a

tolerance η ∈ (0, 1), define the band

B(m, η) =
{
σ ∈ RN : |R(σ,m)− q0| ≤ η

}
.

Define the sets of points in SKN and ΣKN with self-overlap approximately Q and overlap with m

approximately q0 by

QSp(Q,m, η) =
{
~σ ∈ (SN ∩B(m, η))K : ‖R(~σ, ~σ)−Q‖∞ ≤ η

}
,

QIs(Q,m, η) =
{
~σ ∈ (ΣN ∩B(m, η))K : ‖R(~σ, ~σ)−Q‖∞ ≤ η

}
.

Let χ be a correlation function (recall Proposition 5.3.1). We say ~p = (p0, . . . , pD) and ~q =

(q0, . . . , qD) are χ-aligned if the following properties hold for all 0 ≤ d ≤ D.

• If qd ≤ χ(1), then χ(pd) = qd.

• If qd > χ(1), then pd = 1.

The following proposition controls the expected maximum energy of the grand Hamiltonian

constrained on the sets QSp(Q,m, η) and QIs(Q,m, η), and is the main ingredient in our proof of

impossibility. We defer the proof of this proposition to Sections 5.4 through 5.6.

Proposition 5.3.2. For any mixed even model (ξ, h) and ε > 0, there exists a small constant

η0 ∈ (0, 1) and large constants N0,K0 > 0, dependent only on ξ, h, ε, such that for all N ≥ N0 the

following holds.

Let ALG = ALGSp (resp. ALGIs). For any correlation function χ and vector m ∈ RN with
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‖m‖2N = χ(0), there exist D,~k, ~p, ~q, η as above such that ~p and ~q are χ-aligned, η ≥ η0, K ≤ K0,

and
1

N
E max
~σ∈Q(η)

HN (~σ) ≤ K(ALG + ε),

where Q(η) = QSp(Q,m, η) (resp. QIs(Q,m, η)).

5.3.3 Extending a Branching Tree to SN and ΣN

To account for the possibility that A outputs solutions in BN (resp. CN ) not in SN (resp. ΣN ), we

will show that a branching tree of solutions in BN (resp. CN ) output by A can always be extended

into a branching tree of solutions in SN (resp. ΣN ), with only a small cost to the energies attained.

Consider χ-aligned ~p, ~q as above. Let D ≤ D be the smallest integer such that pD = 1. Define

~k = (k1, . . . , kD), ~p = (p0, . . . , pD), and ~q = (q0, . . . , qD). Let L = VD denote the nodes of T at depth

D, and let K = |L| =
∏D
d=1 kd.

Consider an analogous state space of K-tuples

~σ = (σ(u))u∈L ∈ (RN )K .

Define Q = Q
~k,~q ∈ RK×K analogously as the matrix indexed by u1, u2 ∈ L, where

Q
u1,u2 = qu1∧u2 ∧ χ(1).

Note that because ~p, ~q are χ-aligned, qD−1 < χ(1) ≤ qD. So, the right-hand side is χ(1) if u1∧u2 = D

(i.e. u1 = u2) and qu1∧u2 otherwise. The following sets capture the overlap structure of outputs of

A.

QSp(Q,m, η) =
{
~σ ∈ (BN ∩B(m, η))K :

∥∥R(~σ, ~σ)−Q
∥∥
∞ ≤ η

}
,

QIs(Q,m, η) =
{
~σ ∈ (CN ∩B(m, η))K :

∥∥R(~σ, ~σ)−Q
∥∥
∞ ≤ η

}
.

By the construction (5.3.2), for each u ∈ L the Hamiltonians{
H

(u)
N : u ∈ L is a descendant of u in T

}
are equal almost surely. Let H

(u)
N denote any representative from this set.

We next define the condition Seigen which guarantees existence of a suitable “extension” ~σ of ~σ =(
A(H

(u)
N )

)
u∈L

. First, given a subset S ⊆ [N ], denote by WS the |S| dimensional subspace spanned

by the elementary basis vectors {es : s ∈ S}. Below, λj denotes the j-th largest eigenvalue and

(·)|WS
denotes restriction to the subspace WS as a bilinear form, or equivalently A|WS

= PWS
APWS

,



CHAPTER 5. LIPSCHITZ HARDNESS FOR OPTIMIZING SPIN GLASSES 191

where PWS
is the projection onto WS .

Definition 5.3.3. For constants δ and K, let Seigen(δ,K) denote the event that both of the below

hold for all u ∈ L.

1. λ2K+1

(
∇2H

(u)
N (x)|WS

)
≥ 0 for all S ⊆ [N ] of size |S| ≥ δN .

2. H
(u)
N ∈ KN , for the KN given by Proposition 5.2.3.

We will use the following lemma, whose proof is deferred to Subsection 5.3.6.

Lemma 5.3.4. Fix a model ξ, h, constants ε, η > 0, and ~k, ~q as above. Let δ be sufficiently small

depending on ξ, h, η, ε, and assume that Seigen(δ,K) holds. For any ~σ ∈ Q(η/2), there exists ~σ ∈
Q(η) such that

H
(u)
N (σ(u)) ≥ H(u)

N (σ(u))−Nε

whenever u ∈ L is an ancestor of u ∈ L.

5.3.4 Completion of the Proof

We will now finish the proof of Theorem 37. Below we give the proof in the spherical setting; the

Ising case follows verbatim up to replacing BN by CN and ALGSp by ALGIs (since CN ⊆ BN ).

Let ALG = ALGSp. Let χ be the correlation function of A defined in (5.3.1) and set m =

E[A(HN )]. Note that ‖m‖2N = χ(0) by definition. For small ε/2 > 0 there exist N0,K0, η0 and

D,~k, ~p, ~q, η,K as in Proposition 5.3.2 such that

1

N
E max
~σ∈Q(η)

HN (~σ) ≤ K(ALG + ε/2). (5.3.3)

For N ≥ N0 let

αN = P
[

1

N
HN (A(HN )) ≥ ALG + ε

]
.

For each u ∈ L, let σ(u) = A(H
(u)
N ), and let ~σ = (σ(u))u∈L. We define the following events,

where δ > 0 is chosen so that Lemma 5.3.4 holds with parameters ε/4, η,~k, ~q. In the statement of

Theorem 37, we take λ = η0/4 ≤ η/4.
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Define the following events.

Ssolve =

{
1

N
H

(u)
N (σ(u)) ≥ ALG + ε for all u ∈ L(~k)

}
,

Soverlap = {~σ ∈ Q(η/2)} ,

Seigen = {Seigen(δ,K)} ,

Sogp =

{
1

N
max
~σ∈Q(η)

HN (~σ) < K(ALG + 3ε/4)

}
.

Proposition 5.3.5. With parameters as above,

Ssolve ∩ Soverlap ∩ Seigen ∩ Sogp = ∅.

Proof. Suppose that the first three events hold. Then A outputs ~σ ∈ Q(η/2) such that for all u ∈ L,

H
(u)
N (σ(u)) ≥ ALG + ε.

Lemma 5.3.4 now implies the existence of ~σ ∈ Q(η) such that for all u ∈ L,

H
(u)
N (σ(u)) ≥ ALG + 3ε/4.

This contradicts Sogp.

Proposition 5.3.6. The following inequalities hold.

(a) P(Ssolve) ≥ αKN .

(b) P(Soverlap) ≥ 1−K2ν − 2Kν
λ .

(c) P(Seigen) ≥ 1− exp(−cN) for c > 0 depending only on ξ, h, ε.

(d) P(Sogp) ≥ 1− 2 exp
(
− ε2

32ξ(1)N
)

.

We defer the proof of this proposition to after the proof of Theorem 37.

Proof of Theorem 37. Lemma 5.3.5 implies that P(Ssolve) + P(Soverlap) + P(Seigen) + P(Sogp) ≤ 3.

Because (K2 + 2K)1/K ≤ 3 for any positive integer K and λ < 1,

αN ≤
(
K2ν +

2Kν

λ

)1/K

+ 2 exp

(
− ε2

32Kξ(1)
N

)
+ e−cN/K

≤ 3
(ν
λ

)1/K

+ 2 exp

(
− ε2

32Kξ(1)
N

)
+ e−cN/K .
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Recall that K ≤ K0 and K0 is a constant depending only on ξ, h, ε. The proof is complete up to

choosing an appropriate c in Theorem 37.

5.3.5 Proofs of Probability Lower Bounds

In this section, we will prove Proposition 5.3.6. As preparation we first give two useful concentration

lemmas. The first shows that R(A(HN ),m) concentrates around ‖m‖2N for overlap concentrated

algorithms with E[A(HN )] = m.

Lemma 5.3.7. If A = AN is (λ, ν) overlap concentrated and E[A(HN )] = m, then

P
[∣∣∣R(A(HN ),m)− ‖m‖2N

∣∣∣ > 2λ
]
≤ 2ν

λ
. (5.3.4)

Proof. Define the convex function ψ(t) = (|t − ‖m‖2N | − λ)+. Then by Jensen’s inequality, for

independent Hamiltonians HN and H ′N ,

E [ψ (R(A(HN ),m))] ≤ E [ψ (R(A(HN ),A(H ′N )))] .

Because A is (λ, ν) overlap concentrated, ψ (R(A(HN ),A(H ′N ))) = 0 with probability at least 1−ν.

Moreover, ψ (R(A(HN ),A(H ′N ))) ≤ 2 pointwise. So,

E [ψ (R(A(HN ),m))] ≤ 2ν.

By Markov’s inequality,

P
[∣∣∣R(A(HN ),m)− ‖m‖2N

∣∣∣ > 2λ
]

= P [ψ (R(A(HN ),m)) > λ] ≤ 2ν

λ
.

The next lemma shows subgaussian concentration for 1
N max~σ∈Q(η)HN (~σ).

Proposition 5.3.8. The random variable

Y =
1

N
max
~σ∈Q(η)

HN (~σ)

satisfies for all t ≥ 0

P[|Y − EY | ≥ t] ≤ 2 exp

(
− Nt2

2K2ξ(1)

)
.
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Proof. For any ~σ ∈ SKN , by Cauchy-Schwarz the variance of HN (~σ) is at most

E
[
(HN (~σ)− EHN (~σ))

2
]

=
∑

u1,u2∈L

E H̃(u1)
N (σ(u1))E H̃(u2)

N (σ(u2))

≤ K
∑
u∈L

E H̃(u)
N (σ(u))2

= NK2ξ(1).

The result now follows from the Borell-TIS inequality ([Bor75, CIS76], or see [Zei15, Theorem 2]).

Note that both the statement and proof of Borell-TIS hold for noncentered Gaussian processes with

no modification.

We now prove each part of Proposition 5.3.6 in turn.

Proof of Proposition 5.3.6(a). For 0 ≤ d ≤ D, let 1d ∈ T denote the node (1, . . . , 1) with d entries

(so 10 = ∅ is the root of T), and let Sd be the event that H
(u)
N (σ(u)) ≥ ALG + ε for all u ∈ L

descended from the node 1d. Let Pd = P[Sd]. Note that PD = αN . We will show P0 ≥ αKN ≥ αKN by

showing that for all 1 ≤ d ≤ D,

Pd−1 ≥ P kdd .

The result will then follow by induction.

Recall the construction (5.3.2) of the HamiltoniansH
(u)
N in terms of i.i.d. Hamiltonians (H̃

[u]
N )u∈T.

Conditioned on the Hamiltonians Ωd−1 = (H̃
[1d
′
]

N )0≤d′≤d−1, let fd(Ωd−1) denote the conditional

probability of Sd. Note that

Pd = E fd(Ωd−1).

By symmetry of the kd descendant subtrees of the node 1d−1,

Pd−1 = E fd(Ωd−1)kd .

Thus Pd−1 ≥ P kdd by Jensen’s inequality.

Proof of Proposition 5.3.6(b). By definition of χ, ER(σ(u1),σ(u2)) = χ(pu1∧u2). If u1 ∧ u2 < D,

then pu1∧u2 < 1. Because ~p, ~q are χ-aligned, we have χ(pu1∧u2) = qu1∧u2 . If u1 ∧ u2 = D, then

pu1∧u2 = 1, so clearly χ(pu1∧u2) = χ(1). So, in all cases, ER(σ(u1),σ(u2)) = Q
u1,u2 .

Using (5.2.1) and a union bound over u1, u2 ∈ L, we have

∥∥R(~σ, ~σ)−Q
∥∥
∞ ≤ λ
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with probability at least 1−K2ν. By Lemma 5.3.7 and a union bound, we have∣∣∣R(A(H
(u)
N ),m)− ‖m‖2N

∣∣∣ ≤ 2λ

for all u ∈ L with probability at least 1− 2Kν
λ . Recall that λ = η0/4 ≤ η/4. By a final union bound,

P[~σ ∈ Q(η/2)] ≥ 1−K2ν − 2Kν

λ
.

Proof of Proposition 5.3.6(c). We focus on a fixed u ∈ L. The requirements H
(u)
N ∈ KN follow from

Proposition 5.2.3. The uniform eigenvalue lower bound follows by union bounding over subspaces S

and a net of points x. In fact it follows from exactly the same proof as [Sel21a, Lemma 2.6] up to

replacing each appearance of an eigenvalue λi to λK+i.

Proof of Proposition 5.3.6(d). By (5.3.3) and Proposition 5.3.8 with t = Kε/4,

P
[

1

N
max
~σ∈Q(η)

HN (~σ) ≥ K(ALG + 3ε/4)

]
≤ P

[
1

N
max
~σ∈Q(η)

HN (~σ)− 1

N
E max
~σ∈Q(η)

HN (~σ) ≥ Kε

4

]
≤ 2 exp

(
− ε2

32ξ(1)
N

)
.

5.3.6 Proof of Lemma 5.3.4

The spherical case of Lemma 5.3.4 follows from [Sub21, Remark 6] and does not require any of the

axis-aligned subspace conditions. We therefore focus on the Ising case, which is a slight extension

of the main result of [Sel21a].

Lemma 5.3.9. Suppose Seigen(δ,K) holds. Then for any x ∈ [−1, 1]N with ||x||2N ≤ 1 − δ, any

u ∈ L and any subspace W ⊆ RN of dimension dim(W ) ≥ N −K−1, there are mutually orthogonal

vectors y1, . . . ,yK ∈ W ∩ x⊥ such that for each i ∈ [K] the following hold where C3 is as in

Proposition 5.2.3.

1. x+ yi ∈ [−1, 1]N .

2. If xj ∈ {−1, 1} then yij = 0.

3. H
(u)
N (x+ yi)−H(u)

N (x) ≥ −δ
∥∥yi∥∥2

2
.
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4.
∥∥yi∥∥

N
≤ δ

10C3
.

5. If ‖x‖2N < qd for some 1 ≤ d ≤ D, then
∥∥x+ yi

∥∥2

N
≤ qd.

6. At least one of the following three events holds.

(a)
∥∥yi∥∥

N
= δ

10C3
.

(b) x+ yi has strictly more ±1-valued coordinates than x.

(c) ||x||2N < qd and ||x+ yi||2N = qd for some 1 ≤ d ≤ D.

Proof. By the Markov inequality, x has a set S of at least (1− ||x||2N )N coordinates not in {−1, 1}.
Seigen(δ,K) and the Cauchy interlacing inequality imply

λK

(
∇2H

(u)
N (x)|WS∩W

)
≥ λ2K+1

(
∇2H

(u)
N (x)|WS

)
≥ 0.

Let y1, . . . ,yK ∈WS(x)∩W be a corresponding choice of orthogonal eigenvectors, each satisfying〈
yi,∇2H

(u)
N (x)yi

〉
≥ 0.

Since yi and−yi play symmetric roles we may assume without loss of generality that 〈∇H(u)
N (y),yi〉 ≥

0. Replacing yi by tyi for suitable t ∈ [0, 1] if needed, we may ensure that Items 1, 2, 4, 5, and 6

above hold.

Since Seigen(δ,K) implies that
∥∥∥∇3H

(u)
N

∥∥∥
op

is uniformly bounded by C3, it follows that along the

line segment x+ [0, 1]yi the Hessian of H
(u)
N varies in operator norm by at most δ

5 . This combined

with 〈∇H(u)
N (x),yi〉 ≥ 0 implies

H
(u)
N (x+ yi) ≥ H(u)

N (x)− δ
∥∥yi∥∥2

2
.

This completes the proof.

Proof of Lemma 5.3.4. Take

δ <
min(ε, η, 1− qD−1)2

16(C1 + C3 + 1)

sufficiently small, where C1, C3 are given by Proposition 5.2.3. Enumerate u1, . . . , uK ∈ L. Assume

the points σ(u) for descendants u ∈ L of u1, . . . , uj−1 have already been chosen and satisfy the

conclusions of Lemma 5.3.4. We show how to define the points σ(u) for u a descendant of uj .

From the starting point x0,uj = σ(uj), we produce iterates xi,v for i ∈ N and v ∈ T a descendant

of uj , similarly to [Sub21] and [Sel21a, Proof of Theorem 1]. First let d0 = d0(uj) ∈ [D] be such

that ||x0,uj ||2N ∈ [qd0−1, qd0), and set x0,v = x0,uj for all depth d0 descendants v of uj if d0 > D.
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Given a point xm,v with v a descendant of uj , suppose that ||xm,v||2N ∈ (q|v|−1, q|v| ∧ (1 − δ)).
Then take the subspace W⊥ (which changes from iteration to iteration) to be the span ofm as well as

all currently defined leaves of the exploration tree (including xm,v itself). Hence dim(W⊥) ≤ K + 1

and so dim(W ) ≥ N −K − 1. (The resulting exploration tree can be constructed in arbitrary order;

at any time it will have at most K leaves.)

Then there exists ym,v satisfying the properties of Lemma 5.3.9 with subspace W and Hamilto-

nian H
(uj)
N . We update

xm+1,v = xm,v + ym,v, v ∈ T.

However if ||xm,v||2N = q|v|, then we let v1, . . . , vkd+1 be the children of v in T and generate

ym,v
1

, . . .ym,v
kd+1

again using Lemma 5.3.9. We then define

xm+1,vj = xm,v + ym,v
j

, j ∈ [kd+1].

Continuing in this way, we eventually reach points xm+1,u with ||xm+1,u||2N ≥ (1−δ) for each u ∈ L;

indeed the last condition of Lemma 5.3.9 ensures that this eventually occurs for each u ∈ L. We set

xu = xm+1,u. Observe that by orthogonality of xm,v and ym,v,

H
(u)
N (xm+1,v) ≥ H(u)

N (xm,v)−Nδ‖ym,v‖2N

≥ H(u)
N (xm,v)−Nδ ·

(∥∥xm+1,v
∥∥2

N
− ‖xm,v‖2N

)
.

It follows by telescoping that (recall uj ∈ L is an ancestor of u ∈ L),

H
(u)
N (xu) ≥ H(u)

N (xu
j

)−Nδ ≥ H(u)
N (xu

j

)−Nε/2.

Since every update above is made orthogonally to all contemporaneous iterates, it is not difficult to

see that the final iterates (xu)u∈L satisfy the following.

• R(xu,xu) ≥ 1− δ ≥ qu∧u − η
2 .

• If u1 6= u2 are both descendants of uj ∈ L and u1 ∧ u2 < d0(uj), then

R(xu
1

,xu
2

) = R(xu
j

,xu
j

) ≤ qD +
η

2
≤ qu1∧u2 +

η

2
.

and

R(xu
1

,xu
2

) ≥ qd0−1 ≥ qu1∧u2 ,

hence
∣∣∣R(xu

1

,xu
2

)− qu1∧u2

∣∣∣ ≤ η/2.

• Otherwise, R(xu
1

,xu
2

) = qu1∧u2 .
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Moreover all updates were also orthogonal to m, so |R(m,xu)| ≤ η/2 for all u ∈ L.

Finally, to produce outputs in ΣN , for each u ∈ L and i ∈ [N ] we independently round the

coordinate xui at random to σ(u)i ∈ {−1, 1} so that E[σ(u)] = xu. It is not difficult to see that

P[|R(xu
1

,xu
2

)−R(σ(u1),σ(u2))| ≥ δ] ≤ e−c(δ)N

for each u1, u2 ∈ L, and similarly for inner products with m. We conclude that ~σ ∈ Q(η) holds

with probability 1 − e−c(δ)N (since δ ≤ η/2). Similarly ‖σ(u)− xu‖22 is an independent sum of N

terms each at most 1 and has expectation at most δ. It follows that

P[‖σ(u)− xu‖N ≥ 2δ1/2] ≤ e−c(δ)N .

Now using Seigen, for every (u, u) ∈ L× L with u an ancestor of u,

H
(u)
N (σ(u)) ≥ H(u)

N (xu)− 2C1δ
1/2N

≥ H(u)
N (xu)−Nε/2

≥ H(u)
N (xu)−Nε

holds with probability 1−e−c(δ)N . In particular, the above events hold simultaneously over all (u, u)

with probability at least 1
2 over the random rounding step. Hence there exists some ~σ satisfying all

desired conditions. This concludes the proof.

5.3.7 A Different Class of Algorithms Capturing The Approach of Subag

The optimization algorithm of [Sub21] in the spherical setting can be summarized as follows. Starting

from any x1 ∈ BN with
∥∥x1

∥∥2

N
= δ, repeatedly compute the maximum-eigenvalue unit eigenvector

vi ∈ RN of P(xi)⊥∇2HN (xi)P(xi)⊥ (the Hessian of HN at xi restricted to the orthogonal complement

of xi). Then, set

xi+1 = xi + vi
√
δN (5.3.5)

where the sign of vi is chosen depending on the gradient ∇HN (xi). By construction,
∥∥xi∥∥2

N
= iδ,

so if δ−1 = m ∈ N then xm ∈ SN . By uniformly lower bounding the maximum eigenvalue of the

Hessians, [Sub21] showed that this algorithm obtains energy at least (ALGSp + oδ(1))N as δ → 0.

Because the maximum eigenvalue is a discontinuous operation, our results do not apply to Subag’s

algorithm.

We consider the following variant. At each xi, let the subspace W (xi) be the span of the top

bδNc eigenvectors of P(xi)⊥∇2HN (xi)P(xi)⊥ . Next, choose vi uniformly at random from the unit

sphere of W (xi) and update using (5.3.5). This modified algorithm obeys the same guarantees as
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that of [Sub21] by exactly the same proof.

More generally, we define the class of δ-subspace random walk algorithms for δ > 0 with δ−1 =

m ∈ N, only in the spherical setting for convenience, as follows. Given HN , let W (xi) ⊆ RN be an

arbitrary (measurable in (HN ,x)) subspace of dimension bδNc. Starting from arbitrary x1 ∈ BN
with ‖x1‖2N = δ, repeatedly choose a uniformly random unit vector vi ∈ W (xi) and define xi+1

via (5.3.5), leading to the output σ = xm. Note that unlike in the rest of this chapter, here the

output xi+1 is random even given HN , i.e. xi+1 = A(HN , ω) for some independent random variable

ω. As we now outline, for δ ≤ δ0(ε) sufficiently small depending on ε, no δ-subspace random walk

algorithm can achieve energy than ALGSp + ε with non-negligible probability.

Fixing HN and x1, for any j ≤ m we may generate coupled outputs σ1,σ2 as follows. First use

shared iterates xi,1 = xi,2 = xi for i ≤ j and then proceed via

xi+1,` = xi,` + vi,`
√
δN, ` ∈ {1, 2}

for independent update sequences (vj,1, . . . ,vm−1,1) and (vj,2, . . . ,vm−1,2). Finally output σ` =

xm,`. It is not difficult to see that for N sufficiently large,

P
[∣∣R(σ1,σ2)− jδ

∣∣ > η/2
]
≤ e−cN

for some c = c(δ, η) thanks to the random directions of the updates vi,`. With L as in the earlier

part of this section, we can now construct a branching tree of outputs σ(u) for u ∈ L. As δ → 0,

for appropriate jd = bqdδ−1c, the solution configuration ~σ hence constructed satisfies

P[~σ ∈ Q(η)] ≤ e−cN

with m the zero vector. Because we consider a single Hamiltonian HN , we use Proposition 5.3.2

with χ(p)→ 0 for all p < 1. Since the statement is uniform in χ, this does not present any difficulties

(we are essentially “defining” ~p = 1D to be χ-aligned with arbitrary ~q). Mimicking the proofs earlier

in this section (including the argument in the proof of Proposition 5.3.6(a) which now uses Jensen’s

inequality on the randomness of A), we obtain the following result.

Theorem 26. Consider a mixed even Hamiltonian HN with model (ξ, h). For any ε > 0 there are

δ0, c,N0 > 0 depending only on ξ, h, ε such that the following holds for any N ≥ N0 and δ < δ0. For

any δ-subspace random walk algorithm A,

P
[

1

N
HN (A(HN , ω)) ≥ ALGSp + ε

]
≤ exp(−cN).
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5.4 Guerra’s Interpolation

In this section, we begin the proof of Proposition 5.3.2. We take either Q(η) = QSp(Q,m, η) or

Q(η) = QIs(Q,m, η) (recall Q = Q
~k,~q); the proofs in this section apply uniformly to both cases.

The goal of this section is to use Guerra’s interpolation to upper bound the constrained free energy

FN (Q(η)) =
1

N
logE

∫
Q(η)

expHN (~σ) dµK(~σ),

where µ is a (for now) arbitrary measure on SN . In the sequel, we will take µ to be the uniform

measure on SN for spherical spin glasses, and the counting measure on ΣN for Ising spin glasses.

We develop a bound on FN (Q(η)) that holds for all D,~k, ~p, ~q, η, and will set these variables in the

sequel to prove Proposition 5.3.2.

We will control this free energy by controlling the following related free energy. Let λ ∈ R be

a constant we will set later. For all σ ∈ RN , let π(σ) = σ −m. We define the following modified

grand Hamiltonian, where we add an external field λm centered at m:

HN,λ(~σ) = HN (~σ) +
∑
u∈L
〈λm, π(σ(u))〉

= K〈h,m〉+
∑
u∈L

[
〈h+ λm, π(σ(u))〉+ H̃

(u)
N (σ(u))

]
.

We define the free energy

FN,λ(Q(η)) =
1

N
logE

∫
Q(η)

expHN,λ(~σ) dµK(~σ).

Since Q(η) ⊆ B(m, η)K , we have |HN (~σ)−HN,λ(~σ)| ≤ NK|λ|η for all ~σ ∈ Q(η), and so

|FN (Q(η))− FN,λ(Q(η))| ≤ K|λ|η. (5.4.1)

Define the matrices M
~k,~p,1, . . . ,M

~k,~p,D ∈ RK×K , whose rows and columns are indexed by L, by

M
~k,~p,d
u1,u2 = I{u1 ∧ u2 ≥ d}pu1∧u2 .

Further, define M
~k,~p,~q : [q0, 1)→ RK×K as the piecewise constant matrix-valued function such that

for q ∈ [qd−1, qd), M
~k,~p,~q(q) = M

~k,~p,d. Define κ
~k,~p,~q : [q0, 1)→ R by

κ
~k,~p,~q(q) =

1

K
Sum(M

~k,~p,~q(q)),
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where Sum denotes the sum of entries of a matrix. Explicitly, for q ∈ [qd−1, qd),

κ
~k,~p,~q(q) =

D−1∑
j=d

(kj+1 − 1)

D∏
`=j+2

k`

 pj + pD. (5.4.2)

When ~k, ~p, ~q are clear, we will write Md = M
~k,~p,d, M(q) = M

~k,~p,~q(q) and κ(q) = κ
~k,~p,~q(q). Consider

a sequence

0 = ζ−1 < ζ0 < · · · < ζD = 1,

which we identify with the piecewise constant CDF ζ : [q0, 1)→ [0, 1], where for x ∈ [qd, qd+1),

ζ(x) = ζd, (5.4.3)

corresponding to the discrete distribution ζ({qd}) = ζd − ζd−1. We denote by M~q the set of such

CDFs ζ for a given ~q.

Let TD = N0 ∪ N1 ∪ · · · ∪ ND and for ω ∈ TD, let |ω| denote the length of ω. Let ∅ denote

the empty tuple. We think of TD as a tree rooted at ∅, where the parent of any ω 6= ∅ is the

initial substring of ω with length |ω| − 1. For α ∈ ND, let p(α) = ((α1), (α1, α2), . . . , (α1, . . . , αD))

denote the path of vertices from the root to α, not including the root. For α1, α2 ∈ ND, let α1 ∧ α2

denote the depth of the least common ancestor of α1 and α2. Recall the Ruelle cascades (να)α∈ND

corresponding to (ζ0, ζ1, . . . , ζD−1) which were introduced in [Rue87], see also [Pan13b, Section 2.3].

For each increasing ψ : [q0, 1] → R≥0, we define a Gaussian process g
(u)
ψ (α) indexed by (u, α) ∈

L× ND as follows. Generate ~η∅ ∈ RK by

~η∅ = (η∅(u))u∈L ∼ N (0,M1).

Furthermore, for each non-root ω ∈ TD, independently generate ~ηω ∈ RK by

~ηω = (ηω(u))u∈L ∼ N (0,M |ω|).

Then, for each u ∈ L, set

g
(u)
ψ (α) = η∅(u)ψ(q0)1/2 +

∑
ω∈p(α)

ηω(u)(ψ(q|ω|)− ψ(q|ω|−1))1/2.

This is the centered Gaussian process with covariance

E g(u1)
ψ (α1)g

(u2)
ψ (α2) = pu1∧u2ψ(qα1∧α2 ∧ qu1∧u2),

where for x, y ∈ R, x ∧ y = min(x, y). Generate N i.i.d. copies of the process g
(u)
ξ′ (α), which we
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denote g
(u)
ξ′,i(α) for i = 1, . . . , N . Similarly, for the function

θ(q) = (q − q0)ξ′(q)− ξ(q) + ξ(q0),

we generate N i.i.d. processes g
(u)
θ,i (α) for i = 1, . . . , N . Note that for q ∈ [q0, 1),

θ(q) =

∫ q

q0

(ξ′(q)− ξ′(q′)) dq′ ≥ 0 and θ′(q) = (q − q0)ξ′′(q) ≥ 0,

so θ is nonnegative and increasing, as required. For t ∈ [0, 1], define the interpolating Hamiltonian

HN,λ,t(~σ, α) =
∑
u∈L

[
√
tH̃

(u)
N (σ(u)) +

√
1− t

N∑
i=1

g
(u)
ξ′,i(α)π(σ(u))i +

√
t
N∑
i=1

g
(u)
θ,i (α)

]
+K〈h,m〉+ 〈h+ λm, π(σ(u))〉 (5.4.4)

and the interpolating free energy

ϕ(t) =
1

N
E log

∑
α∈ND

να

∫
Q(η)

expHN,λ,t(~σ, α) dµK(~σ).

The following bound on FN (Q(η)) is the main result of this section.

Proposition 5.4.1. The free energy FN (Q(η)) is upper bounded by

FN (Q(η)) ≤ ϕ(0)− K

2

∫ 1

q0

(q − q0)ξ′′(q)κ(q)ζ(q) dq + 3K2ξ′′(1)η +K|λ|η.

where ζ : [q0, 1)→ [0, 1] is defined in (5.4.3).

Lemma 5.4.2 (Guerra’s interpolation bound). For all t ∈ [0, 1] and η ∈ (0, 1),

ϕ′(t) ≤ 3K2ξ′′(1)η.

Proof. Let 〈·〉t denote the average with respect to the Gibbs measure on Q(η)× ND given by

G(~σ, α) ∝ να expHN,λ,t(~σ, α).

By Gaussian integration by parts [Pan13b, Lemma 1.4],

ϕ′(t) =
1

N
E
〈
∂HN,λ,t
∂t

(~σ, α)

〉
t

=
1

N
E
〈
E
∂HN,λ,t
∂t

(~σ1, α1)HN,λ,t(~σ1, α1)− E
∂HN,λ,t
∂t

(~σ1, α1)HN,λ,t(~σ2, α2)

〉
t

, (5.4.5)
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where (~σ1, α1) and (~σ2, α2) are independent samples from the Gibbs measure. Recall (5.4.4). For

any realizations (~σ1, α1) and (~σ2, α2),

2

N
E
∂HN,λ,t
∂t

(~σ1, α1)HN,t(~σ2, α2)

=
∑

u1,u2∈L

pu1∧u2

[
ξ(R(σ1(u1),σ2(u2)))−R(π(σ1(u1)), π(σ2(u2)))ξ′(qα1∧α2 ∧ qu1∧u2) + θ(qα1∧α2 ∧ qu1∧u2)

]
=

∑
u1,u2∈L

pu1∧u2

[
ξ(R(σ1(u1),σ2(u2)))

−
(
R(σ1(u1),σ2(u2))−R(σ1(u1),m)−R(σ2(u2),m) +R(m,m)

)
ξ′(qα1∧α2 ∧ qu1∧u2)

+ θ(qα1∧α2 ∧ qu1∧u2)
]

=
∑

u1,u2∈L

pu1∧u2

[
C
(
R(σ1(u1),σ2(u2)), qα1∧α2 ∧ qu1∧u2

)
+
(
R(σ1(u1),m) +R(σ2(u2),m)− 2q0

)
ξ′(qα1∧α2 ∧ qu1∧u2) + ξ(q0)

]
,

where

C(x, y) = ξ(x)− ξ(y)− (x− y)ξ′(y) =

∫ x

y

∫ z

y

ξ′′(w) dw dz. (5.4.6)

Because σ1(u1),σ2(u2) ∈ B(m, η),

∣∣(R(σ1(u1),m) +R(σ2(u2),m)− 2q0

)
ξ′(qα1∧α2 ∧ qu1∧u2)

∣∣ ≤ 2ξ′(1)η.

Hence using (5.4.5) and noting that qα1∧α1 = 1, we obtain

ϕ′(t) ≤ 1

2
sup

~σ1,~σ2∈Q(η)

α1,α2∈ND

∑
u1,u2∈L

[
C
(
R(σ1(u1),σ1(u2)), qu1∧u2

)
− C

(
R(σ1(u1),σ2(u2)), qα1∧α2 ∧ qu1∧u2

) ]

+ 2K2ξ′(1)η.

By (5.4.6), 0 ≤ C(x, y) ≤ |x− y|2ξ′′(1). Since |R(σ1(u1),σ1(u2))− qu1∧u2 | ≤ η for ~σ1 ∈ Q(η),

C
(
R(σ1(u1),σ1(u2)), qu1∧u2

)
≤ ξ′′(1)η2.

Moreover,

C
(
R(σ1(u1),σ2(u2)), qα1∧α2 ∧ qu1∧u2

)
≥ 0.

So,

ϕ′(t) ≤ 1

2
K2ξ′′(1)η2 + 2K2ξ′(1)η ≤ 3K2ξ′′(1)η.
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We will now evaluate ϕ(1) to complete the proof of Proposition 5.4.1.

Lemma 5.4.3. The following identity holds.

ϕ(1) = FN,λ(Q(η)) +
K

2

D−1∑
d=0

κ(qd)ζd(θ(qd+1)− θ(qd)).

Proof. It is clear that

ϕ(1) = FN,λ(Q(η)) +
1

N
logE

∑
α∈ND

να exp
∑
u∈L

N∑
i=1

g
(u)
θ,i (α).

We will evaluate the last term by the recursive evaluation of Ruelle cascades. For 1 ≤ d ≤ D,

independently generate ~ηd = (ηd(u))u∈L ∈ (RN )K by generating, independently for each 1 ≤ i ≤ N ,

(~ηd)i = (ηd(u)i)u∈L ∼ N (0,Md).

(Because θ(q0) = 0, we will not need ~η0, corresponding to the root ∅ of TD.) Let

XD =
∑
u∈L

N∑
i=1

D∑
d=1

ηd(u)i (θ(qd)− θ(qd−1))
1/2

,

and for 0 ≤ d ≤ D − 1 let

Xd =
1

ζd
logEd exp ζdXd+1, (5.4.7)

where Ed denotes expectation with respect to ~ηd+1. By properties of Ruelle cascades [Pan13b,

Theorem 2.9],

1

N
logE

∑
α∈ND

να exp
∑
u∈L

N∑
i=1

g
(u)
θ,i (α) =

1

N
X0.

Here we use that the depth-zero term η∅(u)θ(q0)1/2 of g
(u)
θ (α) is zero because θ(q0) = 0. We now

evaluate X0 by (5.4.7). For each 1 ≤ d ≤ D,
∑
u∈L

∑N
i=1 ηd(u)i has variance

E

(∑
u∈L

N∑
i=1

ηd(u)i

)2

= NSum(Md) = NKκ(qd−1).

So,

1

ζd
logEd exp ζd

(∑
u∈L

N∑
i=1

ηd+1(u)i

)
(θ(qd+1)− θ(qd))1/2 =

1

ζd
log exp

(
NK

2
κ(qd)ζ

2
d(θ(qd+1)− θ(qd))

)
=
NK

2
κ(qd)ζd(θ(qd+1)− θ(qd)).



CHAPTER 5. LIPSCHITZ HARDNESS FOR OPTIMIZING SPIN GLASSES 205

A straightforward induction argument using this computation gives

1

N
X0 =

K

2

D−1∑
d=0

κ(qd)ζd(θ(qd+1)− θ(qd)),

completing the proof.

Corollary 5.4.4. For the distribution function ζ : [q0, 1)→ [0, 1] defined in (5.4.3),

ϕ(1) = FN,λ(Q(η)) +
K

2

∫ 1

q0

(q − q0)ξ′′(q)κ(q)ζ(q) dq

Proof. On each interval [qd, qd+1), the functions κ(q) and ζ(q) are constant. Moreover, recall that

θ′(q) = (q − q0)ξ′′(q). The result follows from Lemma 5.4.3.

Proof of Proposition 5.4.1. By Lemma 5.4.2 and Corollary 5.4.4,

FN,λ(Q(η)) ≤ ϕ(0)− K

2

∫ 1

q0

(q − q0)ξ′′(q)κ(q)ζ(q) dq + 3K2ξ′′(1)η.

The result follows from (5.4.1).

In the following two sections, we will use Proposition 5.4.1 to upper bound FN (Q(η)) in the

spherical and Ising settings by estimating

ϕ(0) = KR(h,m)+
1

N
logE

∑
α∈ND

να

∫
Q(η)

exp
∑
u∈L

[
〈h+ λm, π(σ(u))〉+

N∑
i=1

g
(u)
ξ,i (α)π(σ(u))i

]
dµK(~σ).

(5.4.8)

In the spherical and Ising settings, µ is respectively the uniform measure on SN and the counting

measure on ΣN . We denote ϕ(0) in these settings by ϕSp(0) and ϕIs(0). We will also denote FN in

these settings by F Sp
N and F Is

N .

5.5 Overlap-Constrained Upper Bound on the Spherical Grand

Hamiltonian

In this section, we complete the proof of Proposition 5.3.2 in the spherical setting. Denote the

expected overlap-constrained maximum energy of the grand Hamiltonian by

OPTSp
N (Q(η)) =

1

N
E max
~σ∈Q(η)

HN (~σ).
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Let L and L denote the subsets of L supported on [0, q0) and [q0, 1), respectively. The function κ

defined in (5.4.2) is an element of L . Moreover (recall (5.4.3)) M~q ⊆ L . For β > 0 and ζ ∈ M~q,

let βκζ ∈ L denote the pointwise product βκζ(q) = βκ(q)ζ(q). For any ζ ∈ L , let ζ +βκζ ∈ L be

the function

(ζ + βκζ)(q) =

ζ(q) q < q0,

βκζ(q) q ≥ q0.

We will develop the following bound on OPTSp
N (Q(η)) for all D,~k, ~p, ~q, η, β.

Proposition 5.5.1. Let ζ ∈ M~q and ζ ∈ L be arbitrary. Let β > 0 and suppose that (B, ζ +

βκζ) ∈ K (ξ), B ≥ β−1. There exists a constant C, depending only on ξ, h, such that for N ≥
C log max(K, 2),

OPTSp
N (Q(η)) ≤ KPSp(B, ζ + βκζ) + CK2

(
βη +Bη +

log 1
η

β
+

1√
N

)
.

Crucially, in the input of the Parisi functional, the increasing function ζ is pointwise multiplied

by κ, which (by selecting appropriate parameters ~k, ~p, ~q) can be arranged to decrease as rapidly as

desired. This multiplication by κ allows us to pass from increasing functions ζ ∈ M~q to arbitrary

bounded variation functions, in the sense that βκζ can approximate any element of L . Consequently,

ζ + βκζ can approximate any element of L , and PSp(B, ζ + βκζ) can be made arbitrarily close to

ALGSp. We will prove Proposition 5.3.2 by setting the parameters in Proposition 5.5.1 such that

(B, ζ + βκζ) approximates the minimizer of PSp and the error term is small.

Our proof of Proposition 5.3.2 proceeds in three steps. In Subsection 5.5.1 we use the ma-

chinery of the previous section to prove Proposition 5.5.2, an upper bound on the free energy

F Sp
N (Q(η)). In Subsection 5.5.2, we take this bound to low temperature to prove Proposition 5.5.1.

In Subsection 5.5.3, we complete the proof of Proposition 5.3.2 by setting appropriate parameters

in Proposition 5.5.1.

5.5.1 The Free Energy Upper Bound

In this subsection, we will use Proposition 5.4.1 to upper bound F Sp
N (Q(η)). We take µ to be

the uniform measure on SN . The main result of this subsection is the following upper bound on

F Sp
N (Q(η)), which holds for all D,~k, ~p, ~q, η.

Proposition 5.5.2. Let ζ ∈M~q and ζ ∈ L be arbitrary. Suppose (B, ζ +κζ) ∈ K (ξ), B ≥ 1, and

N ≥ 2. Then,

F Sp
N (Q(η)) ≤ KPSp(B, ζ + κζ) + 3K2ξ′′(1)η +KBη.

The crux of this argument is to upper bound ϕSp(0) so that we may apply Proposition 5.4.1. We
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equip the state space (RN )K with the natural inner product

〈~y1, ~y2〉 =
∑
u∈L
〈y1(u),y2(u)〉

and norm ‖~y‖2 = 〈~y, ~y〉. Generate ~η0 = (η0(u)) ∈ (RN )K by generating, independently for each

1 ≤ i ≤ N ,

(~η0)i = (η0(u)i)u∈L ∼ N (0,M1). (5.5.1)

Similarly, for 1 ≤ d ≤ D, independently generate ~ηd = (ηd(u))u∈L ∈ (RN )K by generating, inde-

pendently for each 1 ≤ i ≤ N ,

(~ηd)i = (ηd(u)i)u∈L ∼ N (0,Md). (5.5.2)

Let ~m = (m(u))u∈L ∈ (RN )K and ~h = (h(u))u∈L ∈ (RN )K satisfy m(u) = m and h(u) = h for all

u ∈ L. For ~σ ∈ (RN )K , define π(~σ) = ~σ − ~m. We define the following functions on (RN )K . Let

GD(~y) = log

∫
Q(η)

exp〈~y, π(~σ)〉 dµK(~σ)

= −〈~y, ~m〉+ log

∫
Q(η)

exp〈~y, ~σ〉 dµK(~σ).

and for 0 ≤ d ≤ D − 1, let

Gd(~y) =
1

ζd
logE exp ζdGd+1

(
~y + ~ηd+1(ξ′(qd+1)− ξ′(qd))1/2

)
.

By properties of Ruelle cascades,

ϕSp(0) =
1

N
EG0((~h+ λ~m) + ~η0ξ

′(q0)1/2) +KR(h,m).

We will estimate the spherical integral GD, and through it the functions Gd for 0 ≤ d ≤ D −
1, by comparison with a Gaussian integral. This step relies on the following lemma, which is a

straightforward extension of [Tal06a, Lemma 3.1]; we defer the proof to the end of this section. For

B ≥ 1, let νB denote the measure of N (0, 1
B ). Let χ2(d) denote a χ2 random variable with d degrees

of freedom.

Lemma 5.5.3. For all ~y ∈ (RN )K ,

expGD(~y) ≤ P
(
χ2(N) ≥ BN

)−K
exp (−〈~y, ~m〉)

∫
exp〈~y, ~ρ〉 dνN×KB (~ρ).

The probability term in this lemma can be controlled by the following standard bound, whose

proof we also defer.
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Lemma 5.5.4. If B ≥ 1 and N ≥ 2, then

P(χ2(N) ≥ BN) ≥ exp(−BN/2).

It remains to analyze the terms in Lemma 5.5.3 involving ~y. Define further

G′D(~y) = −〈~y, ~m〉+ log

∫
exp〈~y, ~ρ〉 dνKb (~ρ) =

‖~y‖22
2B

− 〈~y, ~m〉,

G′d(~y) =
1

ζd
logE exp ζdGd+1

(
~y + ~ηd+1(ξ′(qd+1)− ξ′(qd))1/2

)
for 0 ≤ d ≤ D − 1,

Henceforth, suppose N ≥ 2. Lemmas 5.5.3 and 5.5.4 imply that

ϕSp(0) ≤ 1

N
EG′0((~h+ λ~m) + ~η0ξ

′(q0)1/2) +KR(h,m) +
1

2
KB. (5.5.3)

Consider a new state space RK with elements ~y = (y(u))u∈L where y(u) ∈ R, equipped with the

natural inner product

〈~y1, ~y2〉 =
∑
u∈L

~y1(u)~y2(u)

and norm ‖~y‖22 = 〈~y, ~y〉. Generate the RK-valued Gaussians ~η0 ∼ N (0,M1) and, for 1 ≤ d ≤ D,

~ηd ∼ N (0,Md). Recall that h = (h, . . . , h). Let m = (m1, . . . ,mN ), and let ~1 ∈ RK denote the

all-1 vector. For 1 ≤ i ≤ N , define the following functions on RK .

ΓiD(~y) =
‖~y‖2

2B
−mi〈~1, ~y〉,

Γid(~y) =
1

ζd
logE exp ζdΓ

i
d+1

(
~y + ~ηd+1(ξ′(qd+1)− ξ′(qd))1/2

)
for 0 ≤ d ≤ D − 1.

By independence of the 1 ≤ i ≤ N coordinates in the G′d, (5.5.3) implies

ϕSp(0) ≤ 1

N

N∑
i=1

EΓi0((h+ λmi)~1 + ~η0ξ
′(q0)1/2) +KR(h,m) +

1

2
KB. (5.5.4)

It remains to compute the Gaussian integrals Γid. For this, we rely on the following lemma. We

defer the proof, which is a standard computation with Gaussian integrals. Let SK denote the set of

K ×K positive definite matrices, and let | · | denote the matrix determinant.

Lemma 5.5.5. Suppose ζ > 0 and Λ,Σ ∈ SK satisfy Λ − ζΣ ∈ SK . If ~v ∈ RK and ~η ∼ N (0,Σ),
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then

1

ζ
logE exp

1

2
ζ
[
(~y + ~η)>Λ−1(~y + ~η)− 2~v>(~y + ~η)

]
=

1

2

[
~y>(Λ− ζΣ)−1~y − 2~v>Λ(Λ− ζΣ)−1~y

]
+

1

2ζ
log

|Λ|
|Λ− ζΣ|

+
1

2
~v>(ζΣ)(Λ− ζΣ)−1Λ~v.

We can compute the expectations in (5.5.4) by applying this lemma recursively. Define

K (ξ) =

{
(B, ζ) ∈ R+ ×L : B >

∫ 1

q0

ξ′′(q′)ζ(q′) dq′
}
.

Proposition 5.5.6. Let ζ ∈M~q, and suppose (B, κζ) ∈ K (ξ). Then, for Bκζ defined as in (5.2.3),

EΓi0((h+ λmi)~1 + ~η0ξ
′(q0)1/2) ≤ K

2

[
(h+ (λ−B)mi)

2 + ξ′(q0)

Bκζ(q0)
+

∫ 1

q0

ξ′′(q)

Bκζ(q)
dq −Bm2

i

]
.

Proof. Let ΛD = BIK , and for 0 ≤ d ≤ D − 1, let

Λd = Λd+1 − ζd(ξ′(qd+1)− ξ′(qd))Md+1.

We will first show that Λ0, . . . ,ΛD ∈ SK , so that we can apply Lemma 5.5.5. For q ∈ [q0, 1], we

define

Λ(q) = BIK −
∫ 1

q

ξ′′(q′)M(q′)ζ(q′) dq′.

Note that Λd = Λ(qd) for all 0 ≤ d ≤ D. Since M(q) � κ(q)IK in the Loewner order,

Λ(q) �
(
B −

∫ 1

q

ξ′′(q′)κ(q′)ζ(q′) dq′
)
IK = Bκζ(q)IK . (5.5.5)

So, the hypothesis (B, κζ) ∈ K (ξ) implies Λ(q) ∈ SK for all q ∈ [q0, 1]. In particular Λ0, . . . ,ΛD ∈
SK .

Further, define ~vD = mi
~1, and for 0 ≤ d ≤ D − 1, define ~vd = Λ−1

d Λd+1~vd+1. This implies that

~vd = BmiΛ
−1
d
~1. We can write ΓiD as

ΓiD(~y) =
1

2

(
~y>Λ−1

D ~y − 2~v>D~y
)
.

By a recursive computation with Lemma 5.5.5 (which applies because Λ0, . . . ,ΛD ∈ SK), we have
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for all 0 ≤ d ≤ D that

Γid(~y) =
1

2

[
~y>Λ−1

d ~y − 2~v>d ~y +

D−1∑
d′=d

1

ζd′
log
|Λd′+1|
|Λd′ |

+

D−1∑
d′=d

~vd′+1(Λd′+1 − Λd′)Λ
−1
d′ Λd′+1~vd′+1

]

=
1

2

[
~y>Λ−1

d ~y − 2Bmi
~1>Λ−1

d ~y +

D−1∑
d′=d

1

ζd′
log
|Λd′+1|
|Λd′ |

+B2m2
i

D−1∑
d′=d

~1>Λ−1
d′+1(Λd′+1 − Λd′)Λ

−1
d′
~1

]
.

Note that

D−1∑
d′=d

~1>Λ−1
d′+1(Λd′+1 − Λd′)Λ

−1
d′
~1 =

D−1∑
d′=d

~1>(Λ−1
d′ − Λ−1

d′+1)~1 = ~1>(Λ−1
d − Λ−1

D )~1 = ~1>Λ−1
d
~1− K

B
.

So,

Γi0(~y) =
1

2

[
~y>Λ−1

0 ~y − 2Bmi
~1>Λ−1

0 ~y +B2m2
i
~1>Λ−1

0
~1 +

D−1∑
d=0

1

ζd
log
|Λd+1|
|Λd|

−KBm2
i

]

=
1

2

[
(~y −Bmi

~1)>Λ−1
0 (~y −Bmi

~1) +

D−1∑
d=0

1

ζd
log
|Λd+1|
|Λd|

−KBm2
i

]

Therefore,

EΓi0((h+ λmi)~1 + ~η0ξ
′(q0)1/2)

=
1

2

[
(h+ (λ−B)mi)

2Tr(Λ−1
0
~1~1>) + ξ′(q0)Tr(Λ−1

0 M1) +

D−1∑
d=0

1

ζd
log
|Λd+1|
|Λd|

−KBm2
i

]
.

By Jacobi’s formula,
d

dq
log |Λ(q)| = ξ′′(q)ζ(q)Tr(Λ(q)−1M(q)),

so
1

ζd
log
|Λd+1|
|Λd|

=

∫ qd+1

qd

ξ′′(q)Tr(Λ(q)−1M(q)) dq.

Therefore,

EΓi0((h+ λmi)~1 + ~η0ξ
′(q0)1/2)

=
1

2

[
(h+ (λ−B)mi)

2Tr(Λ(q0)−1~1~1>) + ξ′(q0)Tr(Λ(q0)−1M(q0)) +

∫ 1

q0

Tr(Λ(q)−1M(q)) dq −KBm2
i

]
.

Finally, for each q ∈ [q0, 1), (5.5.5) implies Λ(q)−1 � IK
Bκζ(q) , so

Tr(Λ(q)−1M(q)) ≤ Tr

(
M(q)

Bκζ(q)

)
=

K

Bκζ(q)
,
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and similarly Tr(Λ(q0)−1~1~1>) ≤ K
Bκζ(q0) . This implies the result.

Proposition 5.5.6 and (5.5.4) readily imply the following bound on F Sp
N (Q(η)).

Proposition 5.5.7. Let B ≥ 1, N ≥ 2, and λ ∈ R. Let ζ ∈ M~q, and suppose (B, κζ) ∈ K (ξ).

Then,

F Sp
N (Q(η)) ≤ K

2

[
‖h+ (λ−B)m‖2N + ξ′(q0)

Bκζ(q0)
+ 2R(h,m) +

∫ 1

q0

(
ξ′′(q)

Bκζ(q)
+Bκζ(q)

)
dq

]
+ 3K2ξ′′(1)η +K|λ|η.

Proof. By averaging Proposition 5.5.6 over 1 ≤ i ≤ N , we get

1

N

N∑
i=1

EΓi0((h+ λmi)~1 + ~η0ξ
′(q0)1/2) ≤ K

2

[
‖h+ (λ−B)m‖2N + ξ′(q0)

Bκζ(q0)
+

∫ 1

q0

ξ′′(q)

Bκζ(q)
dq −Bq0

]

where we used that ‖m‖2N = q0. Equation (5.5.4) implies that

ϕSp(0) ≤ K

2

[
‖h+ (λ−B)m‖2N + ξ′(q0)

Bκζ(q0)
+ 2R(h,m) +

∫ 1

q0

ξ′′(q)

Bκζ(q)
dq + (1− q0)B

]
.

By Proposition 5.4.1, this implies

F Sp
N (Q(η)) ≤ K

2

[
‖h+ (λ−B)m‖2N + ξ′(q0)

Bκζ(q0)
+ 2R(h,m) +

∫ 1

q0

ξ′′(q)

Bκζ(q)
dq + (1− q0)B

−
∫ 1

q0

(q − q0)ξ′′(q)κ(q)ζ(q) dq

]
+ 3K2ξ′′(1)η +K|λ|η

By integration by parts,

−
∫ 1

q0

(q − q0)ξ′′(q)κ(q)ζ(q) dq = (q − q0)

∫ 1

q

ξ′′(q′)κ(q′)ζ(q′) dq′
∣∣∣1
q=q0

−
∫ 1

q0

∫ 1

q

ξ′′(q′)κ(q′)ζ(q′) dq′ dq

=

∫ 1

q0

Bκζ(q) dq − (1− q0)B,

which yields the result.

The next lemma upper bounds our estimates for F Sp
N (Q(η)) in terms of the Parisi functional

uniformly in m.

Lemma 5.5.8. Let q0 ∈ [0, 1]. For (B, ζ) ∈ K (ξ), h = (h, . . . , h), ‖m‖2N = q0, there exists
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λ ∈ [0, B] such that

1

2

[
‖h+ (λ−B)m‖2N + ξ′(q0)

Bζ(q0)
+ 2R(h,m) +

∫ 1

q0

(
ξ′′(q)

Bζ(q)
+Bζ(q)

)
dq

]
≤ PSp(ζ).

Proof. We take λ =
∫ 1

0
ξ′′(q)ζ(q) dq. The condition (B, ζ) ∈ K (ξ) implies that λ ∈ [0, B]. Note

that λ−B = −Bζ(0). It suffices to prove that

‖h−Bζ(0)m‖2N + ξ′(q0)

Bζ(q0)
+ 2R(h,m) ≤

‖h‖2N
Bζ(0)

+

∫ q0

0

(
ξ′′(q)

Bζ(q)
+Bζ(q)

)
dq.

Note that

ξ′(q0)

Bζ(q0)
=

∫ q0

0

ξ′′(q)

Bζ(q0)
dq ≤

∫ q0

0

ξ′′(q)

Bζ(q)
dq and q0Bζ(0) ≤

∫ q0

0

Bζ(q) dq.

So, it suffices to prove that

‖h−Bζ(0)m‖2N
Bζ(q0)

+ 2R(h,m) ≤
‖h‖2N
Bζ(0)

+ q0Bζ(0).

This rearranges to (using that ‖m‖2N = q0)

0 ≤
(

1

Bζ(0)
− 1

Bζ(q0)

)(
‖h‖2N − 2Bζ(0)R(h,m) +Bζ(0)2‖m‖2N

)
,

which follows from Cauchy-Schwarz.

We are now ready to prove Proposition 5.5.2.

Proof of Proposition 5.5.2. Recall that the restriction of ζ + κζ ∈ L on [q0, 1) is κζ. Because

(B, ζ+κζ) ∈ K (ξ), we have (B, κζ) ∈ K (ξ), and so Proposition 5.5.7 applies. Combining this with

Lemma 5.5.8 applied on (B, ζ + κζ) gives the result.

5.5.2 From Free Energy to Ground State Energy

Next, we will prove Proposition 5.5.1 by taking Proposition 5.5.2 to low temperature. We introduce

the following temperature-scaled free energy. For β > 0 and η ∈ (0, 1), let

F Sp
N (β,Q(η)) =

1

N
logE

∫
Q(η)

expβHN (~σ) dµK(~σ).

This free energy can be upper bounded by the following application of Proposition 5.5.2.
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Corollary 5.5.9. Let ζ ∈M~q and ζ ∈ L be arbitrary. Let β > 0 and suppose (B, ζ+βκζ) ∈ K (ξ),

B ≥ β−1, and N ≥ 2. Then,

1

β
F Sp
N (β,Q(η)) ≤ KPSp(B, ζ + βκζ) + 3K2ξ′′(1)βη +KBη.

Proof. The hypothesis (B, ζ + βκζ) ∈ K (ξ) implies (βB, β−1ζ + κζ) ∈ K (β2ξ). The hypothesis

B ≥ β−1 implies βB ≥ 1. By Proposition 5.5.2 with parameters (β2ξ, βh) (corresponding to the

Hamiltonian βHN ), ζ, βB, and β−1ζ,

F Sp
N (β,Q(η)) ≤ KPSp

β2ξ,βh(βB, β−1ζ + κζ) + 3K2ξ′′(1)β2η +KBβη. (5.5.6)

We can verify that

PSp
β2ξ,βh(βB, β−1ζ + κζ) = βPSp

ξ,h(B, ζ + βκζ).

So, dividing (5.5.6) by β gives the result.

The following lemma relates the ground state energy OPTSp
N (Q(η)) to this free energy at large

inverse temperature β. We defer the proof, which is a relatively standard approximation argument.

Lemma 5.5.10. There exists a constant C depending only on ξ, h such that for all β > 0, η ∈ (0, 1
2 ),

and N ≥ C log max(K, 2),

OPTSp
N (Q(η)) ≤ 1

β
F Sp
N (β,Q(2η)) + CK

(
η +

log 1
η

β
+

1√
N

)
.

Proof of Proposition 5.5.1. Let C be large enough that Lemma 5.5.10 is satisfied and C log 2 ≥ 2.

For all N ≥ C log max(K, 2), Corollary 5.5.9 (with 2η in place of η) and Lemma 5.5.10 imply that

OPTSp
N (η) ≤ KPSp(B, ζ + βκζ) + 6K2ξ′′(1)βη + 2KBη + CK

(
η +

log 1
η

β
+

1√
N

)
.

By applying the estimate K ≤ K2 and absorbing constants depending on only ξ, h into C, we deduce

OPTSp
N (η) ≤ KPSp(B, ζ + βκζ) + CK2

(
βη +Bη + η +

log 1
η

β
+

1√
N

)
.

Finally, because B ≥ β−1, we have β + B ≥ β + β−1 ≥ 2, so by increasing the constant C we may

drop the term η from the sum.
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5.5.3 Proof of the Main Upper Bound

We now complete the proof of Proposition 5.3.2. We will set the parameters of Proposition 5.5.1

such that (B, ζ + βκζ) approximates the minimizer of PSp in L and the error term is small.

For ζ ∈ L and δ, x ∈ [0, 1), we define a perturbation ζδ,x ∈ L of ζ by

ζδ,x(q) =

ζ(x+ δ) q ∈ [x, x+ δ),

ζ(q) otherwise.

Note that ζ0,x = ζ.

We now set several constants depending only on ξ, h, ε. Let C be the constant given by Propo-

sition 5.5.1. By continuity of the Parisi functional PSp on K (ξ), we may pick (B∗, ζ∗) ∈ K (ξ) and

a small constant ∆ ∈ (0, 1) such that the following properties hold.

(a) ζ∗ is positive-valued, right-continuous, and piecewise constant with finitely many jump dis-

continuities 0 < x1 < · · · < xr < 1.

(b) For all δ ∈ [0,∆] and x ∈ [0, 1), (B∗, ζ∗δ,x) ∈ K (ξ) and

PSp(B∗, ζ∗δ,x) ≤ ALG +
ε

2
. (5.5.7)

The perturbations ζ∗δ,x will be used in the following way. Given q0 ∈ [0, 1], we will apply Propo-

sition 5.5.1 with ζ + βκζ = ζ∗(1−q0)∆,q0
. In particular, we will construct β, κ = κ

~k,~p,~q and ζ ∈ M~q

such that βκζ = ζ∗(1−q0)∆,q0
on [q0, 1). Because ζ is increasing, we must construct a κ that decreases

rapidly enough to make this equality hold. In the below proof, the fact that ζ∗(1−q0)∆,q0
does not

have any discontinuities in [q0, q0 + (1− q0)∆] implies that q1 > q0 + (1− q0)∆, which implies that

p1 > ∆ for any χ-aligned ~p, ~q. This allows us to construct a suitable κ while keeping K =
∏D
d=1 kd

bounded by a constant.

Proof of Proposition 5.3.2, spherical case. We first set the constants K0, η0, N0. For x ∈ (0, 1], let

ζ∗(x−) = limy→x− ζ
∗(y). Let

K0 =

r∏
j=1

(⌊
ζ∗(xj)

∆ζ∗(x−j )

⌋
+ 1

)
.
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This is well-defined because ζ∗ is positive-valued. Let η0 ∈ (0, 1
2 ) satisfy the inequalities

CK0

(
B∗η0 + η

1/2
0 + η

1/2
0 log

1

η0

)
≤ ε

4
, (5.5.8)

η0 ≤ (B∗)2, (5.5.9)

η0 < ζ∗(1−)−2. (5.5.10)

Finally, let N0 satisfy N0 ≥ C log max(K0, 2) and

CK0√
N0

≤ ε

4
. (5.5.11)

We emphasize that K0, η0, N0 depend only on ξ, h, ε.

In the below analysis, we always set η = η0 (this clearly satisfies η ≥ η0) and β = η
−1/2
0 .

We are given a correlation function χ : [0, 1] → [0, 1] and a point m ∈ RN with ‖m‖2N = χ(0).

We set q0 = χ(0); we will set the rest of ~q below. We will construct D,~k, ~p, ~q, ζ such that on [q0, 1),

βκ
~k,~p,~qζ = ζ∗(1−q0)∆,q0

. (5.5.12)

Let

S = {x1, . . . , xr} ∩ (q0 + (1− q0)∆, 1).

Set D − 1 = |S|. Set ~q such that (q1, . . . , qD−1) is the set S in increasing order and qD = 1.

By Proposition 5.3.1(ii), χ is either strictly increasing or constant. If χ is strictly increasing, set

~p = (p0, . . . , pD) by pd = χ−1(qd) for all qd ≤ χ(1) and pd = 1 for all qd > χ(1). If χ is constant, its

unique value is q0 = χ(0); set p0 = 0 and pd = 1 for all 1 ≤ d ≤ D. In either case, ~p, ~q are clearly

χ-aligned. Moreover, we always have p1 > ∆: if χ is increasing, this follows from q1 > q0 +(1−q0)∆

and Proposition 5.3.1(iii), while if χ is constant this is obvious.

Set k1 = 1, and for 1 ≤ d ≤ D − 1, set

kd+1 =

⌊
ζ∗(q−d )

∆ζ∗(qd)

⌋
+ 1.

Because q1, . . . , qD−1 are a subset of x1, . . . , xr, we indeed have K =
∏D
d=1 kd ≤ K0.

This constructs D,~k, ~p, ~q, η, which defines H~k,~pN , Q(η) = QSp(Q
~k,~q,m, η), and κ

~k,~p,~q. Finally, we

construct the sequence (ζ−1, ζ0, . . . , ζD) satisfying

0 = ζ−1 < ζ0 < · · · < ζD = 1 (5.5.13)

such that the ζ ∈ M~q defined by (5.4.3) satisfies (5.5.12) on [q0, 1). In particular, we define ζd for
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0 ≤ d ≤ D − 1 by

ζd =
ζ∗(1−q0)∆,q0

(qd)

βκ~k,~p,~q(qd)
.

For this choice of ζd, (5.5.12) holds at q0, q1, . . . , qd−1 by inspection. Because ζ, κ
~k,~p,~q and ζ∗(1−q0)∆,q0

are all piecewise constant and right-continuous on [q0, 1) with jump discontinuities only at q1, . . . , qD−1,

(5.5.12) holds on [q0, 1). It remains to verify that this choice of ζd satisfies the increasing condition

(5.5.13). Because ζ∗(1−q0)∆,q0
is positive-valued, ζ0 > ζ−1 = 0. At each 1 ≤ d ≤ D − 1, we have

ζd
ζd−1

=
ζ∗(1−q0)∆,q0

(qd)

ζ∗(1−q0)∆,q0
(qd−1)

· κ
~k,~p,~q(qd−1)

κ~k,~p,~q(qd)

By (5.4.2),

κ
~k,~p,~q(qd) ≤

D−1∑
j=d+1

(kj+1 − 1)

D∏
`=j+2

k`

+ 1 =

D∏
`=d+2

k`,

where we upper bounded all the pd by 1. So,

κ
~k,~p,~q(qd−1)

κ~k,~p,~q(qd)
= 1 +

(kd+1 − 1)
∏D
`=d+2 k`

κ~k,~p,~q(qd)
pd ≥ 1 + (kd+1 − 1)pd ≥ kd+1pd ≥ kd+1∆.

Here we used that pd ≥ p1 ≥ ∆. Further noting that ζ∗(1−q0)∆,q0
(qd−1) = ζ∗(q−d ), we have

ζd
ζd−1

≥
∆ζ∗(1−q0)∆,q0

(qd)

ζ∗(1−q0)∆,q0
(qd−1)

· kd+1 =
∆ζ∗(qd)

ζ∗(q−d )
· kd+1 > 1

by definition of kd+1. Thus ζd > ζd−1 for 1 ≤ d ≤ D − 1. Finally, because κ
~k,~p,~q(qD−1) = 1,

ζD−1 =
ζ∗(1−q0)∆,q0

(qD−1)

β
= η

1/2
0 ζ∗(1−) < 1 = ζD,

using (5.5.10). Thus the ζ we constructed satisfies (5.5.12) and (5.5.13).

Define ζ ∈ L by ζ = ζ∗ on [0, q0). Thus, as elements of L ,

ζ + βκ
~k,~p,~qζ = ζ∗(1−q0)∆,q0

.

By construction, (B∗, ζ∗(1−q0)∆,q0
) ∈ K (ξ), and (5.5.9) implies B∗ ≥ β−1. By Proposition 5.5.1,

1

N
E max
~σ∈Q(η)

HN (~σ) ≤ KPSp(B∗, ζ∗(1−q0)∆,q0
) + CK2

(
B∗η + η1/2 + η1/2 log

1

η
+

1√
N

)
.
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By (5.5.7),

KPSp(B∗, ζ∗(1−q0)δ,q0
) ≤ K

(
ALG +

ε

2

)
.

By (5.5.8),

CK2

(
B∗η + η1/2 + η1/2 log

1

η

)
≤ Kε

4
.

Finally, by (5.5.11),
CK2

√
N
≤ Kε

4
.

Combining the last four inequalities gives the result.

5.5.4 Deferred Proofs

Here we give the proofs of Lemmas 5.5.3, 5.5.4, 5.5.5, and 5.5.10, which are all relatively standard.

We recall the following lemma, due to Talagrand, from which Lemma 5.5.3 readily follows.

Lemma 5.5.11 ([Tal06a, Lemma 3.1]). For all y ∈ RN , the following inequality holds.∫
SN

exp〈y,σ〉 dµ(σ) ≤ P
(
χ2(N) ≥ BN

)−1
∫

exp〈y,ρ〉 dνNB (ρ).

Proof of Lemma 5.5.3. Using Q(η) ⊆ SKN and Lemma 5.5.11, we get

expGD(~y) = exp(−〈~y, ~m〉)
∫
Q(η)

exp〈~y, ~σ〉 dµK(~σ)

≤ exp(−〈~y, ~m〉)
∫
SKN

exp〈~y, ~σ〉 dµK(~σ)

= exp(−〈~y, ~m〉)
∏
u∈L

∫
SN

exp〈y(u),σ(u)〉 dµ(~σ(u))

≤ P
(
χ2(N) ≥ BN

)−K
exp(−〈~y, ~m〉)

∏
u∈L

∫
exp〈y(u),ρ(u)〉 dνNB (~ρ(u))

= P
(
χ2(N) ≥ BN

)−K
exp(−〈~y, ~m〉)

∫
exp〈~y, ~ρ〉 dνN×KB (~ρ).
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Proof of Lemma 5.5.4. Using the probability density of χ2(N), we compute:

P(χ2(N) ≥ BN) =

∫ ∞
BN

xN/2−1e−x/2

2N/2Γ
(
N
2

) dx

=
(N/2)N/2

Γ
(
N
2

) ∫ ∞
B

yN/2−1e−Ny/2 dy

≥ (N/2)N/2

Γ
(
N
2

) ∫ ∞
B

e−Ny/2 dy

=
(N/2)N/2−1

Γ
(
N
2

) e−BN/2

≥ e−BN/2,

where the last step uses that (N/2)N/2−1 ≥ Γ
(
N
2

)
for N ≥ 2.

Proof of Lemma 5.5.5. By a straightforward computation,

E exp
1

2
ζ
[
(~y + ~η)>Λ−1(~y + ~η)− 2~v>(~y + ~η)

]
= |Σ|−1/2(2π)−K/2

∫
exp

[
−1

2

(
~x>Σ−1~x− ζ(~y + ~x)>Λ−1(~y + ~x) + 2ζ~v>(~y + ~x)

)]
d~x

= |Σ|−1/2(2π)−K/2
∫

exp

[
−1

2

(
~x>
(
Σ−1 − ζΛ−1

)
~x− 2ζ(Λ−1~y − ~v)>~x− ζ~y>Λ−1~y + 2ζ~v>~y

)]
d~x

= |Σ|−1/2|Σ−1 − ζΛ−1|−1/2 exp
1

2

(
ζ2(Λ−1~y − ~v)>

(
Σ−1 − ζΛ−1

)−1
(Λ−1~y − ~v) + ζ~y>Λ−1~y − 2ζ~v>~y

)
=

|Λ|1/2

|Λ− ζΣ|1/2
exp

ζ

2

(
~y>(Λ− ζΣ)−1~y − 2~v>Λ(Λ− ζΣ)−1~y + ~v>(ζΣ)(Λ− ζΣ)−1Λ~v

)
.

Taking logarithms and dividing by ζ yields the result.

Proof of Lemma 5.5.10. Define the random variable

~σ∗ = argmax~σ∈Q(η)HN (~σ),

where we break ties arbitrarily. For δ > 0, define

B(~σ∗, δ) =
{
~σ ∈ SKN : ‖σ(u)− σ∗(u)‖N ≤ δ for all u ∈ L

}
.

If ~σ ∈ B(~σ∗, η/3), then for each u ∈ L we can write σ(u) = σ∗(u) + δ(u)ρ(u), where ρ(u) ∈ SN and

0 ≤ δ(u) ≤ η/3. Then, for all u ∈ L,

|R(σ(u),m)− q0| ≤ |R(σ∗(u),m)− q0|+ δ(u)|R(ρ(u),m)| ≤ η + η/3 ≤ 2η,
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and for all u, v ∈ L,

|R(σ(u),σ(v))− qu∧v|

≤ |R(σ∗(u),σ∗(v))− qu∧v|+ δ(u)|R(σ∗(u),ρ(v))|+ δ(v)|R(σ∗(v),ρ(u))|+ δ(u)δ(v)|R(ρ(u),ρ(u))|

≤ η + η/3 + η/3 + η/3 = 2η.

So, B(~σ∗, η/3) ⊆ Q(2η).

Let constants c, C1 be given by Proposition 5.2.3. By this proposition, the event

S =

{
sup
u∈L

sup
σ∈SN

∥∥∥∇H(u)
N (σ)

∥∥∥
N
≤ C1

}

has probability P(S) ≥ 1−Ke−cN . Here we use the fact that for v ∈ RN , ‖v‖N = ‖v‖
op

. On S,

HN (~σ) ≥ HN (~σ∗)− C1NKη

3

for all ~σ ∈ B(~σ∗, η/3). So,

F Sp
N (β,Q(2η)) =

1

N
logE

∫
Q(2η)

expβHN (~σ) dµK(~σ)

≥ 1

N
logE I(S)

∫
B(~σ∗,η/3)

expβHN (~σ) dµK(~σ)

≥ 1

N
logE I(S)

∫
B(~σ∗,η/3)

expβ

(
HN (~σ∗)− C1NKη

3

)
dµK(~σ)

≥ 1

N
logE I(S) expβHN (~σ∗)− βC1Kη

3
+

1

N
logµK(B(~σ∗, η/3))

= βOPTSp
N (Q(η))− βC1Kη

3
+

1

N
logµK(B(~σ∗, η/3))

+
1

N
logE I(S) expβ

(
HN (~σ∗)− EHN (~σ∗)

)
.

The set B(~σ∗, η/3) is the product of K spherical caps in SN . By elementary properties of the

spherical measure, there exists a large C such that µK(B(~σ∗, η/3)) ≤ ηCNK , and so

1

N
logµK(B(~σ∗, η/3)) ≥ −CK log

1

η
.

By Proposition 5.3.8,

P
(
HN (~σ∗)− EHN (~σ∗) ≤ −K

√
4 log 2 · ξ(1)N

)
≤ 1

2
.

By a union bound, the complement of this event and S simultaneously hold with probability at least
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1
2 −Ke

−cN . Thus,

1

N
logE I(S) expβ

(
HN (~σ∗)− EHN (~σ∗)

)
≥ −βK

√
4 log 2 · ξ(1)

N
+

1

N
log

(
1

2
−Ke−cN

)
.

Putting this all together, we can choose a large C dependent only on ξ, h such that

F Sp
N (β,Q(2η)) ≥ βOPTSp

N (Q(η))− CKβη − CK log
1

η
− CKβ√

N
− 1

N
log

1
1
2 −Ke−cN

.

By choosing C large enough, we can ensure that if N ≥ C log max(K, 2), then Ke−cN ≤ 1
4 . Then,

we may absorb the last term into the term CK log 1
η . Rearranging yields the result.

5.6 Overlap-Constrained Upper Bound on the Ising Grand

Hamiltonian

In this section we upper-bound ϕIs(0). We take the reference measure µ to be the counting measure

so that integrals over QIs(η) become sums.

We define (Z0, . . . , ZD) similarly to Gd of the previous section, but as a sum over all of (ΣN )K

directly. As before, define ~η0, . . . ~ηD to be independent Gaussians as in (5.5.1) and (5.5.2). For

~y ∈ (RK)N , define

ZD(~y) = log
∑

~σ∈(ΣN )K

exp
∑
u∈L
〈h+ λm+ y(u), π(σ(u))〉

= log

N∏
i=1

∏
u∈L

(
2 cosh (h+ λmi + y(u)i) exp (−mi(h+ λmi + y(u)i))

)

=

N∑
i=1

∑
u∈L

(
log (2 cosh (h+ λmi + y(u)i))−mi(h+ λmi + y(u)i)

)
.

Given the sequence 0 = ζ−1 < ζ0 < ζ1 < · · · < ζL = 1, recursively set

Zd(~y) =
1

ζd
E ζdZd+1

(
~y + ~ηd+1(ξ′(qd+1 − ξ′(qd))1/2

)
.

Then Z0 ≡ Z0(0) is a deterministic function of m and h.

Proposition 5.6.1. For any m ∈ [−1, 1]N ,

ϕIs(0) ≤ 1

N
Z0 +KR(h,m).



CHAPTER 5. LIPSCHITZ HARDNESS FOR OPTIMIZING SPIN GLASSES 221

Proof. Recall from (5.4.8) that

ϕIs(0) = KR(h,m)+
1

N
logE

∑
α∈ND

να
∑

~σ∈QIs(η)

exp

(∑
u∈L
〈h+ λm, π(σ(u))〉+

∑
u∈L

N∑
i=1

g
(u)
ξ′,i(α)π(σ(u))i

)
.

Summing over all of (ΣN )K gives the upper bound

ϕIs(0) ≤ KR(h,m)+
1

N
logE

∑
α∈ND

να
∑

~σ∈(ΣN )K

exp

(∑
u∈L
〈h+ λm, π(σ(u))〉+

∑
u∈L

N∑
i=1

g
(u)
ξ′,i(α)π(σ(u))i

)
.

Similarly to previous sections or as in [Pan13b, Theorem 2.9], properties of Ruelle cascades imply

that the right hand side above equals

KR(h,m) +
1

N
Z0

because the coordinates i ∈ [N ] now decouple.

5.6.1 Properties of Parisi PDEs

Here we review properties of Parisi PDEs. We begin with the 1-dimensional case for general ζ ∈ L

and consider the PDE

∂tΦζ(t, x) +
1

2
ξ′′(t)

(
∂xxΦζ(t, x) + ζ(t)(∂xΦζ(t, x))2

)
= 0 (5.6.1)

Φζ(1, x) = f0(x).

For β > 0 we will consider the initial conditions f0(x) = log(cosh(βx)/β)− ax for a = mi ∈ [−1, 1]

which leads to solution Φβa,ζ . When not specified, we take β = 1 and a = 0, so for instance

Φa,ζ = Φ1
a,ζ and Φβζ = Φβ0,ζ . We also allow the β =∞ case Φ∞a,ζ corresponding to f0(x) = |x| − ax.

Note that (5.1.4) corresponds to the case (a, β) = (0,∞). Regularity properties for solutions to

(5.6.1) were derived in several works such as [JT16, Che17] for ζ ∈ U . For ζ ∈ L they are given in

Chapter B. The following result follows from Proposition B.1.1 part (b) and Lemma B.1.4.

Proposition 5.6.2. For ζ ∈ L and (a, β) ∈ [−1, 1] × (0,∞], the function Φβa,ζ is continuous on

[0, 1]× R and 2-Lipschitz in x. Moreover both

∂xxΦβa,ζ(t, x) and ∂tΦ
β
a,ζ(t, x)

are uniformly bounded on (t, x) ∈ [0, 1− ε]× R for any ε > 0. Finally Φβa,ζ(t, x) is convex in x.

The following result is shown in Lemma B.1.5.
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Proposition 5.6.3. For ζ ∈ L the SDE

dXt = ξ′′(t)ζ(t)∂xΦβa,ζ(t,Xt)dt+
√
ξ′′(t)dBt, X0 = X0 (5.6.2)

has strong and pathwise unique solution.

Finally the next result follows from Proposition B.1.1 part (c).

Proposition 5.6.4. For ζ1, ζ2 ∈ L , and β ∈ (0,∞],

|Φβζ1 − Φβζ2 | ≤
∫ 1

0

ξ′′(t)|ζ1(t)− ζ2(t)|dt.

The Multi-Dimensional Parisi PDE

Here we define the Parisi PDE on RK . For simplicity we restrict attention to finitely supported

ζ ∈ M~q. We construct ΦL via the Hopf-Cole transformation and verify that it solves a version of

(5.6.1).

Recall the definition of Md = M
~k,~p,d ∈ RK×K given by

M
~k,~p,d
u1,u2 = I{u1 ∧ u2 ≥ d}pu1∧u2 .

As before, M(t) = Md for t ∈ [qd−1, qd).

For an atomic measure ζ ∈ M~q consider the function ΦL
ζ (t, ~x) : [0, 1] × RK → R defined as as

follows. The t = 1 boundary condition is

ΦL
a,ζ(1, ~x) =

∑
u∈L

log (2 coshx(u))− ax(u).

For t ∈ [q0, 1), ΦL
a,ζ is defined recursively by

ΦL
a,ζ(t, x) =

1

ζ(t)
logE exp

(
ζ(t)ΦL

a,ζ(qd+1, ~x+ ~ηd+1 · (ξ′(qd+1)− ξ′(t))1/2)
)
, t ∈ [qd, qd+1)

where ~η0 ∼ N (0,M1) and ~ηd ∼ N (0,Md) for 1 ≤ d ≤ D are independent Gaussian vectors in RK .

For t ∈ [0, q0), we extend the definition of ζ so that ζ(t) = 0 and define

ΦL
a,ζ(t, x) = EΦL

a,ζ(q0, ~x+ ~η0 · (ξ′(q0)− ξ′(t))1/2).
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Proposition 5.6.5. For any ζ ∈M~q,

Z0 =
1

N

N∑
i=1

ΦL
mi,ζ(0, (h+ λmi)~1).

Proof. This follows from Lemma 5.6.6 since the recursive definition of ΦL
a,ζ(t, x) restricted to times

t ∈ {qd}d∈[D] is exactly that of Z0 up to an spatial shift of (h+ λmi)~1.

We defer the proof of the next lemma, which is a standard computation.

Lemma 5.6.6. The function ΦL
a,ζ is smooth on each time interval [qd, qd+1] × RK . Moreover it is

continuous and solves the K-dimensional Parisi PDE

∂tΦ
L
a,ζ(t, ~x) = −ξ

′′(t)

2

(
〈M(t),∇2ΦL

a,ζ〉+ ζ(t)〈M(t), (∇ΦL
a,ζ)
⊗2〉
)
. (5.6.3)

Finally |∂x(u)Φ
L
a,ζ(t, ~x)| ≤ 1 + |a| holds for all (t, ~x, u) ∈ [0, 1]× RK × L.

Auffinger-Chen Representation

As shown by [AC15] the Parisi PDE admits a stochastic control formulation. We now recall such

representations in the cases of interest starting with the 1-dimensional case. For 0 ≤ t1 ≤ t2 ≤ 1

let D[t1, t2] be the space of processes v ∈ C([t1, t2];R) with supt1≤r≤t2 |vr| ≤ 2 which are progres-

sively measurable with respect to filtration supporting a standard Brownian motion Bt. Define the

functional

X t1,t2a,ζ (x, v) = E
[
Yt1,t2a,ζ (x, v)−Zt1,t2a,ζ (v)

]
where

Yt1,t2a,ζ (x, v) ≡ Φβa,ζ

(
t2, x+

∫ t2

t1

ζ(r)ξ′′(r)vrdr +

∫ t2

t1

√
ξ′′(r)dBr

)
,

Zt1,t2a,ζ (v) ≡ 1

2

∫ t2

t1

ζ(r)ξ′′(r)v2
rdr.

Note that since |vr| ≤ 2 is uniformly bounded and ||ξ′′ · ζ||1 <∞ there are no continuity issues near

t = 1. The next proposition, whose standard proof we defer, relates Φβa,ζ to stochastic control.

Proposition 5.6.7. For any ζ ∈ L , [t1, t2] ⊆ [0, 1], a ∈ [−1, 1] and β ∈ (0,∞], the function Φβa,ζ

satisfies

Φβa,ζ(t1, x) = sup
v∈D[t1,t2]

X t1,t2a,ζ (x, v). (5.6.4)
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Moreover the maximum in (5.6.4) is achieved by

vr = ∂xΦβa,ζ(r,Xr)

where Xr solves the SDE (5.6.2) with initial condition Xt1 = x.

The corresponding stochastic control formulation in RK is as follows. For 0 ≤ t1 ≤ t2 ≤ 1

let DL[t1, t2] be the space of processes ~v ∈ C([t1, t2];RK) with supt1≤r≤t2 |~vr|∞ ≤ 2 which are

progressively measurable with respect to a filtration supporting an RK valued Brownian motion

~Br = (Bur )u∈L. Define the functional

X L,t1,t2
a,ζ (~x,~v) ≡ E

[
YL,t1,t2
a,ζ (~x,~v)−ZL,t1,t2

a,ζ (~v)
]

where

YL,t1,t2
a,ζ (~x,~v) ≡ ΦL

a,ζ

(
t2, ~x+

∫ t2

t1

ζ(r)ξ′′(r)M(r)~vrdr +

∫ t2

t1

√
ξ′′(r)M(r)d ~Br

)
,

ZL,t1,t2
a,ζ (~v) ≡ 1

2

∫ t2

t1

ζ(r)ξ′′(r)〈M(r), ~v⊗2
r 〉dr.

In the multi-dimensional case we restrict attention to finitely supported ζ ∈ M~q to avoid the

by-now routine process of extending regularity properties of ΦL
ζ to general ζ. The proof is again

deferred.

Proposition 5.6.8. For any ζ ∈M~q, [t1, t2] ⊆ [0, 1] and a ∈ [−1, 1], the function ΦL
a,ζ satisfies

ΦL
a,ζ(t1, ~x) = sup

~v∈DL[t1,t2]

X L,t1,t2
a,ζ (~x,~v). (5.6.5)

Moreover (5.6.5) is maximized by ~vs = ∇ΦL
a,ζ(s,

~Xs) where the RK-valued process ~Xs solves

~Xs = ~x+

∫ s

t1

ζ(r)ξ′′(r)M(r)∇ΦL
a,ζ(r, ~Xr)dr +

∫ s

t1

√
ξ′′(r)M(r)d ~Br, s ∈ [t1, t2].

5.6.2 Relations Among Parisi PDEs

Following [CPS22, Section 8] we relate Φa,ζ to Φζ . Note that we always consider times t ∈ [0, 1]

with endpoint conditions at t = 1, while [CPS22] defines the boundary condition for Φa,ζ at time

t = 1− q0, see e.g. Equation (3.25) therein.
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Proposition 5.6.9. For any a ∈ [−1, 1] and ζ ∈ L , with y = x− a
∫ 1

0
ξ′′(t)ζ(t)dt,

Φζ(0, y)− ay = Φa,ζ(0, x) +
a2

2

∫ 1

0

ξ′′(t)ζ(t)dt.

Proof. By setting y = x− a
∫ 1

0
ξ′′(s)ζ(s)ds, it suffices to show that for all t ∈ [0, 1],

Φa,ζ(t, x) = Φζ

(
t, x− a

∫ 1

t

ξ′′(s)ζ(s)ds

)
− ax+

a2

2

∫ 1

t

ξ′′(s)ζ(s)ds.

(In particular the desired result is obtained by setting t = 0.) It suffices to show this for ζ continuous.

Set

f(t, x) ≡ Φζ

(
t, x− a

∫ 1

t

ξ′′(s)ζ(s)ds

)
− ax+

a2

2

∫ 1

t

ξ′′(s)ζ(s)ds

and define

b(t, x) ≡ x− a
∫ 1

t

ξ′′(s)ζ(s)ds.

Then we compute

∂tf(t, x) = ∂tΦζ(t, b(t, x)) + aξ′′(t)ζ(t)∂xΦζ(t, b(t, x))− a2

2
ξ′′(t)ζ(t)

and

∂xf(t, x) = ∂xΦζ(t, b(t, x))− a,

∂xxf(t, x) = ∂xxΦζ(t, b(t, x)).

It follows that

∂tf(t, x) = −ξ
′′(t)

2

(
∂xxf(t, x) + ζ(t) (∂xf(t, x))

2
)
.

Note that at time 1, f(1, x) = log(2 cosh(x))−ax = Φa,ζ(1, x). Uniqueness of solutions to the Parisi

PDE as in [JT16, Lemma 13] completes the proof.

Lemma 5.6.10. For any ζ, γ ∈ L and any (t, x, β) ∈ [0, 1]× R× (0,∞],

Φβa,ζ(t, x) ≤ Φβa,ζ+γ(t, x).

Proof. We use the Auffinger-Chen representation (5.6.4) for Φβa,ζ and Φβa,ζ+γ . For any control v,

consider the modified control

wt ≡
ζ(t)vt

ζ(t) + γ(t)
.
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It is not difficult to see that

Yt,1a,ζ(x, v) = Yt,1a,ζ+γ(x,w)

since the resulting SDE is the same, while

Zt,1a,ζ(v) ≥ Zt,1a,ζ+γ(w).

Therefore

X t,1a,ζ(x, v) ≤ X t,1a,ζ+γ(x,w)

Since v was arbitrary, we are done by Proposition 5.6.7.

Define ζ = ζ|[q0,1] and ζ = ζ|[0,q0] when ζ ∈ L and q0 ∈ [0, 1] are given. The next lemma is

analogous to Lemma 5.5.8 and will be used to connect our estimates for ϕ(0) to the Parisi functional

uniformly in m.

Lemma 5.6.11. For ζ ∈ L , with λ =
∫ 1

0
ξ′′(t)ζ(t)dt,

1

N

N∑
i=1

Φ∞
mi,ζ

(0, h+ λmi)−
1

2

∫ 1

q0

(t− q0)ζ(t)ξ′′(t)dt+R(h,m) ≤ PIs
ξ,h(ζ).

Proof. Define the constants

I =

∫ 1

0

tξ′′(t)ζ(t)dt, J = λ =

∫ 1

0

ξ′′(t)ζ(t)dt,

I =

∫ 1

q0

tξ′′(t)ζ(t)dt, J =

∫ 1

q0

ξ′′(t)ζ(t)dt,

I =

∫ q0

0

tξ′′(t)ζ(t)dt, J =

∫ q0

0

ξ′′(t)ζ(t)dt.

Then I = I + I and J = J + J and q0J ≥ I. Recalling that PIs
ξ,h(ζ) = Φ∞ζ (0, h)− I

2 , we estimate

PIs
ξ,h(ζ) = Φ∞ζ (0, h)− I

2

= 1
N

∑N
i=1

(
Φ∞mi,ζ (0, h+ λmi) +

m2
iJ
2

)
− I

2 +R(h,m)

= 1
N

∑N
i=1 Φ∞mi,ζ (0, h+ λmi) + q0J

2 −
I
2 +R(h,m)

= 1
N

∑N
i=1 Φ∞mi,ζ (0, h+ λmi) + q0J

2 −
I
2 + q0J−I

2 +R(h,m)

≥ 1
N

∑N
i=1 Φ∞mi,ζ (0, h+ λmi) + q0J

2 −
I
2 +R(h,m)

≥ 1
N

∑N
i=1 Φ∞

mi,ζ
(0, h+ λmi) + q0J

2 −
I
2 +R(h,m).

Prop 5.6.2

‖m‖2N = q0

ζ = ζ + ζ

q0J ≥ I

Lem 5.6.10

This is exactly what we wanted to show.



CHAPTER 5. LIPSCHITZ HARDNESS FOR OPTIMIZING SPIN GLASSES 227

The next crucial lemma upper-bounds ΦL
a,ζ using the 1-dimensional function Φa,κζ . As in the

spherical case, multiplying by κ will allow us to pass from increasing ζ ∈M~q to arbitrary functions

in L .

Lemma 5.6.12. For any ζ ∈M~q, ~x ∈ RK , a ∈ [−1, 1] and t ∈ [0, 1],

ΦL
a,ζ(t, ~x) ≤

∑
u∈L

Φa,κζ(t, x(u)). (5.6.6)

Proof. Define

Z̃L,t1,t2
a,ζ (~v) ≡ 1

2

∫ t2

t1

ζ(r)ξ′′(r)κ(r)−1〈M(r)2, ~v⊗2
r 〉dr.

Since M(r) � κ(r)IK , in the Loewner order, it follows that

κ(r)−1M(r)2 �M(r).

Hence Z̃L,t1,t2
a,ζ (~v) ≤ ZL,t1,t2

a,ζ (~v) for any ~x and ~v. Setting

X̃ L,t1,t2
a,ζ (~x,~v) ≡ YL,t1,t2

a,ζ (~x,~v)− Z̃L,t1,t2
a,ζ (~v),

it follows that

X t,1a,ζ(~x,~v) ≤ X̃ t,1a,ζ(~x,~v)

always holds. Next for any ~v ∈ DL[t, 1] and r ∈ [t, 1], define ~Vr = M(r)~vr
κ(r) ∈ RK . Then

〈M(r)2, ~v⊗2
r 〉 = ‖M(r)~vr‖22 = κ(r)2

∥∥∥~Vr∥∥∥2

and so (including the relevant Brownian motions as arguments in a slight abuse of notation),

Z̃L,t,1
a,ζ (~v, ~B) =

∑
u∈L
Zt,1a,κζ(V (u), B(u)).

Moreover since κ(r)~Vr(u) = M(r)~vr(u),

ỸL,t,1
a,ζ (~x,~v, ~B) =

∑
u∈L
Yt,1a,κζ(x(u), V (u), B(u)).

Since each coordinate Br(u) of ~Br has the marginal law of a 1-dimensional Brownian motion,

X̃ L,t,1
a,ζ (~x,~v) =

∑
u∈L
X t,1a,κζ(x(u), V (u)).
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Therefore we obtain

X t,1a,ζ(~x,~v) ≤ X̃ t,1a,ζ(~x,~v)

=
∑
u∈L
X t,1a,κζ(x(u), V (u))

≤
∑
u∈L

Φa,κζ(t, x(u)).

Since ~v ∈ DL,t,1 was arbitrary this concludes the proof.

5.6.3 Zero Temperature Limit

We now apply the above results with (β2ξ, βh, βλ) in place of (ξ,h, λ), which corresponds to scal-

ing HN to βHN . We accordingly define Φβ2ξ,ζ and ϕIs
β2ξ(0) by making this substitution in their

definitions. It is not hard to derive the scaling relation

Φβ2ξ,ζ(t, βx) = β · Φββζ(t, x), (t, x) ∈ [0, 1]× R (5.6.7)

for any β ∈ (0,∞) and ζ ∈ L .

We will also use the following simple estimate to pass to the zero temperature limit.

Proposition 5.6.13. supζ

∣∣∣Φβζ (t, x)− Φ∞ζ (t, x)
∣∣∣ ≤ log 2

β .

Proof. Recall that Φβζ (1, x) is convex and 1-Lipschitz while Φ∞ζ (1, x) = |x| ≤ Φβζ (1, x). It follows

that

sup
x∈R

∣∣∣Φβζ (1, x)− Φ∞ζ (1, x)
∣∣∣ =

∣∣∣Φβζ (1, 0)− Φ∞ζ (1, 0)
∣∣∣

=
log 2

β
.

Hence ∣∣∣X 0,1
ζ,β (v, x)−X 0,1

ζ,∞(v, x)
∣∣∣ ≤ log 2

β

holds for any control v, since the only difference is from the boundary value at time t = 1 in Y.

Proposition 5.6.7 now implies the desired result.

Below, recall the definition ζ = ζ|[q0,1].

Lemma 5.6.14. Let (~p, ~q,~k) be as in Section 5.4, and fix β > 0 and ζ ∈ L such that ζ ∈ M~q.

With

λ =

∫ 1

0

ξ′′(t)κ(t)ζ(t)dt
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we have

F Is
N (β,Q(η)) ≤ βKPIs(βκζ) + 3β2K2ξ′′(1)η +Kβλη +K log 2.

Proof. Applying Proposition 5.4.1 with ζ and (β2ξ, βh, βλ) in place of (ξ,h, λ) in the first line,

F Is
N (β,Q(η))− 3β2K2ξ′′(1)η −Kβλη ≤ ϕIs

β2ξ(0)− β2K
2

∫ 1

q0
(q − q0)ξ′′(q)κ(q)ζ(q) dq

≤ 1
N

∑N
i=1 ΦL

β2ξ,mi,ζ
(q0, βh+ βλmi)− β2K

2

∫ 1

q0
(q − q0)ξ′′(q)κ(q)ζ(q) dq + βKR(h,m)

≤ K
N

∑N
i=1 Φβ2ξ,mi,κζ

(q0, βh+ βλmi)− β2K
2

∫ 1

q0
(q − q0)ξ′′(q)κ(q)ζ(q) dq + βKR(h,m)

= βK
N

∑N
i=1 Φβ

mi,βκζ
(q0, h+ λmi)− β2K

2

∫ 1

q0
(q − q0)ξ′′(q)κ(q)ζ(q) dq + βKR(h,m)

= βK
N

∑N
i=1 Φ∞

mi,βκζ
(q0, h+ λmi)− βK

2

∫ 1

q0
(q − q0)ξ′′(q)βκ(q)ζ(q) dq

+ βKR(h,m) +K log 2

≤ βKPIs(βκζ) +K log 2.

Props 5.6.1,5.6.5

Lem 5.6.12

(5.6.7)

Prop 5.6.13

Lem 5.6.11

Here terms modified from the previous line are in red text.

All that remains is to approximate an arbitrary ζ∗ ∈ L by βκζ on [q0, 1) for ζ ∈M~q and choose

parameters appropriately. We do this now.

Proof of Proposition 5.3.2, Ising case. First choose ζ∗ = ζ∗(ξ, h, ε) ∈ L such that

PIs(ζ∗) ≤ inf
ζ∈L

PIs(ζ) +
ε

10
= ALGIs +

ε

10
. (5.6.8)

Since
∫ 1

0
ξ′′(t)ζ∗(t)dt <∞, the monotone convergence theorem guarantees

lim
β→∞

∫ 1

0

ξ′′(t) · |min(ζ(t), β)− ζ(t)|dt = 0.

Define ζβ(t) = min(ζ(t), β). Therefore there exists

β = β(ζ∗, ξ, ε) = β(ξ, h, ε) ≥ 20 log 2

ε
(5.6.9)

sufficiently large so that (recall Proposition 5.6.4)

PIs(ζβ)− PIs(ζ∗) ≤ 2

∫ 1

0

ξ′′(t) · |ζβ(t)− ζ(t)|dt ≤ ε

10
. (5.6.10)

For δ > 0, let qδ0 = q0 and qd+1
δ = min(qδd + δ, 1). This determines D which satisfies qD−1 < qD = 1.

Since ζβ ∈ L is bounded and has bounded variation, there exists δ = δ(ξ, ζβ , ε) = δ(ξ,h, ε) > 0



CHAPTER 5. LIPSCHITZ HARDNESS FOR OPTIMIZING SPIN GLASSES 230

such that the function

ζβ,δ(t) =

ζβ(t), t ∈ [0, q0)

max
(
δ, ζβ(qδj )

)
, t ∈ [qδj , q

δ
j+1), j ≥ 0

satisfies

PIs(ζβ)− PIs(ζβ,δ) ≤ 2

∫ 1

0

ξ′′(t) |ζβ(t)− ζβ,δ(t)|dt ≤
ε

10
. (5.6.11)

(Note in particular that δ does not depend on q0.) Observe that ζβ,δ(t) ∈ [δ, β] holds for all t ∈ [0, 1].

Next define

k1 = k2 = · · · = kD = k∗ ≡
⌈
β

δ2

⌉
.

This leads to pδd = χ−1(qδd) with δ ≤ pδ1 ≤ pδD = 1 and hence κ(t) = κd for t ∈ [qδd, q
δ
d+1), where

δkD−d∗ ≤ κd ≤ kD−d∗ .

Next define

ζ̂β,δ(t) ≡
ζβ,δ(t)

βκ(t)
, t ∈ [q0, 1]

so that βκζ̂β,δ = ζβ,δ. Note that

sup
t∈[0,1]

ζ̂β,δ(t) ≤
sups∈[0,1] ζβ,δ(s)

β
≤ 1.

Additionally ζ̂β,δ is nondecreasing since if qd ≤ td < qδd+1 ≤ td+1 ≤ qδd+2, then

ζ̂β,δ(td)

ζ̂β,δ(td+1)
=
ζβ,δ(td)

ζβ,δ(td)
· κd+1

κd

≤ β

δ2k∗
≤ 1

by definition of k∗. Set

λ =

∫ 1

0

ξ′′(t)κ(t)ζ̂β,δ(t)dt

and

η =
ε

30βKξ′′(1) + 10λ
. (5.6.12)

We now show that using ζ̂β,δ in the interpolation implies Proposition 5.3.2. Take ~p, ~q,~k,D, β, η as
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above.
1
N E

[
max~σ∈QIs(η)H

~k,~p
N (~σ)

]
≤ F Is

N (β,Q(η))/β

≤ KPIs(βκζ̂β,δ) + 3βK2ξ′′(1)η +Kλη + K log 2
β

≤ K · PIs(ζβ,δ) + 2Kε
10

≤ K · PIs(ζβ) + 3Kε
10

≤ K · PIs(ζ∗) + 4Kε
10

≤ K · ALGIs + 5Kε
10 .

Lem 5.6.14

(5.6.9), (5.6.12)

(5.6.11)

(5.6.10)

(5.6.8)

Moreover the valuesD, η andK above are bounded depending only on ξ, h and ε. IndeedD ≤ δ−1+1,

η is bounded as in (5.6.12), and K =
∏D
d=1 ki = kD∗ =

⌈
β
δ2

⌉D
. Meanwhile β as defined in (5.6.9)

also depends only on ξ, h, ε. This concludes the proof.

5.6.4 Deferred Proofs

Here we give the missing proofs for this section, which are all relatively standard.

Proof of Lemma 5.6.6. We assume ζ(t) > 0 as the ζ(t) = 0 case is clear. We consider only the case

t ∈ [qD−1, 1) as the remaining cases are identical by induction. Let ~y = ~y(t) ∈ RK be the Gaussian

random vector

~y = ~ηD(ξ′′(1)− ξ′′(t))1/2.

Below A always denotes

A(~x+ ~y) = ΦL
a,ζ(1, ~x+ ~y)

and for convenience we set m = ζD = ζ(t) for t ∈ [qD−1, 1). First note that since |∂x(u)Φ
L
a,ζ(1, ~x)| ≤

1 + |a| holds, there are no issues of convergence in any of the expectations even though ~y has

unbounded support.

By differentiating in the endpoint value ~x+ ~y before taking expectation in ~y it follows that

∇ΦL
a,ζ =

E[∇AemA]

E[emA]
.

This immediately implies that |∂x(u)Φ
L
a,ζ(t, ~x)| ≤ 1 + |a|. Similarly one has

∂xixjΦ
L
a,ζ =

E
[
∂xixjA+m(∂xiA)(∂xjA)emA

]
E[emA]

−m
(
E[∂xie

mA]

E[emA]

)(
E[∂xje

mA]

E[emA]

)
.
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Combining, we compute

〈T,∇2ΦL
a,ζ〉+m〈T, (∇L)⊗2〉 =

1

E[emA]
E[
(
〈T,∇2A〉+m〈T, (∇A)⊗2〉

)
emA]

Next, note that the time-derivative of the covariance of ~y(t) is M(t). Since M(t) is positive semidef-

inite we can couple together (~y(t))t∈[qL−1,1] via

~y(t) =

∫ 1

t

√
ξ′′(r)M(r)d ~Br

where ~Br is a standard Brownian motion in RK . Applying Ito’s formula backward in time now

implies
d

dt
E emA(~x,~y(t)) = −1

2
mE

[(
〈T,∇2A〉+m〈M(t), (∇A)⊗2〉

)
emA

]
.

Therefore we conclude

∂tΦ
L
a,ζ = −

d
dt E e

mA(~x,~y(t))

mE emA(~x,~y(t))

= −1

2
〈T,∇2ΦL

a,ζ〉+m〈T, (∇ΦL
a,ζ)
⊗2〉.

Proof of Proposition 5.6.7. Set

Ws = x+

∫ s

t1

ζ(r)ξ′′(r)vrdr +

∫ s

t1

√
ξ′′(r)dBr

and

Vs ≡ Φβa,ζ (s,Ws)−
1

2

∫ s

t1

ζ(r)ξ′′(r)v2
rdr.

Ito’s formula gives

dVt =

(
∂tΦ

β
a,ζ(t,Wt) + ζ(t)ξ′′(t)vt∂xΦβa,ζ(t,Wt) +

1

2
ξ′′(t)∂xxΦβa,ζ(t,Wt)−

1

2
ζ(t)ξ′′(t)v2

t

)
dt+YtdBt.

Here Yt is irrelevant and (5.6.1) lets us rewrite the finite variation part of dVt as

∂tΦ
β
a,ζ(t,Xt) + ζ(t)ξ′′(t)vt∂xΦβa,ζ(t,Wt) +

1

2
ξ′′(t)∂xxΦβa,ζ(t,Wt)−

1

2
ζ(t)ξ′′(t)v2

t

= −1

2
ζ(t)ξ′′(t)

(
vt − ∂xΦβa,ζ(t,Wt)

)2

≤ 0.
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We conclude that

Φβζ (t1, x) ≥ X t1,t2ζ (x, v)

with equality when vr = ∂xΦβζ (r,Wr) holds for all r ∈ [t1, t2]. By uniqueness of solutions for SDEs

with Lipschitz coefficients, this implies Wr = Xr.

Proof of Proposition 5.6.8. The proof is similar to the 1-dimensional case. First, the SDE defining

~Xt has strong and pathwise unique solutions since ∇ΦL
a,ζ(t, ~x) is uniformly bounded and Lipschitz

in ~x. Set

~Ws = ~x+

∫ s

t1

ζ(r)ξ′′(r)M(r)~vrdr +

∫ s

t1

√
ξ′′(r)M(r)d ~B(r)

and

V L
s ≡ ΦL

a,ζ

(
s, ~Xs

)
− 1

2

∫ s

t1

ζ(r)ξ′′(r)〈M(r), ~v⊗2
r 〉dr.

By Ito’s formula,

dV L
t =

(
∂tΦ

L
ζ (t, ~Wt) + ζ(t)ξ′′(t)~vt∂xΦL

ζ (t, ~Wt) +
1

2
ξ′′(t)∂xxΦL

ζ (t, ~Xt)−
ξ′′(t)

2
〈M(t), ~v⊗2

t 〉
)

dt+Y L
t dBt.

Here Y L
t is again irrelevant. By (5.6.3) the finite variation part of dV L

t is

∂tΦ
L
a,ζ(t, ~Wt) +

〈
M(t), ~vt ⊗∇ΦL

a,ζ(t, ~Wt)
〉

+
1

2
ξ′′(t)∂xxΦL

a,ζ(t, ~Wt)−
ξ′′(t)

2
〈M(t), ~v⊗2

t 〉

= −1

2

〈
M(t),

(
~vt −∇ΦL

a,ζ(t, ~Wt)
)⊗2

〉
≤ 0.

We conclude that

ΦL
a,ζ(t1, ~x) ≥ X L,t1,t2

a,ζ (~x,~v)

with equality when

~vr = ∇ΦL
a,ζ(r, ~Wr)

holds for all r ∈ [t1, t2]. Again, uniqueness of solutions to SDEs with Lipschitz coefficients implies

~Wr = ~Xr.
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5.7 Necessity of Full Branching Trees

In this section we show, roughly speaking, that it is necessary to use a full branching tree to

obtain our results within the overlap gap framework. We restrict for convenience to the setting of

spherical models with null external field h = 0 and set ALGSp
ξ = ALGSp

ξ,0 =
∫ 1

0
ξ′′(t)1/2 dt (recall

Proposition 5.2.2) and OPTSp
ξ = OPTSp

ξ,0.

A consequence of Theorem 27, proved near the end of this section, can be expressed informally

as follows for any ξ with ALGSp
ξ < OPTSp

ξ . Recall the canonical bijection between finite ultramet-

ric spaces and edge-weighted rooted trees (or see Subsection 5.7.2 for a reminder). For all finite

ultrametric spaces X of diameter at most
√

2 whose corresponding rooted tree does not contain a

subdivision of a full binary subtree of depth D, with probability at least 1 − e−Ω(N) the following

holds. There exists an isometric (up to the scaling factor
√
N) embedding ι : X → SN such that

HN (ι(x)) ≥ (ALGSp
ξ + εξ,D)N, ∀x ∈ X.

Here εξ,D > 0 is a constant depending only on ξ and D, and in particular is independent of the size

of the ultrametric X. In other words, to rule out algorithms achieving better than ALGSp
ξ + ε using

forbidden ultrametrics, as ε → 0 it is necessary to take D → ∞, in effect using the full power of

Proposition 5.3.2.

The full statement of Theorem 27 shows that in fact a super-constant amount of branching must

occur at all “depths” in [0, 1] where ξ′′(t)−1/2 is strictly convex. We also show in Theorem 28 that

there exists an embedding ι as above with large average energy

1

|X|
∑
x∈X

HN (ι(x)) ≥ (ALGSp
ξ + εξ,D)N

unless “almost all of” X branches a super-constant amount at “almost all such depths”. Note that

this average energy is what the Guerra-Talagrand interpolation actually allows one to upper bound.

Throughout this section we always consider just a single Hamiltonian HN . This corresponds to the

case ~p ≈ (1, 1, . . . , 1), i.e. a correlation function χ(p) which sharply increases near p = 1 such as

χ(p) = p100.

Our plan to prove Theorem 27 is as follows. If ALGSp
ξ < OPTSp

ξ , there exists an interval [a, b] ⊆
[0, 1] on which (ξ′′)−1/2 is strictly convex. Let T be the finite rooted tree with leaf set corresponding

to the ultrametric space X. Let ε > 0 be a small constant depending only on ξ and D. We

use the algorithm of [Sub21] to find embeddings of ancestor points ι(xa) for each x ∈ X of norm

‖ι(xa)‖2 =
√
aN which satisfy

HN (ι(xa)) ≥
(∫ a

0

ξ′′(t)1/2 dt− ε
)
N.
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Next we embed the depth [a, b] parts of T so that the resulting depth b ancestor embeddings ι(xb)

satisfy

HN (ι(xb)) ≥

(∫ b

0

ξ′′(t)1/2 dt+ 2ε

)
N.

In other words, from radius
√
aN to

√
bN , the embedded points’ energy grows by

∫ b
a
ξ′′(t)1/2 dt +

3ε, which exceeds the maximum possible growth of an overlap concentrated algorithm by a small

constant 3ε. This is the main step of our procedure, and it succeeds whenever the portion of T
at depths in [a, b] does not contain a full binary tree of depth D. The proof uses induction on D,

and the D = 1 case is described in Figure 5.2. We remark that our proof is essentially constructive

assuming access to an oracle to find many orthogonal near-maximizers of HN on arbitrary bands as

guaranteed by Lemma 5.7.4.

Finally we again use the algorithm of [Sub21] to define embeddings of the leaves ι(x) ∈ SN for

x ∈ X with

HN (ι(x)) ≥
(∫ 1

0

ξ′′(t)1/2 dt+ ε

)
N.

We remark that in previous multi-OGP arguments, ultrametricity of the forbidden configuration

does not explicitly enter. However in these arguments, it is always possible that the structure of

replicas identified is an ultrametric. Specifically, in a “star” multi-OGP [RV17a, GS17, GK21a] all

the replicas are pairwise equidistant. For the “ladder” OGP implementations of [Wei22, BH21], the

forbidden structure is defined by applying some stopping rule to choose a finite number of solutions

from a “stably evolving” sequence of algorithmic outputs. In both settings it is possible that the

resulting configuration is a star ultrametric with all pairwise nonzero distances equal. However, the

rooted tree corresponding to such an ultrametric does not contain even a full binary tree of depth

D = 2. Therefore Theorem 27 strongly suggests that existing OGP arguments are incapable of

ruling out Lipschitz A from achieving energies down to the algorithmic threshold ALGSp
ξ .

5.7.1 Preparation

For given ξ and t ∈ [0, 1], define

ALGSp
ξ (t) =

∫ t

0

ξ′′(s)1/2ds

so that ALGSp
ξ (1) = ALGSp

ξ . Define also

ALGSp
ξ ([a, b]) = ALGSp

ξ (b)− ALGSp
ξ (a).

Define

ξa(t) = ξ(t)− ξ(a)− (t− a)ξ′(a).
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Note that ξa(a) = ξ′a(a) = 0, and ξ′′a (t) = ξ′′(t) for all t. Define the rescaled mixture function

ξ[a,b](t) = ξa (a+ (b− a)t) .

We derive

ALGSp
ξ[a,b]

=

∫ 1

0

√
ξ′′[a,b](t)dt =

∫ b

a

√
ξ′′a (s)ds =

∫ b

a

√
ξ′′(s)ds = ALGSp

ξ ([a, b]).

Correspondingly, define

OPTSp
ξ ([a, b]) = OPTSp

ξ[a,b]
.

Proposition 5.7.1. Suppose d2

dt2 (ξ′′(t)−1/2) > 0 for t ∈ [a, b] ⊆ [0, 1]. Then

OPTSp
ξ ([a, b]) > ALGξ([a, b]). (5.7.1)

Proof. The result follows from Proposition 5.2.2 applied to ξ[a,b].

The next proposition follows from the work [Sub18] and ensures the existence of many approx-

imately orthogonal replicas which each approximately achieve the ground state energy in spherical

spin glasses without external field. In Lemma 5.7.4 we make several simple modifications to this

result, for instance requiring that the replicas be exactly orthogonal.

Proposition 5.7.2. Suppose d2

dt2 (ξ′′(t)−1/2) > 0 for t ∈ [0, 1]. Then for any C, ε > 0 and k ∈ N, for

N ≥ N0 = N0(ξ, C, ε, k), with probability at least 1−e−CN either HN /∈ KN (recall Proposition 5.2.3)

or the following holds. There exist k points σ1, . . . ,σk ∈ SN with

|R(σi,σj)| ≤ ε, 1 ≤ i < j ≤ k

and

HN (σi) ≥ N(OPTSp
ξ − ε), i ∈ [k].

Proof. With the absence of external field, it follows from [Sub18, Lemma 42] that 0 is multi-

samplable. Let Qk(ε) ⊆ B(m, ε)k ∩ SkN denote the set of ~σ with |R(σi,σj)| ≤ ε for i 6= j. Let µ be

the uniform measure on SN . Define

FN,β =
1

βN
log

∫
SN

expβHN (σ) dµ(σ)

to be the quenched free energy of HN on SN at inverse temperature β and

F̃N,β(m) = F̃N,β(m, kN , ε) ≡
1

βNkN
log

∫
QkN (ε)

expβ

kN∑
i=1

HN (σi) dµk(~σ).
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Here kN grows to ∞ with N at a suitably slow rate. By [Sub18, Proposition 1 and Theorem 3]4 it

follows that for N ≥ N0 sufficiently large,

P
[
E F̃N,β(m)− EFN,β ≥ −ε

]
≥ 1− e−CN .

Therefore there exists some ~σ ∈ QkN (ε) satisfying

kN∑
i=1

HN (σi) ≥ NkN (OPTSp
ξ − ε− oβ(1)).

Here oβ(1) is a value tending to 0 as β → ∞, uniformly in everything else. Assuming HN ∈ KN ,

the values 1
N |HN (σi)| are uniformly bounded by a constant C1 (because HN (0) = 0). It follows by

Markov’s inequality that at least kN

(
ε

10C1
− ε− oβ(1)

)
of the σi satisfy HN (σi) ≥ N(OPTSp

ξ −
ε
2 −

oβ(1)). Since kN →∞, eventually

k ≤
⌊
kN

(
ε

10C1
− ε− oβ(1)

)⌋
for suitably large β, which completes the proof.

For fixed m, define the first-order Taylor expansion

H
m

N (σ) = HN (m) + 〈∇HN (m),σ −m〉.

of HN and write

HN = H
m

N + ĤmN .

For 0 ≤ a ≤ b ≤ 1 with m ∈
√
a · SN , define B(m, 0, b) = B(m, 0) ∩

√
b · SN and its convex hull

B(m, 0, [a, b]).

Lemma 5.7.3. For any fixed m, the law of ĤmN restricted to B(m, 0) is a Gaussian process with

covariance

E[ĤmN (σ1)ĤmN (σ2)] = Nξa(R(σ1,σ2)). (5.7.2)

Moreover the restrictions of ĤmN and H
m

N to B(m, 0) are independent.

Proof. Note that for all σ1,σ2 ∈ B(m, 0),

R(σ1 −m,σ2 −m) = R(σ1,σ2)− a.
4In the statement of [Sub18, Theorem 3], there are values δN , ρN which also shrink with N . We are taking ε = ρN

a small constant and ignoring the constraint from δ, so our value of F̃N,β(m) is larger than that of [Sub18]. Therefore

the lower bound on F̃N,β(m) we use is somewhat weaker than in the results cited.
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Since ξa(t) has all derivatives non-negative for t ≥ a, we may sample a centered Gaussian process

H̃N on B(m, 0, [a, 1]) with covariance given by

E[H̃N (σ1)H̃N (σ2)] = Nξa(R(σ1 −m,σ2 −m) + a)

= Nξa(R(σ1,σ2)).

Next, generate the independent centered Gaussian process HN by

E[HN (σ1)HN (σ2)] = N
(
ξ(a) + ξ′(a)

(
R(σ1,σ2)− a

))
.

It follows by adding covariances (with x = R(σ1,σ2) in the definition of ξa) that

H̃N +HN
d
= HN

when restricted to B(m, 0). Since ξa(a) = ξ′a(a) = 0, it follows that H̃N (m) = 0 and ∇H̃N (m) = 0

hold almost surely. Therefore HN = H
m

N is the first-order Taylor expansion of HN around m, and

then also H̃N = ĤmN . Moreover H̃N and HN are independent by construction. This concludes the

proof.

In the following Lemma 5.7.4, we refine Proposition 5.7.2 in several simple but convenient ways.

In particular, Lemma 5.7.3 implies the same result uniformly over all bands B(m, 0, b); it also guar-

antees exact orthogonality. Lemma 5.7.4 will serve as a useful tool for embedding more complicated

ultrametric trees. Roughly speaking, it gives a way to gain on the embedding algorithm of [Sub21]

(stated later as Proposition 5.7.10).

Lemma 5.7.4. Suppose d2

dt2 (ξ′′(t)−1/2) > 0 for t ∈ [a, b] ⊆ [0, 1]. Then there exists ε > 0 depending

only on ξ, a, b such that for any k, for N ≥ N0(ξ, a, b, k) sufficiently large and some c = c(ξ, a, b, k),

with probability 1− e−cN the following holds.

For any m with ||m||2N = a ≤ 1 and any linear subspace W ⊆ RN with dim(W ) ≥ N − k, there

exist k points σ1, . . . ,σk ∈W +m such that

R(σi −m,σj −m) = (b− a) · I(i = j) ∀i, j ∈ [k] (5.7.3)

and

HN (σi) ≥ HN (m) +N(ALGSp
ξ ([a, b]) + ε) ∀i ∈ [k]. (5.7.4)

Proof. Consider a (non-random) η
√
N -net Nη on

√
a · SN of size at most (10/η)N . For any m ∈
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√
a · SN , the Hamiltonian ĤmN (σ) restricted to B(m, 0, b) has covariance

E ĤmN (σ1)ĤmN (σ2) = Nξa(R(σ1,σ2))

= Nξ[a,b]

(
R

(
σ1 −m√
b− a

,
σ2 −m√
b− a

))
.

Since

||σ −m||2 =
√
N(b− a)

for σ ∈ B(m, 0, b), we conclude that ĤmN is exactly an N − 1 dimensional spin glass with mixture

ξ[a,b] on B(m, 0, b) up to rescaling the input.

Fix a large constant M , and choose ε sufficiently small depending on M . We apply Proposi-

tion 5.7.2 to ĤmN with mixture ξ[a,b](t) based on the observation just above. Recall that the constant

C in Proposition 5.7.2 can be arbitrarily large. It follows by a union bound that with probability

1− e−C1N , for all n ∈ Nη there exist σ̃1(n), . . . , σ̃M (n) satisfying

|R(σ̃i(n)− n, σ̃j(n)− n)− (b− a) · I(i = j)| ≤ ε ∀1 ≤ i < j ≤M

and

ĤN (σ̃i(n)) ≥ N(OPTSp
ξ ([a, b])− ε) ∀i ∈ [M ]. (5.7.5)

For any m ∈
√
a · SN , there exists by definition n ∈ Nη with ||m − n|| ≤ η

√
N . Then with

σ̃i = σ̃i(n) as above,

|R(σ̃i −m, σ̃j −m)− (b− a) · I(i = j)| ≤ ε1 ∀1 ≤ i < j ≤M

for some ε1 = oε,η(1) tending to 0 as ε, η → 0. Define the linear subspace W̃ ⊆W by

W̃ = W ∩m⊥ ∩ (∇HN )⊥

where (·)⊥ denotes orthogonal complement. Let P
W̃⊥

be the orthogonal projection matrix onto W̃⊥.

It is easy to see that ∣∣∣∣∣
∣∣∣∣∣
M∑
i=1

(σ̃i −m)⊗2

∣∣∣∣∣
∣∣∣∣∣
2

2

≤ (1 +Mε)N ≤ 2N
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for ε sufficiently small. Then

M∑
i=1

||P
W̃⊥

(σ̃i)||22 =

〈
P
W̃⊥

,

M∑
i=1

(σ̃i −m)⊗2

〉

≤ ||P
W̃⊥
||22 ·

∣∣∣∣∣
∣∣∣∣∣
M∑
i=1

(σi −m)⊗2

∣∣∣∣∣
∣∣∣∣∣
2

2

≤ 2(k + 2)N.

By the pigeonhole principle, at most M − k values i ∈ [M ] can satisfy

||P
W̃⊥

(σi −m)||22 ≥
2(k + 2)N

M − k
.

It follows that there exist a subset σ̃i1 , . . . , σ̃ik with

||P
W̃⊥

(σ̃ij −m)||22 ≤ ηN, j ∈ [k]

where η ≤ 2(k+2)
M−k is arbitrarily small (by choosing M large depending on k). Defining σ′i1 , . . . ,σ

′
ik

by

σ′ij −m = P
W̃⊥

(σ̃ij −m),

we have

σ′i1 , . . . ,σ
′
ik
∈m+ W̃

satisfying

|R(σ′ij −m,σi` −m)− (b− a) · I(j = `)| ≤ ε2, j, ` ∈ [k]

and

||σ′ij − σ̃ij ||
2
2 ≤ ηN, j ∈ [k].

Here ε2 = oε1,η(1) tends to 0 as ε1 and η tend to 0. Using Gram-Schmidt orthonormalization inside

the affine subspace B(m, 0), for ε3 = oε2(1) we may find σ̂1, . . . , σ̂k ∈ B(m, [a, b]) ∩W satisfying

R(σ̂i −m, σ̂j −m) = (b− a) · I(i = j) ∀1 ≤ i < j ≤ k

and

||σ̂j − σ′ij ||
2
2 ≤ ε3N ∀j ∈ [k].

Assuming HN is C1

√
N -Lipschitz with respect to the ‖·‖2 norm (recall Proposition 5.2.3), this

implies based on (5.7.5) that for some ε4 = oε3(C1 + 1),

ĤN (σ̂j) ≥ N(OPTSp
ξ − ε4) ∀i ∈ [k]
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and

||σ̂j − σ̃ij ||22 ≤ 2(ε3 + η)N ∀j ∈ [k].

Recalling Proposition 5.7.1, this completes the proof.

5.7.2 Trees and Ultrametrics

We recall the well known connection between trees and ultrametric spaces. Here and throughout

given a rooted tree T with root r(T) we denote by pa(v) the parent of v ∈ V (T)\{r(T)}

Definition 5.7.5. [BD98a] A dated, rooted tree T with range [a, b] ⊆ [0, 1] is a finite tree rooted at

r(T) ∈ V (T) together with a height function

| · | : V (T)→ [a, b]

satisfying the following properties.

• |r(T)| = a.

• |v| = b for all leaves v ∈ L(T).

• |pa(v)| < |v| for all v ∈ V (T)\{r(T)}.

We say T is reduced if no v ∈ V (T) except possibly r(T) has exactly 1 child.

In a rooted tree, let u ∧ v ∈ V (T) denote the least common ancestor of vertices u and v. To any

dated rooted tree T, we associate a metric dT : V (T)× V (T)→ [0,
√

2] characterized by

|u ∧ v| = |u| − dT (u, v)2 + |v|
2

, u, v ∈ V (T). (5.7.6)

When u, v ∈ L(T) are leaves and T has range [a, b], this becomes

|u ∧ v| = b− dT (u, v)2

2
, u, v ∈ L(T). (5.7.7)

Crucially, observe that for u, v ∈ L(T), the value dT (u, v) is a strictly decreasing function of |u∧ v|.
Therefore dT defines an ultrametric on L(T), or in fact the set of vertices at any fixed height. The

specific decreasing bijection between |u ∧ v| ∈ [0, 1] and dT (u, v) ∈ [0,
√

2] for u, v ∈ L(T) can in

general be arbitrary; the one above is suited for embeddings into Euclidean space since

R(σ1,σ2) =
R(σ1,σ1)− ||σ1 − σ2||2N +R(σ2,σ2)

2
, σ1,σ2 ∈ RN . (5.7.8)

The following type of result is well known and seems to be folklore.
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Proposition 5.7.6. [RTV86, Section 6],[BD98a] For any finite set X, (5.7.6) defines a bijection

between the following two isomorphism classes.

1. Dated, rooted reduced trees with range [0, 1] and leaf set X.

2. Ultrametric structures on X with diameter at most
√

2.

Any dated, rooted tree can be naturally reduced by removing vertices with a single child and

connecting their parent and child. Hence we will consider general dated, rooted trees to give ourselves

more flexibility. We are interested in embeddings of the leaves L(T) into level sets {σ ∈ RN :

HN (σ) ≥ (ALG + ε)N} which are isometries up to the scaling factor
√
N . It will be convenient to

embed the entire vertex set V (T).

Definition 5.7.7. A Euclidean embedding of a dated, rooted tree T to is a function ι : V (T)→ RN

satisfying

R(ι(u), ι(v)) = |u ∧ v| ∀u, v ∈ V (T).

or equivalently (by (5.7.8)),

||ι(u)− ι(v)||N = dT (u, v) ∀u, v ∈ V (T).

The next lemma gives an alternate characterization of Euclidean embeddings. .

Lemma 5.7.8. ι : V (T)→ RN is a Euclidean embedding if and only if the following properties hold.

Below we implicitly define |pa(r(T))| = 0 and ι(pa(r(T)) = 0.

1. ι(r(T)) = a.

2. For all v ∈ V (T),

||ι(v)− ι(pa(v))||N = |v| − |pa(v)|.

3. For all distinct u, v ∈ V (T),

R(ι(u)− ι(pa(u)), ι(v)− ι(pa(v))) = 0.

Proof. First if ι is a Euclidean embedding, then clearly the first property holds. The second holds

because

||ι(v)− ι(pa(v))||2N = R(ι(v)− ι(pa(v)), ι(v)− ι(pa(v)))

= |v ∧ v| − |v ∧ pa(v)| − |pa(v) ∧ v|+ |pa(v) ∧ pa(v)|

= |v| − |pa(v)|.
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For the third property, we compute

R(ι(u)− ι(pa(u)), ι(v)− ι(pa(v))) = |u ∧ v| − |v ∧ pa(v)| − |pa(u) ∧ v|+ |pa(u) ∧ pa(v)|.

Since u 6= v, without loss of generality suppose v 6= (u ∧ v). Then v is an ancestor of neither u nor

pa(u). The third property then follows because

u ∧ v = u ∧ pa(v) and pa(u) ∧ v = pa(u) ∧ pa(v).

In the other direction, let us assume the three properties hold and show ι is a Euclidean embed-

ding. Consider vertices u = un and v = vm with ancestor paths

(r(T) = u0, u1, . . . , un−1), (r(T) = v0, v1, . . . , vm−1).

Suppose that u ∧ v = ud = vd, so that uj = vj if and only if j ≤ d. Then we expand

R(ι(u), ι(v)) = a+
∑

1≤i≤n
1≤j≤m

R
(
ι(ui)− ι(ui−1), ι(vj)− ι(vj−1)

)
= a+

∑
1≤i≤d

R
(
ι(ui)− ι(ui−1), ι(ui)− ι(ui−1)

)
= a+

∑
1≤i≤d

|ui| − |ui−1|

= a+ |ud| − |r(T)|

= |u ∧ v|.

Next, define the depth D rooted binary tree T2
D on vertex set

V (T2
D) = ∅ ∪ [2] ∪ [2]2 ∪ · · · ∪ [2]D.

As usual, a vertex v ∈ [2]j is the parent of u ∈ [2]j+1 if and only if v is an initial substring of u. We

say the rooted tree T contains T2
D if there exists an ancestry-preserving injection

φ : V (T2
D)→ V (T)

(which need not preserve the root). Define the branching depth D(T) to be the largest D such that

T contains T2
D. For v ∈ V (T), define D(v) = D(Tv) where Tv ⊆ T is the subtree rooted at v.
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Proposition 5.7.9. For any rooted tree T, the set

VD = {v ∈ V (T) : D(v) = D(T)} (5.7.9)

is a simple path graph with one endpoint at r(T).

Proof. Let D = D(T). Clearly VD is closed under ancestry and contains r(T). Suppose for sake of

contradiction that VD is not a path with r(T) as an endpoint. Then VD contains vertices v and w

neither of which is an ancestor of the other. But if the disjoint subtrees rooted at v and w each

contain T2
D, then T contains T2

D+1, a contradiction.

We will use the following slight generalization of the main result of [Sub21]. It can be seen as

the “default” embedding procedure which ensures energy ALGSp
ξ at the leaves, while Lemma 5.7.4

gives a tool to improve over this embedding on intervals [a, b] where ξ′′(t)−1/2 is convex.

Proposition 5.7.10. For any ε > 0 and k ∈ Z+, there exist c and N0 depending on ξ, ε, k such

that with probability 1− e−cN the following holds for all N ≥ N0.

For any m with ||m||2N = q ≤ 1, any dated, rooted tree T of order |V (T)| ≤ k with range [q, 1],

and any linear subspace W ⊆ RN with dim(W ) ≥ N − k, there is an embedding ι of X into W +m

such that

||ι(u)− ι(v)||N = d(u, v) ∀u, v ∈ V (T) (5.7.10)

and

HN (ι(x)) ≥ HN (m) +N · (ALGSp
ξ (‖ι(u)‖2N − ALGSp

ξ (‖m‖2N )− ε) ∀v ∈ V (T). (5.7.11)

Proof. The proof is essentially contained in [Sub21, Theorem 4 and Remark 6]. The restriction to

W +m has no effect on the proof whenever k ≤ o(N). Indeed, a GOE matrix has Ωε(N) eigenvalues

at least 2−ε with probability 1−e−Ωε(N
2). This property implies existence of an eigenvalue at least

2 − ε when a GOE matrix is restricted to any subspace of dimension at least N − Ωε(N) by the

Courant-Fisher theorem. Repeating the proof of [Sub21, Theorem 4] with this minor modification

establishes the result.

The following simple lemma is a slightly more general statement of Proposition 5.7.10. It will be

used to extend partial embeddings of ancestor-closed subsets of V (T) to all of V (T).

Lemma 5.7.11. For any ε > 0 and finite dated rooted tree T, there exist c and N0 depending on

ξ, ε, T such that with probability 1− e−cN the following holds for all N ≥ N0.

For any ancestor-closed subset U ⊆ V (T), let ιU : U → RN be a Euclidean embedding. Then

there is a Euclidean embedding ι : V (T)→ RN extending ιU such that for any v ∈ V (T) with lowest



CHAPTER 5. LIPSCHITZ HARDNESS FOR OPTIMIZING SPIN GLASSES 245

U -ancestor u ∈ U ,

HN (ι(v)) ≥ HN (ι(u)) +N · (ALGSp
ξ (|v|)− ALGSp

ξ (|u|)− ε). (5.7.12)

Proof. The result follows by repeated application of Proposition 5.7.10. Indeed, V (T)\U consists of

a disjoint union of subtrees Ti rooted at vertices u1, . . . , uk in U . For each j ∈ [k], given a Euclidean

embedding ιj−1
U of

Uj−1 = U ∪

 ⋃
1≤i≤j−1

Ti

 ,

we extend it to Tj as follows. Let

Wj = span(ι(u)u∈Uj−1)⊥

be the orthogonal complement of the span of the already-embedded vertices. Then applying Propo-

sition 5.7.10 with W = Wj and m = ι(uj), we obtain a Euclidean embedding of Tj into Wj + ι(uj),

which joins with ιj−1
U to form an embedding ιjU on Uj . It follows from Lemma 5.7.8 that ιjU is again

a Euclidean embedding of Uj . Moreover (5.7.11) ensures that (5.7.12) is satisfied for each v ∈ Tj .
Repeating this inductively for each j ∈ [k] completes the proof.

5.7.3 Proof of Theorems 27 and 28

We now show that full binary trees are necessary for our results, in the sense that trees T not

containing T2
D fail as obstructions to energy (ALGSp

ξ + εξ,D)N for some εξ,D > 0 independent of

|V (T)|. The main arguments are devoted to proving Lemma 5.7.12, which implies the two main

theorems. Lemma 5.7.12 is proved by induction on D, and a representative case for D = 1 is

depicted in Figure 5.2.
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Figure 5.2: A stylized instance of Lemma 5.7.12 in the case D = 1 and [a, b] = [0, 1] is displayed.
By definition of branching depth, when D = 1 the non-leaves of T consist of a single path. We
choose a vertex v∗ along this path with small depth |v∗| = a2, and embed v∗ to have energy at
least (ALG(a2) + 2ε)N using Lemma 5.7.4. The leaves with parent on the segment connecting
v∗ to r(T) (shown in red) can be embedded one at a time using Lemma 5.7.4. The remaining
subtree under v∗ is embedded all at once using Proposition 5.7.10. This results in a Euclidean
embedding ι : V (T) → RN satisfying HN (ι(v)) ≥ (ALG + ε)N for all v ∈ L(T). For D > 1, we
repeat this idea recursively.

In the proofs below, we will repeatedly use the principle that T can be subdivided by placing

additional vertices on the edges of T. This only makes constructing an Euclidean embedding more

difficult. In particular, we may assume that all leaves have an ancestor of any given height. We

sometimes make this explicit by considering the subgraph T[a,a′] of a tree T with range [a, b], for

a < a′ < b. Precisely, T[a,a′] is the subgraph of vertices with heights in [a, a′], where we implicitly

assume via subdivision that each leaf in L(T) has ancestors at heights exactly a and a′. Note that

unless a = 0, T[a,a′] is not in general a tree but is a disjoint union of dated rooted trees each with

range [a, a′]. We similarly define T[a] to consist of the subset of V (T) at heights exactly a, which

without loss of generality contains exactly one ancestor of each leaf of T.

Lemma 5.7.12. Fix a mixture ξ, and suppose d2

dt2 (ξ′′(t)−1/2) > 0 for t ∈ [a, b] ⊆ [0, 1]. Fix D ∈ N
and sufficiently small constants c, ε > 0 depending only on ξ, a, b and D. Then for any a1 ∈

[
a, a+b

2

]
,

any k ∈ N, and any dated rooted tree T with range [a, b], with probability 1−O(e−cN ) over the random

choice of HN , the following holds.

For any m ∈ √a1 · SN and any linear subspace W ⊆ RN with dim(W ) ≥ N − k, there exists a

Euclidean embedding

ι : V (T)→W +m
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with ι(r(T)) = m such that for all v ∈ L(T),

HN (ι(v)) ≥ HN (m) + (ALGSp
ξ (b)− ALGSp

ξ (a1)) + ε)N. (5.7.13)

Proof. We proceed by induction on D.

Base Case In the base case D = 0, the tree T contains only a single leaf v. It then suffices to find

a single point σ ∈W +m with ‖σ‖2N = b such that

HN (σ) ≥ HN (m) + (ALGSp
ξ (b)− ALGSp

ξ (a′) + ε)N.

Indeed such a σ exists by Lemma 5.7.4.

Inductive Step For D ≥ 1, assume the result holds for branching depths up to D − 1. Our

strategy is to first embed the path VD (recall (5.7.9)), and then apply the inductive hypothesis on

the remainder of T to complete the embedding. We will assume in the remainder of the proof that

HN is C1

√
N -Lipschitz with respect to the ‖·‖2 norm for some constant C1 as in Proposition 5.2.3.

Define a2, a3 ∈
[
a1,

3a+b
4

]
such that√

a2
3 − a2

2 =
√
a2

2 − a2
1 ≤

ε

4C1
.

Let t = maxv∈VD |v| denote the maximum height of any v ∈ VD. (Note that t is not affected by

adding extraneous vertices to T.)

Case 1: t ≤ a2 Let vt ∈ VD satisfy |vt| = t. Take

ι : VD :→W +m

to be an arbitrary Euclidean embedding with codomain W +m. Without loss of generality, we may

assume that the children of each v ∈ VD have height at most a3. Next, extend ι to a still arbitrary

Euclidean embedding on QD, which consists of VD together with all children of vertices in VD.

For each vertex v ∈ QD, the Lipschitz property implies

HN (ι(v)) ≥ HN (m)− C1

√
a2

3 − a2
1N

≥ HN (m)− ε1N.

Observe that any v ∈ QD\VD satisfies D(v) ≤ D−1. Because of this, we can now apply the inductive

hypothesis to each subtree Tv rooted at some v ∈ QD\VD in an arbitrary order over the v’s. More
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precisely, suppose a Euclidean embedding mapping a subset U ⊆ V (T) to W +m is given, and that

U contains no strict descendants of v ∈ QD\VD. Then we know that |v| ≤ a3 ≤ 3a+b
4 . Define the

affine subspace

Wv = span(ι(u)u∈U )⊥.

Then by the inductive hypothesis (using the same values a, b), there exists ε2 depending only on

ξ, a, b,D − 1 such that ι extends to a Euclidean embedding

ι : V ∪ Tv →W +m

such that ι(u) ∈Wv for all u ∈ Tv, and which satisfies

HN (ι(u)) ≥ HN (ι(v)) +
(
ALGSp

ξ (b)− ALGSp
ξ (|v|+ ε2)

)
N, ∀u ∈ L(Tv).

In particular, the above procedure can be repeated for each v, resulting in an embedding ι defined

on all of V (T). Finally for any u ∈ L(T), we must have u ∈ L(Tv) for some v as above, and so

HN (ι(u)) ≥ HN (ι(v)) + (ALGSp
ξ (b)− ALGSp

ξ (|v|+ ε2))N

≥ HN (m) + (ALGSp
ξ (b)− ALGSp

ξ (|v|) + ε2 − ε1)N

≥ HN (m) + (ALGSp
ξ (b)− ALGSp

ξ (a3) + ε1)N +

(
ε2 − 2ε1 − ξ′(1)

√
a2

3 − a2
1

)
N.

Note that

2ε1 + ξ′(1)
√
a2

3 − a2
1 ≤ ε1 ·

(
2 +

ξ′(1)

C1

)
.

Since ε2 depended only on ξ, a, b,D and ε1 was chosen sufficiently small depending on the same

parameters, we may assume that

ε2 − 2ε1 − ξ′(1)
√
a2

3 − a2
1 ≥ 0.

Choosing ε = ε1 finishes Case 1 of the inductive step.

Case 2: t ≥ a2 Let v∗ ∈ V (T) denote the unique vertex on VD at height a2 – such a v∗ exists

without loss of generality. Then applying Lemma 5.7.4 on T[a1,a2], it follows that there exists

σ ∈W +m with ||σ||2N = a2 such that

HN (σ) ≥ HN (m) + (ALGSp
ξ (a2)− ALGSp

ξ (a1) + ε2)N
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for some ε2 depending only on ξ, a, b. Set ι(v∗) = σ. Next we apply Proposition 5.7.10 to the subtree

Tv∗ rooted at v∗, obtaining a Euclidean embedding

ι : VD ∪ Tv∗ →W +m

such that

HN (ι(x)) ≥ HN (m) + (ALGSp
ξ (a2)− ALGSp

ξ (a1) + ε3)N

for ε3 = ε2/2. Extending to ι to the remainder of V (T) proceeds exactly as in Case 1.

Below we use Lemma 5.7.12 to show that to rule out energies greater than ALGSp, T must have

large branching depth when restricted to any height interval on which ξ′′(t)−1/2 is convex.

Theorem 27. Fix ξ and suppose d2

dt2 (ξ′′(t)−1/2) > 0 for all t ∈ [a, b] ⊆ [0, 1]. Fix D ∈ N and

sufficiently small constants c, ε > 0 depending only on ξ, a, b and D. Then for any dated rooted tree

T with range [0, 1] such that every connected component of T[a,b] has branching depth at most D,

with probability 1−O(e−cN ) over the random choice of HN , there exists a Euclidean embedding

ι : V (T)→ RN

such that for all v ∈ L(T),

HN (ι(v)) ≥ (ALGSp
ξ (|v|) + ε)N. (5.7.14)

Proof of Theorem 27. We let ε > 0 be sufficiently small throughout the argument. By Proposi-

tion 5.7.10, there exists a Euclidean embedding ι : T[0,a] → RN such that for all v ∈ T[a],

HN (ιa(v)) ≥ (ALGSp
ξ (a)− ε)N. (5.7.15)

Here as usual we assume without loss of generality that all leaves in T have an ancestor at height a.

Next we extend ι to a Euclidean embedding

ι : T[0,b] → RN

such that for all v ∈ V (T[b]) with ancestor u at height a,

HN (ι(v)) ≥ HN (ι(u)) + (ALGSp
ξ (b)− ALGSp

ξ (a) + 3ε)N. (5.7.16)

In fact the existence of such an extension follows directly from Lemma 5.7.12 for ε sufficiently small.

Here as before we repeatedly apply Lemma 5.7.12 to individual subtrees in T[a,b], using the subspace

W in the statement to ensure the orthogonality constraints are satisfied.
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Finally extend ι to T[b,1] using Lemma 5.7.11 on each component. The result is that for any

x ∈ L(T) with ancestor v at height b,

HN (ι(x)) ≥ HN (ι(v)) + (ALGSp
ξ (1)− ALGSp

ξ (b)− ε)N. (5.7.17)

Combining (5.7.15), (5.7.16), and (5.7.17) completes the proof.

In the Guerra-Talagrand interpolation used for our main argument, it was only possible to directly

estimate the average energy of the replicas instead of the minimum. In the following final result,

we show that to force the average of HN (v) over the leaves v ∈ L(T) to be small, it is necessary to

use a tree which branches a superconstant amount in any height interval [a, b] as above, on a set of

components of T[a,b] ancestral to almost all leaves.

Let us illustrate the difference between Theorems 27 and 28 by an example. Form T by starting

with a full symmetric tree as in Proposition 5.3.2 and adding many children of the root as addi-

tional leaves. Then by construction (recall also Proposition 5.3.8), with probability 1− e−Ω(N) any

Euclidean embedding ι : T→ RN satisfies

min
v∈L(T)

HN (ι(v)) ≤ (ALG + ε)N

for ε > 0 as in Proposition 5.3.2 arbitrarily small given ξ. However the same is not true for the

average energy. Indeed, Theorem 27 with D = 1 implies that the additional leaves in T can be

embedded to each have energy at least (ALG + 2ε′)N where ε′ > 0 depends only on ξ. If the

additional leaves form a sufficiently large fraction of L(T), then any Euclidean extension ι to all of

T satisfies
1

|L(T)|
∑

v∈L(T)

HN (ι(v)) ≥ (ALG + ε′)N

assuming HN ∈ KN .

Theorem 28. Fix a mixture ξ and δ > 0, and suppose d2

dt2 (ξ′′(t)−1/2) > 0 for t ∈ [a, b] ⊆ [0, 1]. Fix

D ∈ N and sufficiently small constants c, ε > 0 depending only on ξ, a, b,D and δ. Consider any tree

T with range [0, 1] and |L(T)| = n leaves such that for at least δn of the leaves v ∈ |L(T)|, the subtree

of T[a,b] consisting of ancestors of v has branching depth at most D. With probability 1 − O(e−cN )

over the random choice of HN , there exists a Euclidean embedding

ι : V (T)→ RN

such that
1

L(T)

∑
v∈L(T)

HN (ι(v)) ≥ (ALGSp
ξ + ε)N. (5.7.18)
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Proof. Take ε0 > 0 sufficiently small. For v ∈ L(T) and t ∈ [0, 1], let vt denote the ancestor

of v at height v. As before, Proposition 5.7.10 shows that there exists a Euclidean embedding

ι : T[0,a] → RN such that for all va ∈ T[a],

HN (ιa(va)) ≥ (ALGSp
ξ (a)− δε0)N. (5.7.19)

Let T̃[a,b] ⊆ T[a,b] consist of all connected components in T[a,b] of branching depth at most D. Next

we extend ι to a Euclidean embedding

ι : T[0,a] ∪ T̃[a,b] → RN

such that for all vb ∈ L(T̃[a,b]) with ancestor va at height a,

HN (ι(vb)) ≥ HN (ι(va)) + (ALGSp
ξ (b)− ALGSp

ξ (a) + 4ε0)N. (5.7.20)

Lemma 5.7.12 allows ι to extend to the remainder of V (T[a,b]) such that

HN (ι(vb)) ≥ HN (ι(va)) + (ALGSp
ξ (b)− ALGSp

ξ (a)− δε0)N. (5.7.21)

holds for all v ∈ V (T[a,b]). Since at least δ|L(T)| leaves v satisfy va ∈ T̃[a,b], (5.7.20) and (5.7.21)

imply

1

|L(T)|
∑

v∈L(T)

HN (ι(va))−HN (ι(vb)) ≥ (ALGSp
ξ (b)− ALGSp

ξ (a) + 3δε0)N (5.7.22)

As before we finish by extending ι to T[b,1], using Lemma 5.7.11 one component at a time. Then for

any v ∈ L(T),

HN (ι(v)) ≥ HN (ι(vb)) + (ALGSp
ξ (1)− ALGSp

ξ (b)− δε0)N. (5.7.23)

By combining (5.7.19), (5.7.22) and (5.7.23), it follows that the total of HN (ι(v)) over v ∈ L(T) is

∑
v∈L(T)

[HN (ι(v))] ≥
∑

v∈L(T)

(
HN (ι(v))−HN (ι(vb)) +HN (ι(vb))−HN (ι(va)) +HN (ι(va))

)
≥ |L(T)| ·

(
ALGSp

ξ (1) + δε0

)
.

Taking ε = δε0 completes the proof.
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Chapter 6

Chasing Convex Bodies and

Functions

6.1 Introduction

Let X be a d-dimensional normed space and K1,K2, . . . ,KN ⊆ X a finite sequence of convex bodies.

In the chasing convex bodies problem, a player starting at x0 = 0 ∈ X learns the sets Kn one at a

time, and after observing Kn moves to a point xn ∈ Kn. The player’s cost is the total path length

cost(x1, . . . , xN ) =

N∑
n=1

||xn − xn−1||.

Denote the smallest cost (in hind-sight) among all such sequences by

cost(K1, . . . ,KN ) = min
(yn∈Kn)n≤N

N∑
n=1

||yn − yn−1||.

The player’s goal is to ensure that

cost(x1, . . . , xN ) ≤ αd · cost(K1, . . . ,KN ) (6.1.1)

holds for any sequence K1, . . . ,KN , where αd is as small as possible and is independent of N . The

challenge is that the points xn = xn(K1, . . . ,Kn) must depend only on the sets revealed so far. To

encapsulate this requirement we say the player’s path must be online, as opposed to the optimal

offline path which can depend on future information. An online algorithm achieving (6.1.1) for some

finite αd is said to be αd-competitive, and the smallest possible αd among all online algorithms is

253
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the competitive ratio of chasing convex bodies.

In the most general sense, the problem of asking a player to choose an online path x1, . . . , xN

through a sequence of subsets S1, . . . , SN in a metric space X is known as metrical service systems.

These sets are typically called “requests”. When arbitrary subsets Si ⊆ X can be requested, the

competitive ratio possible is |X |−1 in any metric space [MMS90]. One also considers the slightly more

general metrical task systems problem in which requests are non-negative cost functions fn : X → R+

rather than sets and the cost takes the form

cost(x1, . . . , xN ) =

N∑
n=1

dX (xn, xn−1) + fn(xn)

where
∑N
n=1 dX (xn, xn−1) is called the movement cost while

∑N
n=1 fn(xn) is the service cost. As

in (6.1.1), one aims to ensure

cost(x1, . . . , xN ) ≤ α · cost(f1, . . . , fn) = α · inf
(yn∈X )n≤N

cost(y1, . . . , yN ). (6.1.2)

The competitive ratio of metrical task systems is always 2|X |−1 [BLS92]. Actually both competitive

ratios just stated are for deterministic algorithms; one may also allow external randomness, so that

one chooses xn = xn(S1, . . . , Sn, ω) for some random variable ω independent of the sets Si. One then

aims for the same guarantee as in (6.1.1), (6.1.2) with the expected cost of the player on the left-hand

side, for any fixed sequence (S1, . . . , SN ). With randomization the competitive ratio of metrical task

or service systems sharply drops and is known to be in the range
[
c1 log |X |
log log |X | , c2 (log |X |)2

]
, and to be

Θ(log |X |) in some specific cases [BLMN05, BBM06, FM03, BCLL19]. However this is not the end of

the story as a wide range of problems, including chasing convex bodies, result from restricting which

subsets are allowed as requests. The literature on such problems is vast and includes scheduling

[Gra66], self-organizing lists [ST85], efficient covering [AAA03], safely using machine-learned advice

[BB00, KPS18, LV18b, WZ20], and the famous k-server problem [MMS90, Gro91, KP95, BBMN15].

Chasing convex bodies was proposed in [FL93] to study the interaction between convexity and

metrical task systems. Of course the general upper bounds above are of no use as |X| = ∞, while

the lower bounds also do not apply due to the convexity constraint. [FL93] gave an algorithm with

finite competitive ratio for the already non-trivial d = 2 case and conjectured that the competitive

ratio is finite for any d ∈ N. The best known asymptotic lower bounds come from requesting the

faces of a hypercube by taking Kn = (ε1, ε2, . . . , εn)× [−1, 1]d−n for εi ∈ {−1, 1} uniformly random

and n ≤ d. This construction implies that the competitive ratio is at least
√
d in Euclidean space

and at least d for X = `∞ - see [BKL+20, Lemma 5.4] for more on lower bounds. Unlike in many

competitive analysis problems, randomization is useless for chasing convex bodies and we may freely

restrict attention to deterministic algorithms. This is because cost(x1, . . . , xN ) is convex on XN ,

and so randomized paths are no better than their (deterministic) pointwise expectations.
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Following a lack of progress on the full conjecture, restricted cases such as chasing subspaces were

studied, e.g. [ABN+16]. A notable restriction is chasing nested convex bodies, where the convex

sets K1 ⊇ K2 ⊇ . . . are required to decrease. Nested chasing was introduced in [BBE+18] and

solved rather comprehensively in [ABC+19] and then [BKL+20]. The latter work gave an algorithm

with optimal competitive ratio up to O(log d) factors for all `p spaces based on Gaussian-weighted

centroids. Moreover it gave a d-competitive memoryless algorithm based on the Steiner point which

we discuss later.

Some time after chasing convex bodies was posed, an equivalent problem called chasing convex

functions emerged. This is a metrical task systems problem in which requests are convex functions

fn : X → R+ instead of convex sets. As described above the total cost

cost(x1, . . . , xN ) =

N∑
n=1

||xn − xn−1||+ fn(xn)

decomposes as a movement cost plus a service cost. Chasing convex functions subsumes chasing

convex bodies by replacing the body Kn with the function fn = 2 · d(x,Kn). This is because

an arbitrary algorithm for the requests fn is improved by projecting xn onto Kn - actually the

same argument shows more generally that metrical task systems subsumes metrical service systems.

Conversely as observed in [BLLS19], convex function chasing in X can be reduced to convex body

chasing in X ⊕R up to a constant factor by alternating requests of the epigraphs {(x, y) ∈ X ×R :

y ≥ fn(x)} with the hyperplane X × {0}. As with chasing convex bodies, randomized algorithms

are no better than deterministic algorithms since cost(x1, . . . , xN ) remains convex on XN .

Convex function requests allow one to model many practical problems. Indeed chasing convex

functions was originally considered as a model for efficient power management in cooling data centers

[LWAT13]. In light of this, restricted or modified versions of chasing convex function have also been

studied. For example, [BGK+15] determines the exact competitive ratio in 1 dimension, while works

such as [CGW18, GLSW19] show dimension-independent competitive ratios for similar problems

with further restrictions on the cost functions.

6.1.1 Main Result

In prior joint work with S. Bubeck, Y.T. Lee, and Y. Li [BLLS19] we gave the first algorithm

achieving a finite competitive ratio for convex body chasing. Unfortunately this algorithm used an

induction on dimension that led to a exponential competitive ratio 2O(d). We give an upper bound

of d for the competitive ratio of chasing convex bodies in a general normed space, which is tight

for `∞. In Euclidean space, our algorithm has competitive ratio O(
√
d logN), nearly matching the

lower bound
√
d when the number of requests N is sub-exponential in d. The statement following

combines Theorems 31 and 32.
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Theorem 29. In any d-dimensional normed space there is a d+1 competitive algorithm for chasing

convex functions and a d competitive algorithm for chasing convex bodies. Moreover in Euclidean

space this algorithm is O(
√
d logN)-competitive.

The proof is inspired by our joint work with S. Bubeck, B. Klartag, Y.T. Lee, and Y. Li [BKL+20]

on chasing nested convex bodies. It is shown there that moving to the new body’s Steiner point, a

stable center point of any convex body defined in [Ste40], gives total movement at most d starting

from the unit ball in d dimensions. (The argument in [BKL+20] is restricted to Euclidean space but

the proof works in general as we will explain.) We extend their argument by defining the functional

Steiner point of a convex function. Our algorithm follows the functional Steiner point of the so-called

work function which encodes at any time the effective total cost of all requests so far.

We remark that given the form of (6.1.1), chasing convex bodies may be viewed as an online

version of a Lipschitz selection problem. In the broadest generality, for some family S ⊆ 2X of

subsets of a set X, a selector takes sets S ∈ S to elements s ∈ S. Of course the relevant comparison

for us is when S consists of all convex bodies in X. Continuity and Lipschitz properties of general

selectors have received significant attention [Shv84, Shv02, Kup05, FS18]. Taking the Hausdorff

metric on convex sets, the Steiner point is d-Lipschitz in any normed space. Moreover as explained

in [PY89, Section 4], it achieves the exact optimal Lipschitz constant (of order Θ(
√
d)) when X is

Euclidean due to a beautiful symmetrization argument. We find it appealing that this in some sense

optimal Hausdorff-Lipschitz selector also solves an online version of Lipschitz selection.

Concurrently with this work, C.J. Argue, A. Gupta, G. Guruganesh, and Z. Tang obtained

similar results for chasing convex bodies in Euclidean space [AGGT21]. Their algorithm is based

on Steiner points of level sets of the work function; these turn out to be almost the same as the

functional Steiner point as we show in Section 6.6.

6.2 Problem Setup

6.2.1 Notations and Conventions

The variables T, t, s denote real times while N,n denote integer times. −
∫
x∈S f(x)dx denotes the

average value
∫
x∈S f(x)dx∫
x∈S 1dx

of f(x) on the set S. Denote by B1 ⊆ X the unit ball and B∗1 ⊆ X∗

the dual unit ball. The symbol ∂ denotes boundary, and 〈·, ·〉 denotes the natural pairing between

X,X∗.
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6.2.2 Continuous Time Formulation

Our proof is more natural in continuous time, so we first solve the problem in this setting and

then specialize to discrete time. In continuous time chasing convex functions, we receive a locally

bounded family of non-negative convex functions (ft : X → R+)t∈[0,T ]. We assume that ft(x) is

piece-wise continuous in t with a locally finite set of continuities. The player constructs a bounded

variation path (xt) online, so that xs depends only on (ft)t≤s. We will assume ft and xt are cadlag

(right-continuous with left-limits) in the time variable t. The cost is again the sum of movement

and service costs given by

cost((xt)t∈[0,T ]) =

∫ T

0

ft(xt) + ||x′t||dt.

Here and throughout, the integral of ||x′t|| is understood to mean the total variation of the path xt.

As before the goal is to achieve a small competitive ratio against the optimal offline path. Given

a sequence f1, f2, . . . , fN of convex requests, one readily obtains a corresponding continuous-time

problem instance by choosing, for each t ∈ [0, N ], the function ft = fn for t ∈ (n− 1, n]. The next

proposition shows that solving this continuous problem suffices to solve the discrete problem.

Proposition 6.2.1. Any discrete-time instance of chasing convex function has the same offline

optimal cost as its continuous-time counterpart. Meanwhile for any continuous-time online algorithm

there exists a discrete-time online algorithm achieving both smaller movement and smaller service

cost on every sequence of functions f1, . . . , fN .

Proof. It is easy to see that the continuous and discrete time problems have the same offline optimum

value. Given a solution for continous-time convex function chasing, suppose the player sees a discrete

time request fn. The player then computes the continuous time path (xt)t∈(n−1,n] and moves to

some xtn with tn ∈ (n− 1, n] and

fn(xtn) ≤
∫ n

n−1

fn(xt)dt.

The discretized sequence (xt1 , . . . , xtN ) has a smaller movement cost than the continuous path

(xt)t∈[0,T ] because the triangle inequality implies

N∑
n=1

||xtn − xtn−1
|| ≤

N∑
n=1

∫ tn

tn−1

||x′s||ds

=

∫ tN

0

||x′s||ds

≤
∫ N

0

||x′s||ds.
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The discretized path also has smaller service cost by construction, hence the result.

6.3 Functional Steiner Point and Work Function

We begin by recalling the definition of the Steiner point in a d-dimensional normed space X. For a

convex body K ⊆ X and v ∈ X∗, define

fK(v) = arg max
x∈K
〈v, x〉,

hK(v) = max
x∈K
〈v, x〉 = 〈fK(v), x〉.

hK is commonly known as the support function of K. Let µ denote the cone measure on ∂B∗1 , which

can be sampled from by choosing a uniformly random z ∈ B∗1 and normalizing to θ = z
||z|| . For

θ ∈ ∂B∗1 define n(θ) ∈ X to be the outward unit normal defined (for µ-almost all θ) by ||n(θ)|| = 1

and 〈n(θ), θ〉 = 1.

Definition 6.3.1 ([PY89, Chapter 6]). The Steiner point s(K) ∈ X is

s(K) = −
∫
v∈B∗1

fK(v)dv. (6.3.1)

= d −
∫
θ∈∂B∗1

hK(θ)n(θ)dµ(θ). (6.3.2)

The equivalence of the two definitions follows from the divergence theorem and the identity

∇hK = fK . The factor d comes from the discrepancy in total measure of the ball and the sphere.

See [PY89, Chapter 6] for a careful derivation.

Using Definition 6.3.1, the upper bound d for nested chasing in [BKL+20] immediately extends

to any normed space. We recall the main result here. It is not phrased as a competitive ratio

because some apriori reductions are possible in nested chasing — roughly speaking we stay inside

the unit ball B1 and treat the offline optimum cost as being 1. Note that both (6.3.1) and (6.3.2)

are essential in the argument below.

Theorem 30. [BKL+20, Theorem 2.1] Let B1 ⊇ K1 ⊇ K2 ⊇ · · · ⊇ KN be convex bodies in X, with

xn = s(Kn) for each n. Then xn ∈ Kn for each n and

N∑
n=1

||xn − xn−1|| ≤ d.

Proof. It follows from (6.3.1) that s(K) ∈ K, so it remains to estimate the total movement. For
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convenience take K0 = B1 the unit ball so that x0 = (0, 0, . . . , 0) = s(K0). From Kn ⊆ Kn−1 it

follows that hKn(θ) ≤ hKn−1(θ) for each n ≤ N and θ ∈ ∂B∗1 . Combining with (6.3.2) yields:

N∑
n=1

||s(Kn)− s(Kn−1)|| ≤ d −
∫
θ∈∂B∗1

N∑
n=1

|hKn(θ)− hKn−1
(θ)|dµ(θ)

= d −
∫
θ∈∂B∗1

N∑
n=1

hKn−1
(θ)− hKn(θ)dµ(θ)

= d −
∫
θ∈∂B∗1

1− hKN (θ)dµ(θ)

≤ d.

Here the last inequality follows from hKN (θ) + hKN (−θ) ≥ 0.

We now extend the definition of Steiner point to convex functions. The idea is to replace the

support function by the concave conjugate (also known as the Fenchel-Legendre transform). Recall

that for a convex function W : X → R+, the concave conjugate W ∗ : X∗ → R∪{−∞} is defined by

W ∗(v) = inf
w∈X

(W (w)− 〈v, w〉) (6.3.3)

Let us assume W is not only convex but also 1-Lipschitz, and that W (w)−||w|| is uniformly bounded.

We will refer to such a W as an (abstract) work function. Note W ∗(v) is finite whenever ||v|| < 1 by

the last assumption, and moreover the infimum in (6.3.3) is attained. We denote this point attaining

this infimum by

v∗ = arg min
w∈X

(W (w)− 〈v, w〉) ,

the conjugate point to v with respect to W . It satisfies ∇W (v∗) = v and is well-defined for almost

every v ∈ B∗1 by Alexandrov’s theorem. Moreover we have ∇W ∗(v) = −v∗. Combining this latter

relation with the divergence theorem yields another identity, from which the functional Steiner point

is defined.

Definition 6.3.2. Let X be an arbitrary d-dimensional normed space, and W : X → R+ a work

function as defined above. The functional Steiner point s(W ) ∈ X is:

s(W ) = −
∫
v∈B∗1

v∗dv. (6.3.4)

= −d −
∫
θ∈∂B∗1

W ∗(θ)n(θ)dµ(θ). (6.3.5)

We remark that if a convex body K is identified with the function f(x) = d(x,K), then the
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definitions above agree. We call (6.3.1), (6.3.4) the primal definitions and (6.3.2), (6.3.5) the dual

definitions.

6.3.1 The Work Function

The work function is a central object in online algorithms; in general it records the smallest cost

required to satisfy an initial sequence of requests while ending in a given state. Work function based

algorithms are essentially optimal among deterministic algorithms for general metrical task systems

[BLS92] as well as the k-server problem [KP95].

Definition 6.3.3. Given requests (fs)s≤t, the work function Wt(x) is the offline-optimal cost among

paths satisfying xt = x:

Wt(x) = inf
xs:[0,t]→X
xt=x

||x0||+
∫ t

0

fs(xs) + ||x′s||ds (6.3.6)

= inf
xs:[0,t]→X
xt=x

costt(xs). (6.3.7)

Here we allow xs : [0, t] → X to be any path of bounded variation, and as before interpret∫ t
0
||x′s||ds to mean the total variation of the path. Likewise for a discrete-time request sequence

(f1, . . . , fn), the work function Wn(x) is defined as above with ft = fn for t ∈ (n − 1, n] or more

simply by

Wn(x) = min
x1,...,xn∈X

||x− xn||+
N∑
n=1

||xn − xn−1||+ fn(xn).

For a sequence (K1, . . . ,Kn) of convex set requests the work function Wn is defined analogously.

In the case that fs(x) is piecewise constant in s (which is all we need for the original discrete-time

problem), the best offline continuous time strategy clearly coincides with the best offline discrete

time strategy. The infimum is attained in (6.3.7) in general because the paths (xs)s≤t of variation

at most C satisfying xt = T are compact in the usual topology on cadlag functions for any C, and

costt is lower semicontinuous.

Denote by W ∗t (·) the concave conjugate of Wt, and v∗t the point with ∇Wt(v
∗
t ) = v. We record

the following proposition summarizing the properties of the work function and its dual.

Proposition 6.3.4. In either discrete or continuous time, Wt and W ∗t satisfy:

1. W0(x) = ||x||.

2. W ∗0 (v) = 0 whenever ||v|| ≤ 1.
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3. Wt(x) is increasing in t and is convex for all fixed t.

4. W ∗t (x) is increasing in t and concave in x.

5. Wt(x) is an abstract work function.

6. W ∗t (v) is non-negative and finite whenever ||v|| ≤ 1.

7. cost((fs)s∈[0,t]) = minx∈XWt(x).

Proof. It is clear that W0(x) = ||x||, and that Wt(x) is increasing in t. The computation of W ∗0

is clear. Convexity of Wt(·) holds by convexity of costt(·) — given paths x0
s : [0, t] → X and

x1
s : [0, t]→ X the path xqs : [0, t]→ X given by

xqs = qx1
s + (1− q)x0

s

satisfies for any q ∈ [0, 1],

costt(x
q
s) ≤ q · costt(x

1
s) + (1− q) · costt(x

0
s).

Convexity of Wt implies that W ∗t is concave by general properties of the Fenchel-Legendre transform.

Because Wt is increasing in t, the definition (6.3.3) implies that W ∗t is increasing in t as well. It is

easy to see that Wt is 1-Lipschitz; to show

Wt(x) ≤Wt(y) + ||x− y||

it suffices to take the lowest cost path to y and then move from y to x. Similarly Wt(x) − ||x||
is bounded, making Wt an abstract work function. It follows from this that W ∗t (v) is finite when

||v|| ≤ 1.

Lemma 6.3.5. For all t,

max
||θ||≤1

W ∗t (θ) ≤ 2 ·min
x
Wt(x),

−
∫
θ∈∂B∗1

W ∗t (θ)dµ(θ) ≤ min
x
Wt(x),

−
∫
v∈B1

W ∗t (v)dv ≤ min
x
Wt(x).

Proof. Set

OPTt = arg min
x
Wt(x).
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The definition (6.3.3) of W ∗t implies

W ∗t (θ) ≤WT (OPTt)− θ ·OPTt.

Finally

|Wt(OPTt)| = inf
xs:[0,t]→X
xt=OPTt

||x0||+
∫ t

0

fs(xs) + ||x′s||ds

≥ inf
xs:[0,t]→X
xt=OPTt

||x0||+
∫ t

0

||x′s||ds

≥ |OPTt|

holds where the triangle inequality was used in the last line. All assertions now follow.

We next compute the time derivative of W ∗t (v) for fixed v with |v| < 1. The proof, a simple

exercise, is left to the appendix.

Lemma 6.3.6. For any ε > 0 suppose fs(x) is jointly continuous in (s, x) and convex in x for

(s, x) ∈ [t, t+ ε)×X. Then for almost all v with ||v|| < 1,

d

dt
W ∗t (v) = ft(v

∗
t ).

6.4 Linear Competitive Ratio

Our algorithm for continuous-time convex function chasing is defined by setting xt = s(Wt). In

its analysis, the primal definition (6.3.4) controls the service cost while the dual definition (6.3.5)

controls the movement cost.

Theorem 31. xt = s(Wt) is d+ 1 competitive for continuous-time convex function chasing in any

d-dimensional normed space X. In particular:

1. The movement cost of xt is d-competitive:

∫ T

0

||x′t||dt ≤ d ·min
x
Wt(x).

2. The service cost of xt is 1-competitive:
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∫ T

0

ft(xt)dt ≤ min
x
Wt(x).

Proposition 6.2.1 yields an induced algorithm for chasing bodies/functions in discrete time which

we call the discrete-time functional Steiner point.

Corollary 6.4.1. The discrete-time functional Steiner point is d+ 1 competitive for chasing convex

functions and d competitive for chasing convex bodies.

Proof of Corollary 6.4.1. This follows from Proposition 6.2.1 and the fact that chasing convex bodies

has 0 service cost.

Proof of Theorem 31. We begin with part 1. From the dual definition (6.3.5) of s(Wt) and the fact

that W ∗t increases with t from W ∗0 = 0,

∫ T

0

||x′t||dt = d ·
∫ T

0

∣∣∣∣∣
∣∣∣∣∣ d

dt
−
∫
θ∈∂B∗1

W ∗t (θ)θdµ(θ)

∣∣∣∣∣
∣∣∣∣∣

≤ d ·
∫ T

0

−
∫
θ∈∂B∗1

∣∣∣∣ d

dt
W ∗t (θ)

∣∣∣∣ dµ(θ)

= d · −
∫
θ∈∂B∗1

W ∗T (θ)dµ(θ).

Lemma 6.3.5 implies

d · −
∫
θ∈∂B∗1

W ∗T (θ)dµ(θ) ≤ dmin
x
WT (x).

This completes the proof of part 1 and we turn to part 2. From the primal definition (6.3.4) and

convexity of ft it follows that

ft(s(Wt)) ≤ −
∫
v∈B∗1

ft(v
∗
t )dv.
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Integrating in time and using Lemmas 6.3.6 and 6.3.5 yields:∫ T

0

ft(s(Wt))dt ≤−
∫
v∈B1

∫ T

0

ft(v
∗
t )dtdµ(θ)

=−
∫
v∈B∗1

∫ T

0

d

dt
W ∗t (v)dtdv

=−
∫
v∈B∗1

W ∗T (v)−W ∗0 (v)dv

=−
∫
v∈B∗1

W ∗T (v)dv

≤min
x
WT (x).

Remark 6.4.1. In the continuous time setting, only ft(xt) and ∇ft(xt) are actually necessary to

solve convex function chasing. This is because the player can always lower bound ft by

ft(x) ≥ f̃t(x) ≡ max (ft(xt) + 〈∇ft(xt), x− xt〉, 0) .

As f̃t(xt) = ft(xt), by simply pretending the requests are f̃t, any competitive algorithm can

be transformed into one which only uses the values ft(xt) and ∇ft(xt) and which obeys the same

guarantees.

In the discrete time setting, if we are given fn(xn−1) and ∇fn(xn−1) before choosing xn, there

is another source of error because fn(xn) is totally unknown. However this error is easily controlled

when the fn are uniformly Lipschitz. Let (xn)n≤N be the discrete-time functional Steiner point

sequence for the functions recursively defined by

f̃n(x) = max (fn(xn−1) + 〈∇fn(xn−1), x− xn−1〉, 0)

and let WN be the discrete-time work function. We obtain:

N∑
n=1

fn(xn) + ||xn − xn−1|| ≤
N∑
n=1

f̃n(xn) + ||xn − xn−1||+

(
N∑
n=1

fn(xn)− f̃n(xn)

)

≤ (d+ 1) min
x
WN (x) +

(
N∑
n=1

fn(xn)− f̃n(xn)

)
.

Suppose now that each fn is L-lipschitz. Then the equality fn(xn−1) = f̃n(xn−1) implies
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|fn(xn)− f̃n(xn)| ≤ 2L||xn − xn−1||. Because Theorem 31 and Proposition 6.2.1 imply

N∑
n=1

||xn − xn−1|| ≤ dmin
x
WN (x),

it follows that the resulting competitive ratio is at most (2L+ 1)d+ 1. Similar remarks apply to the

result of Theorem 32.

6.5 Competitive Ratio O(
√
d logN) in Euclidean Space

In this section we prove the discrete-time functional Steiner point has competitive ratio O(
√
d logN)

in Euclidean space (whose norm is denoted by || · ||2). The same technique applies in any normed

space given a suitable concentration result, however we restrict to the Euclidean case for convenience.

The idea is as follows. Suppose that the average dual work function increase

−
∫
θ∈∂B∗1

W ∗n(θ)−W ∗n−1(θ)dµ(θ)

at time-step n is significant. Then by (6.3.5) the movement from s(Wn−1) → s(Wn) is an integral

of pushes by different vectors θ. By concentration of measure, these pushes decorrelate unless the

total amount of pushing is exponentially small.

Lemma 6.5.1 ([Bal97, Lemma 2.2]). For any 0 ≤ ε < 1 and |w| ≤ 1 in Euclidean space, the set

{θ ∈ ∂B1 : 〈w, θ〉 ≥ ε}

occupies at most e−dε
2/2 fraction of ∂B1.

Lemma 6.5.2. Suppose that |W ∗n(θ)−W ∗n−1(θ)| ≤ C for all θ ∈ ∂B1, and set

λ = −
∫
v∈B1

W ∗n(v)−W ∗n−1(v)dv.

Then the functional Steiner point movement is at most

||s(Wn)− s(Wn−1)||2 = O

(
λ

√
d

(
1 + log

(
C

λ

)))
.

Proof. Observe that

||s(Wn)− s(Wn−1)||2 = max
||w||2=1

〈w, s(Wn)− s(Wn−1)〉.
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Fixing a unit vector w, we estimate the inner product on the right-hand side. Set

gn(θ) = W ∗n(θ)−W ∗n−1(θ) ≥ 0,

Iz = −
∫
θ∈∂B∗1

gn(θ) · 1〈w,θ〉≥zdµ(θ).

Then gn(θ) ∈ [0, C] for all θ and −
∫
θ∈∂B∗1

gndµ(θ) = λ. Consequently by Lemma 6.5.1,

Iz ≤ min
(
λ,Ce−dz

2/2
)
. (6.5.1)

We thus find

〈w, s(Wn)− s(Wn−1)〉 = d −
∫
θ∈∂B∗1

gn(θ)〈w, θ〉dµ(θ)

≤ d −
∫
θ∈∂B∗1
〈w,θ〉≥0

gn(θ)〈w, θ〉dµ(θ)

= d

∫ 1

0

Izdz

≤ d
∫ 1

0

min
(
λ,Ce−dz

2/2
)

dz. (6.5.2)

Here the second equality is the tail-sum integral formula. To estimate the resulting integral, set

A =

√
2 log(C/λ)

d

so that Ce−dA
2/2 = λ. We will assume A ≤ 1; if A > 1 then the expression (6.5.2) is at most

dλ ≤ dAλ and it suffices to mimic the below without the second term. We estimate∫ 1

0

min
(
λ,Ce−dz

2/2
)

dz = Aλ+ C

∫ 1

A

e−dz
2/2dz.

and use the simple bounds∫ 1

A

e−dz
2/2dz ≤

∫ 1

0

e−dz
2/2dz ≤ O(d−1/2),∫ 1

A

e−dz
2/2dz ≤ e−dA

2/2

∫ ∞
A

e−dA(z−A)dz =
e−dA

2/2

dA
.
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Combining,

〈w, s(Wn)− s(Wn−1)〉 ≤ d
∫ 1

0

min
(
λ,Ce−dz

2/2
)

dz

≤ dAλ+ min

(
C
√
d,
Ce−dA

2/2

A

)

= O

(
λ

√
d log

(
C

λ

))
+ min

(
C
√
d, λ

√
d

2 log(C/λ)

)
.

With u = λ/C ∈ [0, 1], the last term is

C
√
d ·min

(
1,

u√
2 log(1/u)

)

For u ≤ [0, 1/2], we have u√
2 log(1/u)

≤ O(u) giving the bound O(λ
√
d). For u ≥ 1/2 we have

C
√
d ≤ 2λ

√
d. Hence in both cases,

〈w, s(Wn)− s(Wn−1)〉 ≤ O

(
λ

√
d

(
1 + log

(
C

λ

)))

as desired.

Theorem 32. The discrete time functional Steiner point algorithm is O(
√
d logN) competitive for

chasing convex functions in Euclidean space.

Proof. Call (xt)t∈[0,N ] the continuous path and (xtn)n≤N the discrete path for tn ∈ (n− 1, n] as in

Proposition 6.2.1. Since the service cost for the discrete path is at most that of the continuous path,

we only need to establish the O(
√
d logN) competitive ratio on the movement of the discrete path.

By Lemma 6.3.5,

max
|θ|≤1

W ∗N (θ) ≤ 2 ·min
x
WN (x).

Set

λn =

∫
θ∈∂B∗1

W ∗tn(θ)−W ∗tn−1
(θ)dµ(θ).

Applying Lemma 6.5.2 with C = 2 ·minxWN (x) to the movement ||xtn−xtn−1
||2 at each step yields:

N∑
n=1

||xtn − xtn−1
||2 ≤ O(Cd1/2) ·

∑
n≤N

λn
C

√
1 + log

(
C

λn

)
. (6.5.3)
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Here the values λn are all non-negative and sum to −
∫
θ∈∂B∗1

W ∗N (θ)dµ(θ) ≤ C. Letting h(u) =

u
√

1 + log(1/u), one readily computes that for u ∈ (0, 1),

h′(u) =
2 log(1/u) + 1

2(1 + log(1/u))1/2
≥ 0, h′′(u) =

−2 log(1/u)− 3

4u(1 + log(1/u))3/2
≤ 0.

Jensen’s inequality therefore implies that setting λn = C
N for all n ≤ N in (6.5.3) gives an upper

bound. It follows that the movement cost is at most O(C
√
d log(N + 1)).

6.6 Steiner Points of Level Sets

6.6.1 A Simplification for Chasing Convex Bodies

Here we show that for chasing convex bodies in discrete time, it suffices to simply set xn = s(Wn)

instead of reducing from a continuous-time problem via Proposition 6.2.1. This simplification does

not seem possible for chasing convex functions. The movement cost estimates continue to hold with

no changes in the proof, however establishing s(Wn) ∈ Kn requires a short additional argument.

Define the support set Supp(W ) ⊆ Rd of an abstract work function W to be the set of points x

possessing a subgradient v ∈ ∇W (x) with |v| < 1. For a work function W and convex body K, set

WK(x) = min
y∈K

W (y) + ||y − x||.

If W is the work function for some sequence of requests, then making an additional request of K

results in the new work function WK .

Proposition 6.6.1. Supp(WK) ⊆ K holds for any work function W and convex body K.

Proof. Suppose x /∈ K and set

y ∈ arg min
y0∈K

(W (y0) + ||y0 − x||).

For any z on the segment yx, it follows that W (x)−W (z) = ||x− z||. This implies that no v with

|v| < 1 can be a subgradient in ∇Wn(x).

Corollary 6.6.2. The algorithm xn = s(Wn) is d competitive for chasing convex bodies, and

O(
√
d logN) competitive in Euclidean space.

Proof. Proposition 6.6.1 and the primal definition (6.3.4) together imply s(Wn) ∈ Kn, i.e. the

algorithm is valid. The d-competitiveness follows from Theorem 31 and the argument of Proposi-

tion 6.2.1 while the O(
√
d logN) competitive ratio in Euclidean space follows from the argument of
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Theorem 32.

6.6.2 Steiner Points of Level Sets

This final subsection has two main objectives. Theorem 33 states that the functional Steiner point

of any work function can be expressed as the Steiner point of large level sets. Corollary 6.6.5 states

that the Steiner point of any level set of the work function Wn is inside Kn for convex body chasing.

As we discuss at the end, Corollary 6.6.5 is related to the algorithm for chasing convex bodies given

by [AGGT21]. Denote level sets by

ΩW,R = {x : W (x) ≤ R}.

It is easy to see that for any work function W and R ≥ minxW (x),

WΩW,R(x) =

{
W (x), for x ∈ ΩW,R

d(x,ΩW,R) +R, for x /∈ ΩW,R.

Theorem 33. For any work function W and R ≥ minxW (x), it holds that s(ΩW,R) = s
(
WΩW,R

)
and limR→∞ s(ΩW,R) = s(W ). Moreover if Supp(W ) ⊆ ΩW,R then s(ΩW,R) = s(W ).

Proof. The dual definitions (6.3.2), (6.3.5) imply

s(ΩW,R)− s(W ) = d −
∫
θ∈∂B∗1

(
W ∗(θ) + hΩW,R(θ)

)
n(θ)dµ(θ). (6.6.1)

Also for any θ ∈ ∂B∗1 ,

(
WΩW,R

)∗
(θ) = inf

w∈X

(
WΩW,R(w)− 〈w, θ〉

)
= inf
w∈∂ΩW,R

(
WΩW,R(w)− 〈w, θ〉

)
= R− hΩW,R(θ).

It follows from the symmetry θ ↔ −θ that

−
∫
θ∈∂B∗1

n(θ)dµ(θ) = 0.

Combining the above yields

s(ΩW,R) = s
(
WΩW,R

)
.
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We proceed similarly for the second claim. For any θ ∈ ∂B∗1 ,

W ∗(θ) = inf
w∈X

(W (w)− 〈θ, w〉)

= lim
R→∞

inf
w∈ΩW,R

(W (w)− 〈θ, w〉)

= lim
R→∞

inf
w∈∂ΩW,R

(W (w)− 〈θ, w〉)

= lim
R→∞

(
R− hΩW,R(θ)

)
.

Because W (x)− ||x|| is uniformly bounded it follows that the expression

W ∗(θ) + hΩW,R(θ)−R

is uniformly bounded for (θ,R) ∈ (∂B∗1 ×R+). As just shown it tends to 0 as R→∞. The bounded

convergence theorem therefore implies

lim
R→∞

−
∫
θ∈∂B∗1

∣∣W ∗(θ) + hΩW,R(θ)−R
∣∣dµ(θ) = 0.

Combining with equation (6.6.1) shows that limR→∞ ||s(ΩW,R)−s(W )|| = 0, proving the second

assertion. The last assertion is proved similarly after observing that Supp(W ) ⊆ ΩW,R implies

W ∗(θ) = inf
w∈X

(W (w)− 〈θ, w〉)

= lim
λ↑1

inf
w∈X

(W (w)− 〈λθ,w〉)

= lim
λ↑1

inf
w∈ΩW,R

(W (w)− 〈λθ,w〉)

= R− hΩW,R(θ).

Proposition 6.6.3. Supp(WΩW,R) ⊆ Supp(W ) holds for any R ≥ minxW (x).

Proof. Because ΩW,R is a level set,

WΩW,R(x) =

{
W (x), for x ∈ ΩW,R

d(x,ΩW,R) +R, for x /∈ ΩW,R

Proposition 6.6.1 combined with the fact that W and WΩW,R agree inside ΩW,R imply that the only

possible new support points are on the boundary ∂ΩW,R. Fix a boundary point y ∈ ∂ΩW,R\Supp(W ).
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Because y /∈ Supp(W ), there exists a sequence (yi)i∈N → y satisfying

W (y)−W (yi) ≥ (1− o(1))||y − yi||.

Such a sequence of points yi must eventually satisfy W (yi) ≤ W (y) and therefore yi ∈ ΩW,R,

implying W (yi) = WΩW,R(yi). Hence

WΩW,R(y)−WΩW,R(yi) ≥ (1− o(1))||y − yi||.

This implies y /∈ Supp(WΩW,R), completing the proof.

Corollary 6.6.4. Let W = ŴK for a work function Ŵ and convex body K. For any R ≥
minxW (x),

s(ΩW,R) = s
(
WΩW,R

)
∈ K.

Proof. Propositions 6.6.1 and 6.6.3 show that

Supp
(
WΩW,R

)
⊆ Supp(W ) ⊆ K.

The primal definition (6.3.4) of the functional Steiner point now implies s(WΩW,R) ∈ K.

Corollary 6.6.5. Let Wn be the work function for convex body requests (K1, . . . ,Kn). Then

s(W
ΩWn,R
n ) ∈ Kn

for any R ≥ minxWn(x).

Proof. Immediate from Corollary 6.6.4 with Ŵ = Wn−1 and K = Kn.

Remark 6.6.1. [AGGT21] solved chasing convex bodies in Euclidean space by using the algorithm

xn = s
(
W

ΩWn,Rn
n

)
with Rn = 2dlog2(minxWn(x))e. This defines a selector by Corollary 6.6.5. Es-

timating the movement cost is not difficult because the sets W
ΩWn,R
n decrease for fixed R. Note

that diam(ΩWn,R) ≤ 2R because of the inequality Wt(x) ≥ ||x|| (recall Proposition 6.3.4). Using

Theorem 30, the movement from each fixed R value is at most O(min(dR,R
√
d log T )). Summing

over the geometric sequence of R values yields the same upper bound as in Theorems 31 and 32 up

to a constant factor.
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[AGGT21] prove that s
(
W

ΩWn,Rn
n

)
∈ Kn using reflectional symmetries that may not exist in

arbitrary normed spaces. Corollary 6.6.5 implies that their algorithm also works for general norms.

6.7 Proof of Lemma 6.3.6

Proof. We prove the result for all v ∈ B∗1 where ∇W ∗t (v) exists. This includes almost all v by

Alexandrov’s theorem. Moreover it ensures the conjugate point v∗t = arg minw∈XW (w) − 〈v, w〉 is

well-defined and that Wt is strictly convex at v∗t [Roc70, Corollary 25.1.2]. We write:

Wt+δ(v) = min
xs:[0,t+δ]→X

(∫ t+δ

0

(fs(xs) + ||x′s||ds− 〈v, xt+δ〉

)

= min
xs:[t,t+δ]→X

(
Wt(xt) +

∫ t+δ

t

fs(xs) + ||x′s||ds− 〈v, xt+δ〉

)

For small δ ∈ (0, ε), we show W ∗t+δ(v) = W ∗t (v) + δft(v
∗
t ) + o(δ). For the upper bound,

Wt+δ(v
∗
t ) ≤Wt(v

∗
t ) +

∫ t+δ

t

fs(v
∗
t )ds

= Wt(v
∗
t ) + δft(v

∗
t ) + o(δ)

holds by taking xs = v∗t constant for s ∈ [t, t + δ) and recalling the assumption that fs(x) is

continuous on s ∈ [t, t+ δ). Since v∗t = arg minx
(
Wt(x)− 〈x, v〉

)
, the upper bound follows from

W ∗t+δ(v) ≤Wt+δ(v
∗
t )− 〈v, v∗t 〉

≤Wt(v
∗
t ) + δft(v

∗
t ) + o(δ)− 〈v, v∗t 〉

= W ∗t (v) + δft(v
∗
t ) + o(δ).

For the lower bound, the strict convexity of Wt at v∗t implies

Wt(x) = Wt(v
∗
t ) + 〈v, x− v∗t 〉+ γ(||x− v∗t ||)

where γ : R+ → R+ is continuous and increasing with unique minimum F (0) = 0. Therefore any

path xs : [0, t+ δ]→ X satisfies:

Wt(xt) +

∫ t+δ

t

fs(xs) + ||x′s||ds− 〈v, xt+δ〉

≥Wt(v
∗
t ) + 〈v, xt − v∗t 〉+ γ(||xt − v∗t ||) +

∫ t+δ

t

fs(xs) + ||x′s||ds− 〈v, xt+δ〉.
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The observation
∫ t+δ
t
||x′s||ds ≥ ||xt+δ − xt|| ≥ 〈v, xt+δ − xt〉 implies

Wt(xt) +

∫ t+δ

t

fs(xs) + ||x′s||ds− 〈v, xt+δ〉 ≥Wt(xt)− 〈v, v∗t 〉+ f(||xt − v∗t ||) +

∫ t+δ

t

fs(xs)ds

≥Wt(v
∗
t )− 〈v, v∗t 〉+ γ(||xt − v∗t ||) +

∫ t+δ

t

fs(xs)ds

≥W ∗t (v) + γ(||xt − v∗t ||) +

∫ t+δ

t

fs(xs)ds.

Because Wt+δ(v) = Wt(v) + O(δ), we see that for δ → 0 small we must have ||xt − v∗t || = oδ→0(1)

for any optimal trajectory xs witnessing the correct value Wt+δ. Additionally,

∫ t+δ

t

||x′s||ds+ 〈v, xt − xt+δ〉 ≥ (1− |v|)
∫ t+δ

t

||x′s||ds ≥ (1− |v|) sup
s∈[t,t+δ]

|xt − xs|.

which similarly implies sups∈[t,t+δ] ||xt − xs|| = o(1) for any optimal trajectory since ||v|| < 1. It

follows that all optimal trajectories satisfy
∫ t+δ
t

fs(xs)ds = δft(v
∗
t ) + o(δ). This concludes the proof.



Chapter 7

A Universal Law of Robustness via

Isoperimetry

7.1 Introduction

Solving n equations generically requires only n unknowns1. However, the revolutionary deep learning

methodology revolves around highly overparametrized models, with many more than n parameters

to learn from n training data points. We propose an explanation for this enigmatic phenomenon,

showing in great generality that finding a smooth function to fit d-dimensional data requires at

least nd parameters. In other words, overparametrization by a factor of d is necessary for smooth

interpolation, suggesting that perhaps the large size of the models used in deep learning is a necessity

rather than a weakness of the framework. Another way to phrase the result is as a tradeoff between

the size of a model (as measured by the number of parameters) and its “robustness” (as measured

by its Lipschitz constant): either one has a small model (with n parameters) which must then be

non-robust, or one has a robust model (constant Lipschitz) but then it must be very large (with

nd parameters). Such a tradeoff was conjectured for the specific case of two-layer neural networks

and Gaussian data in [BLN21]. Our result shows that in fact it is a universal phenomenon, which

applies to essentially any parametrized function class (including in particular deep neural networks)

as well as a much broader class of data distributions. As in [BLN21] we obtain an entire tradeoff

curve between size and robustness: our universal law of robustness states that, for any function

class smoothly parametrized by p parameters, and for any d-dimensional dataset satisfying mild

regularity conditions, any function in this class that fits the data below the noise level must have its

1As in, for instance, the inverse function theorem in analysis or Bézout’s theorem in algebraic geometry. See also
[YSJ19, BELM20] for versions of this claim with neural networks.
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(Euclidean) Lipschitz constant larger than
√

nd
p .

Theorem 34 (Informal version of Theorem 37). Let F be a class of functions from Rd → R and

let (xi, yi)
n
i=1 be i.i.d. input-output pairs in Rd × [−1, 1]. Assume that:

1. F admits a Lipschitz parametrization by p real parameters, each of size at most poly(n, d).

2. The distribution µ of the covariates xi satisfies isoperimetry (or is a mixture theoreof).

3. The expected conditional variance of the output (i.e., the “noise level”) is strictly positive,

denoted σ2 ≡ Eµ[V ar[y|x]] > 0.

Then, with high probability over the sampling of the data, one has simultaneously for all f ∈ F :

1

n

n∑
i=1

(f(xi)− yi)2 ≤ σ2 − ε ⇒ Lip(f) ≥ Ω̃

(
ε

σ

√
nd

p

)
.

Remark 7.1.1. For the distributions µ we have in mind, for instance uniform on the unit sphere,

there exists with high probability some O(1)-Lipschitz function f : Rd → R satisfying f(xi) = yi

for all i. Indeed, with probability 1 − e−Ω(d) we have ||xi − xj || ≥ 1 for all 1 ≤ i 6= j ≤ n so long

as n ≤ poly(d). In this case we may apply the Kirszbraun extension theorem to find a suitable f

regardless of the labels yi. More explicitly we may fix a smooth bump function g : R+ → R with

g(0) = 1 and g(x) = 0 for x ≥ 1, and then interpolate using the sum of radial basis functions

f(x) =

n∑
i=1

g(||x− xi||)yi.

In fact this construction requires only p = n(d + 1) parameters to specify the values (xi, yi)i∈[n]

and thus determine the function f . Hence p = n(d+ 1) parameters suffice for robust interpolation,

i.e. Theorem 37 is essentially best possible for L = O(1). A similar construction shows the same

conclusion for any p ∈ [Ω̃(n), nd], essentially tracing the entire tradeoff curve. This is because

one can first project onto a fixed subspace of dimension d̃ = p/n, and the projected inputs xi now

have pairwise distances at least Ω

(√
d̃/d

)
with high probability. The analogous construction on the

projected points now requires only p = d̃n parameters and has Lipschitz constant L = O

(√
d/d̃

)
=

O
(√

nd
p

)
.

7.1.1 Speculative implication for real data

To put Theorem 34 in context, we compare to the empirical results presented in [MMS+18]. In the

latter work, they consider the MNIST dataset which consists of n = 6 × 104 images in dimension
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282 = 784. They trained robustly different architectures, and reported in Figure 4 the size of the

architecture versus the obtained robust test accuracy (third plot from the left). One can see a

sharp transition from roughly 10% accuracy to roughly 90% accuracy at around 2× 105 parameters

(capacity scale 4 in their notation). Moreover the robust accuracy keeps climbing up with more

parameters, to roughly 95% accuracy at roughly 3× 106 parameters.

How can we compare these numbers to the law of robustness? There are a number of difficulties

that we discuss below, and we emphasize that this discussion is highly speculative in nature, though

we find that, with a few leaps of faith, our universal law of robustness sheds light on the potential

parameter regimes of interest for robust deep learning.

The first difficulty is to evaluate the “correct” dimension of the problem. Certainly the number

of pixels per image gives an upper bound, however one expects that the data lies on something like a

lower dimensional sub-manifold. Optimistically, we hope that Theorem 34 will continue to apply for

an appropriate effective dimension which may be rather smaller than the literal number of pixels.

This hope is partially justified by the fact that isoperimetry holds in many less-than-picturesque

situations, some of which are stated in the next subsection.

Estimating the effective dimension of data manifolds is an interesting problem and has attracted

some study in its own right. For instance [FdRL17, PZA+21] both predict that MNIST has effective

dimension slightly larger than 10, which is consistent with our numerical discussion at the end of this

subsection. The latter also predicts an effective dimension of about 40 for ImageNet. It is unclear

how accurate these estimates are for our setting. One concrete issue is that from the point of view

of isoperimetry, a “smaller” manifold (e.g. a sphere with radius r < 1) will behave as though it

has a larger effective dimension (e.g. d/r2 instead of d). Thus we expect the “scale” of the mixture

components to also be relevant for studying real datasets through our result.

Another difficulty is to estimate/interpret the noise value σ2. From a theoretical point of view,

this noise assumption is necessary for otherwise there could exist a smooth classifier with perfect

accuracy in F , defeating the point of any lower bound on the size of F . We tentatively would like to

think of σ2 as capturing the contribution of the “difficult” part of the learning problem, that is σ2

could be thought of as the non-robust generalization error of reasonably good models, so a couple

of % of error in the case of MNIST. With that interpretation, one gets “below the noise level” in

MNIST with a training error of a couple of %. We believe that versions of the law of robustness

might hold without noise; these would need to go beyond representational power and consider the

dynamics of learning algorithms.

Finally another subtlety to interpret the empirical results of [MMS+18] is that there is a mismatch

between what they measure and our quantities of interest. Namely the law of robustness talks about

two things: the training error, and the worst-case robustness (i.e., the Lipschitz constant). On

the other hand [MMS+18] measures the robust generalization error. Understanding the interplay
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between those three quantities is a fantastic open problem. Here we take the perspective that a

small robust generalization error should imply a small training error and a small Lipschitz constant.

Another important mismatch is that we stated our universal law of robustness for Lipschitzness in

`2, while the experiments in [MMS+18] are for robustness in `∞. We believe that a variant of the

law of robustness remains true for `∞, a belief again partially justified by how broad isoperimetry

is (see next subsection).

With all the caveats described above, we can now look at the numbers as follows: in the [MMS+18]

experiments, smooth models with accuracy below the noise level are attained with a number of

parameters somewhere in the range 2× 105− 3× 106 parameters (possibly even larger depending on

the interpretation of the noise level), while the law of robustness would predict any such model must

have at least nd parameters, and this latter quantity should be somewhere in the range 106 − 107

(corresponding to an effective dimension between 15 and 150). While far from perfect, the law

of robustness prediction is far more accurate than the classical rule of thumb # parameters ' #

equations (which here would predict a number of parameters of the order 104).

Perhaps more interestingly, one could apply a similar reasoning to the ImageNet dataset, which

consists of 1.4 × 107 images of size roughly 2 × 105. Estimating that the effective dimension is a

couple of order of magnitudes smaller than this size, the law of robustness predicts that to obtain

good robust models on ImageNet one would need at least 1010 − 1011 parameters. This number is

larger than the size of current neural networks trained robustly for this task, which sports between

108−109 parameters. Thus, we arrive at the tantalizing possibility that robust models for ImageNet

do not exist yet simply because we are a couple orders of magnitude off in the current scale of neural

networks trained for this task.

7.1.2 Related work

Theorem 34 is a direct follow-up to the conjectured law of robustness in [BLN21] for (arbitrarily

weighted) two-layer neural networks with Gaussian data. Our result does not actually prove their

conjecture, because we assume here polynomially bounded weights. While this assumption is reason-

able from a practical perspective, it remains mathematically interesting to prove the full conjecture

for the two-layer case. We prove however in Section 7.6 that the polynomial weights assumption is

necessary as soon as one considers three-layer neural networks. Let us also mention the [GCL+19,

Theorem 6.1] which showed a lower bound Ω(nd) on the VC dimension of any function class which

can robustly interpolate arbitrary labels on all well-separated input sets (x1, . . . , xn). We also note

that a relation between high-dimensional phenomenon such as concentration and adversarial exam-

ples has been hypothesized before, such as in [GMF+18].

In addition to [MMS+18], several recent works have experimentally studied the relationship

between a neural network scale and its achieved robustness, see e.g., [NBA+18, XY20, GQU+20].
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It has been consistently reported that larger networks help tremendously for robustness, beyond

what is typically seen for classical non-robust accuracy. We view our universal law of robustness

as putting this empirical observation on a more solid footing: scale is actually necessary to achieve

robustness.

The law of robustness setting is closely related to the interpolation setting: in the former case one

considers models optimizing “beyond the noise level”, while in the latter case one studies models with

perfect fit on the training data. The study of generalization in this interpolation regime has been a

central focus of learning theory in the last few years (see e.g., [BHMM19, MM19, BLLT20, NKB+20]),

as it seemingly contradicts classical theory about regularization. More broadly though, generaliza-

tion remains a mysterious phenomon in deep learning, and the exact interplay between the law of

robustness’ setting (interpolation regime/worst-case robustness) and (robust) generalization error is

a fantastic open problem. Interestingly, we note that one could potentially avoid the conclusion of

the law of robustness (that is, that large models are necessary for robustness), with early stopping

methods that could stop the optimization once the noise level is reached. In fact, this theoretically

motivated suggestion has already been empirically tested and confirmed in the recent work [RWK20],

showing again a close tie between the conclusions one can draw from the law of robustness and actual

practical settings.

Classical lower bounds on the gradient of a function include Poincaré type inequalities, but they

are of a qualitately different nature compared to the law of robustness lower bound. We recall that a

measure µ on Rd satisfies a Poincaré inequality if for any function f , one has Eµ[‖∇f‖2] ≥ C ·Var(f)

(for some constant C > 0). In our context, such a lower bound for an interpolating function f has

essentially no consequence since the variance f could be exponentially small. In fact this is tight, as

one easily use similar constructions to those in [BLN21] to show that one can interpolate with an

exponentially small expected norm squared of the gradient (in particular it is crucial in the law of

robustness to consider the Lipschitz constant, i.e., the supremum of the norm of the gradient). On

the other hand, our isoperimetry assumption is related to a certain strenghtening of the Poincaré

inequality known as log-Sobolov inequality (see e.g., [Led01]). If the covariate measure satisfies

only a Poincaré inequality, then we could prove a weaker law of robustness of the form Lip & n
√
d

p

(using for example the concentration result obtained in [BL97]). For the case of two-layer neural

networks there is another natural notion of smoothness (different from `p norms of the gradient)

that can be considered, known as the Barron norm. In [BELM20] it is shown that for such a notion

of smoothness there is no tradeoff à la the law of robustness, namely one can simultaneously be

optimal both in terms of Barron norm and in terms of the network size. More generally, it is an

interesting challenge to understand for which notions of smoothness there is a tradeoff with size.
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7.1.3 Isoperimetry

Concentration of measure and isoperimetry are perhaps the most ubiquitous features of high-

dimensional geometry. In short, they assert in many cases that Lipschitz functions on high-dimensional

space concentrate tightly around their mean. Our result assumes that the distribution µ of the co-

variates xi satisfies such an inequality in the following sense.

Definition 7.1.1. A probability measure µ on Rd satisfies c-isoperimetry if for any bounded L-

Lipschitz f : Rd → R, and any t ≥ 0,

P[|f(x)− E[f ]| ≥ t] ≤ 2e−
dt2

2cL2 . (7.1.1)

In general, if a scalar random variable X satisfies P[|X| ≥ t] ≤ 2e−t
2/C then we say X is C-

subgaussian. Hence isoperimetry states that the output of any Lipschitz function is O(1)-subgaussian

under suitable rescaling. Distributions satisfying O(1)-isoperimetry include high dimensional Gaus-

sians µ = N
(
0, Idd

)
and uniform distributions on spheres and hypercubes (normalized to have

diameter 1). Isoperimetry also holds for mild perturbations of these idealized scenarios, including2:

• The sum of a Gaussian and an independent random vector of small norm [CCNW21].

• Strongly log-concave measures in any normed space [BL00, Proposition 3.1].

• Manifolds with positive Ricci curvature [Gro86, Theorem 2.2].

Due to the last condition above, we believe our results are realistic even under the manifold hy-

pothesis that high-dimensional data tends to lie on a lower-dimensional submanifold. This viewpoint

on learning has been studied for decades, see e.g. [HS89, KL93, RS00, TDSL00, NM10, FMN16].

We also note that our formal theorem (Theorem 37) actually applies to distributions that can be

written as a mixture of distributions satisfying isoperimetry. Let us also point out that from a

technical perspective, our proof is not tied to the Euclidean norm and applies essentially whenever

Definition 7.1.1 holds. The main difficulty in extending the law of robustness to e.g. the earth-mover

distance seems to be identifying realistic cases which satisfy isoperimetry.

Our proofs will repeatedly use the following simple fact:

Proposition 7.1.2. If X1, . . . , Xn are independent, C-subgaussian, with mean 0, then Xav =
1√
n

∑n
i=1Xi is 18C-subgaussian.

Proof. By [vH14, Exercise 3.1 part d.],

E
[
eX

2
i /3C

]
≤ 2, i ∈ [n].

2The first two examples satisfy a logarithmic Sobolev inequality, which implies isoperimetry [Led99, Proposition
2.3].
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It is immediate by Hölder that the same bound holds for Xav in place of Xi, and using [vH14,

Exercise 3.1 parts e. and c.] now implies the first claim. The second claim follows similarly, since

by convexity we have

E[eY
2/3C ] ≤ E[eX

2
1/3C ] ≤ 2.

7.2 A finite approach to the law of robustness

For the function class of two-layer neural networks, [BLN21] investigated several approaches to prove

the law of robustness. At a high level, the proof strategies there relied on various ways to measure

how “large” the set of two-layer neural networks can be (specifically, they tried a geometric approach

based on relating to multi-index models, a statistical approach based on the Rademacher complexity,

and an algebraic approach for the case of polynomial activations).

In this chapter we take here a different route: we shift the focus from the function class F to

an individual function f ∈ F . Namely, our proof starts by asking the following question: for a

fixed function f , what is the probability that it would give a good approximate fit on the (random)

data? For simplicity, consider for a moment the case where we require f to actually interpolate the

data (i.e., perfect fit), and say that yi are random ±1 labels. The key insight is that isoperimetry

implies that either the 0-level set of f or the 1-level set of f must have probability smaller than

exp
(
− d

Lip(f)2

)
. Thus, the probability that f fits all the n points is at most exp

(
− nd

Lip(f)2

)
so long

as both labels yi ∈ {−1, 1} actually appear a constant fraction of the time. In particular, using an

union bound3, for a finite function class F of size N with L-Lipschitz functions, the probability that

there exists a function f ∈ F fitting the data is at most

N exp

(
−nd
L2

)
= exp

(
log(N)− nd

L2

)
.

Thus we see that, if L�
√

nd
log(N) , then the probability of finding a fitting function in F is very small.

This basically concludes the proof, since via a standard discretization argument, for a smoothly

parametrized family with p (bounded) parameters one expects log(N) = Õ(p).

We now give the formal proof, which applies in particular to approximate fit rather than exact

fit in the argument above. The only difference is that we will identify a well-chosen subgaussian

random variable in the problem. We start with the finite function class case:

Theorem 35. Let (xi, yi) be i.i.d. input-output pairs in Rd × [−1, 1] such that:

3In this informal argument we ignore the possibility that the labels yi are not well-balanced. Note that the
probability of this rare event is not amplified by a union bound over f ∈ F .
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1. The distribution µ of the covariates xi can be written as µ =
∑k
`=1 α`µ`, where each µ` satisfies

c-isoperimetry and α` ≥ 0,
∑k
`=1 α` = 1.

2. The expected conditional variance σ2 ≡ Eµ[V ar[y|x]] > 0 of the output is strictly positive.

Then one has:

P

(
∃f ∈ F :

1

n

n∑
i=1

(yi − f(xi))
2 ≤ σ2 − ε

)

≤ 4k exp

(
−nε

2

83k

)
+ 2 exp

(
log(|F|)− ε2nd

104cL2

)
.

We start with a lemma showing that, to optimize beyond the noise level one must necessarily

correlate with the noise part of the labels. In what follows we denote g(x) = E[y|x] for the target

function, and zi = yi − g(xi) for the noise part of the observed labels (namely yi is the sum of the

target function g(xi) and the noise term zi).

Lemma 7.2.1. One has

P

(
∃f ∈ F :

1

n

n∑
i=1

(yi − f(xi))
2 ≤ σ2 − ε

)
≤ 2 exp

(
−nε

2

83

)
+ P

(
∃f ∈ F :

1

n

n∑
i=1

f(xi)zi ≥
ε

4

)
.

Proof. The sequence (z2
i ) is i.i.d., with mean σ2, and such that |zi|2 ≤ 4. Thus Hoeffding’s inequality

yields:

P

(
1

n

n∑
i=1

z2
i ≤ σ2 − ε

6

)
≤ exp

(
−nε

2

83

)
. (7.2.1)

On the other hand the sequence (zig(xi)) is i.i.d., with mean 0 (since E[zi|xi] = 0), and such that

|zig(xi)| ≤ 2. Thus Hoeffding’s inequality yields:

P

(
1

n

n∑
i=1

zig(xi) ≤ −
ε

6

)
≤ exp

(
−nε

2

83

)
. (7.2.2)

Let us write Z = 1√
n

(z1, . . . , zn), G = 1√
n

(g(x1), . . . , g(xn)), and F = 1√
n

(f(x1), . . . , f(xn)). We

claim that if ‖Z‖2 ≥ σ2 − ε
6 and 〈Z,G〉 ≥ − ε6 , then for any f ∈ F one has

‖G+ Z − F‖2 ≤ σ2 − ε ⇒ 〈F,Z〉 ≥ ε

4
.

This claim together with (7.2.1) and (7.2.2) conclude the proof. On the other hand the claim itself

directly follows from:

σ2 − ε ≥ ‖G+ Z − F‖2 = ‖Z +G− F‖2 = ‖Z‖2 + 2〈Z,G− F 〉+ ‖G− F‖2 ≥ σ2 − ε

2
− 2〈Z,F 〉 .
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We can now proceed to the proof of Theorem 35:

Proof. First note that without loss of generality we can assume that the range of any function in

F is included in [−1, 1] (indeed clipping the values improves both the fit to any y ∈ [−1, 1] and the

Lipschitz constant). We also assume without loss of generality that all functions in F are L-Lipschitz.

For clarity let us start with the case k = 1. By the isoperimetry assumption we have that√
d
c
f(xi)−E[f ]

L is 2-subgaussian. Since |zi| ≤ 2, we also have that
√

d
c

(f(xi)−E[f ])zi
L is 8-subgaussian.

Moreover, the latter random variable has mean zero since E[z|x] = 0. Thus by Proposition 7.1.2

(and 8× 18 = 122) we have:

P

(√
d

cnL2

n∑
i=1

(f(xi)− E[f ])zi ≥ t

)
≤ 2 exp

(
−(t/12)2

)
.

Rewriting (and noting 12× 8 ≤ 102), we find:

P

(
1

n

n∑
i=1

(f(xi)− E[f ])zi ≥
ε

8

)
≤ 2 exp

(
− ε2nd

104cL2

)
. (7.2.3)

Since we assumed that the range of the functions is in [−1, 1] we have E[f ] ∈ [−1, 1] and hence:

P

(
∃f ∈ F :

1

n

n∑
i=1

E[f ]zi ≥
ε

8

)
≤ P

(∣∣∣∣∣ 1n
n∑
i=1

zi

∣∣∣∣∣ ≥ ε

8

)
. (7.2.4)

(This step is the analog of requiring the labels yi to be well-balanced in the example of perfect

interpolation.) By Hoeffding’s inequality, the above quantity is smaller than 2 exp(−nε2/83) (recall

that |zi| ≤ 2). Thus we obtain with a union bound:

P

(
∃f ∈ F :

1

n

n∑
i=1

f(xi)zi ≥
ε

4

)
≤ |F| · P

(
1

n

n∑
i=1

(f(xi)− E[f ])zi ≥
ε

8

)
+ P

(∣∣∣∣∣ 1n
n∑
i=1

zi

∣∣∣∣∣ ≥ ε

8

)

≤ 2|F| · exp

(
− ε2nd

104cL2

)
+ 2 exp

(
−nε

2

83

)
.

Together with Lemma 7.2.1 this concludes the proof for k = 1.

We now turn to the case k > 1. We first sample the mixture component `i ∈ [k] for each data

point i ∈ [n], and we now reason conditioned on these mixture components. Let S` ⊂ [n] be the

set of data points sampled from mixture component ` ∈ [k], that is xi, i ∈ S`, is i.i.d. from µ`.

We now have that
√

d
c
f(xi)−E

µ`i [f ]
L is 1-subgaussian (notice that the only difference is that now we

need to center by Eµ`i [f ], which depends on the mixture component). In particular using the same
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reasoning as for (7.2.3) we obtain (crucially note that Proposition 7.1.2 does not require the random

variables to be identically distributed):

P

(
1

n

n∑
i=1

(f(xi)−
µ`i
E [f ])zi ≥

ε

8

)
≤ 2 exp

(
− ε2nd

94cL2

)
. (7.2.5)

Next we want to appropriately modify (7.2.4). To do so note that:

max
m1,...,mk∈[−1,1]

n∑
i=1

m`izi =

k∑
`=1

∣∣∣∣∣∑
i∈S`

zi

∣∣∣∣∣ ,
so that we can rewrite (7.2.4) as:

P

(
∃f ∈ F :

1

n

n∑
i=1

µ`i
E [f ]zi ≥

ε

8

)
≤ P

(
1

n

k∑
`=1

∣∣∣∣∣∑
i∈S`

zi

∣∣∣∣∣ ≥ ε

8

)
.

Now note that
∑k
`=1

√
|S`| ≤

√
nk and thus we have:

P

(
1

n

k∑
`=1

∣∣∣∣∣∑
i∈S`

zi

∣∣∣∣∣ ≥ ε

8

)
≤ P

(
k∑
`=1

∣∣∣∣∣∑
i∈S`

zi

∣∣∣∣∣ ≥ ε

8

√
n

k

k∑
`=1

√
|S`|

)
≤

k∑
`=1

P

(∣∣∣∣∣∑
i∈S`

zi

∣∣∣∣∣ ≥ ε

8

√
n

k

√
|S`|

)
.

Finally by Hoeffding’s inequality, we have for any ` ∈ [k], P
(∣∣∑

i∈S` zi
∣∣ ≥ t√|S`|) ≤ 2 exp

(
− t

2

8

)
,

and thus the last display is bounded from above by 2k exp
(
−nε

2

83k

)
. The proof can now be concluded

as in the case k = 1.

In fact the above result can be further improved for small σ using the following Lemma 7.2.2.

The intuition is that the naive estimate in (7.2.5) of

P

(
1

n

n∑
i=1

(f(xi)−
µ`i
E [f ])zi ≥

ε

8

)

was loose. Indeed E[z2
i ] ≤ σ2, but (7.2.5) did not take advantage of this and only used that |zi| ≤ 2

almost surely. For instance, if the variables xi and zi were independent, then the sum

1

n

n∑
i=1

(f(xi)−
µ`i
E [f ])zi

would have subgaussian constant proportional to 1
n

∑n
i=1 z

2
i after conditioning on (z1, . . . , zn). Since

1
n

∑n
i=1 z

2
i = O(σ2) with high probability, the desired improvement would follow.

However because the variables xi and zi are not independent, it is not obvious how to improve
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on the bound (7.2.5). Our strategy is to carefully construct noisy realizations wi of zi and then

argue that conditioning on wi can affect the distribution of xi by at most a constant factor
(

10
σ

)3
.

Thus conditioning on (w1, . . . , wn) only changes the distribution of (x1, . . . , xn) by a factor
(

10
σ

)3n
.

The argument above for independent (xi, zi) now goes through up to this distortion factor, yielding

the result below. We defer details to the Appendix.

Lemma 7.2.2. In the setting of Theorem 35, we have

P

(
∃f ∈ F :

1

n

n∑
i=1

(f(xi)−
µ`i
E [f ])zi ≥

ε

8

)
≤ exp

(
−nσ

2

4

)
+

(
20

σ

)3n

exp

(
log |F| − ε2nd

86cL2σ2

)
.

By using Lemma 7.2.2 in place of (7.2.5) when proving Theorem 35, one readily obtains the

following.

Theorem 36. In the setting of Theorem 35, we have

P

(
∃f ∈ F :

1

n

n∑
i=1

(yi − f(xi))
2 ≤ σ2 − ε

)
≤ (4k+1) exp

(
−nε

2

83k

)
+

(
20

σ

)3n

exp

(
log |F| − ε2nd

86cL2σ2

)
.

Proof. Using Lemma 7.2.2 in place of (7.2.5) when proving Theorem 35 immediately implies

P

(
∃f ∈ F :

1

n

n∑
i=1

(yi − f(xi))
2 ≤ σ2 − ε

)
≤ 4k exp

(
−nε

2

83k

)
+ exp

(
−nσ

2

4

)

+

(
20

σ

)3n

exp

(
log |F| − ε2nd

86cL2σ2

)
.

It remains to observe that ε2

83k ≤
σ2

4 since ε ≤ σ2 ≤ 1.

Finally we can now state and prove the formal version of the informal Theorem 34 from the

introduction. We remark that we now impose a mild lower bound on the dimension d depending

only on ε and σ, which is used to account for the factor
(

20
σ

)3n
. It is not necessary if Theorem 35

is used in place of Theorem 36 (which would sacrifice a factor σ in the resulting lower bound on

Lip(f)).

Theorem 37. Let F be a class of functions from Rd → R and let (xi, yi)
n
i=1 be i.i.d. input-output

pairs in Rd × [−1, 1]. Fix ε, δ ∈ (0, 1). Assume that:

1. The function class can be written as F = {fw,w ∈ W} with W ⊂ Rp, diam(W) ≤W and for

any w1,w2 ∈ W,

||fw1
− fw2

||∞ ≤ J ||w1 −w2||.
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2. The distribution µ of the covariates xi can be written as µ =
∑k
`=1 α`µ`, where each µ` satisfies

c-isoperimetry, α` ≥ 0,
∑k
`=1 α` = 1, and k is such that 94k log(8k/δ) ≤ nε2.

3. The expected conditional variance of the output is strictly positive, denoted σ2 ≡ Eµ[V ar[y|x]] >

0.

4. The dimension d is large compared to ε and σ:

d ≥ 88cL2 log(20/σ)

ε2
.

Then, with probability at least 1− δ with respect to the sampling of the data, one has simultaneously

for all f ∈ F :

1

n

n∑
i=1

(f(xi)− yi)2 ≤ σ2 − ε ⇒ Lip(f) ≥ ε

211σ
√
c

√
nd

p log(60WJε−1) + log(4/δ)
. (7.2.6)

Moreover if W consists only of k-sparse vectors with ||w||0 ≤ k, then the above inequality improves

to

1

n

n∑
i=1

(f(xi)− yi)2 ≤ σ2 − ε ⇒ Lip(f) ≥ ε

211σ
√
c

√
nd

k log(60WJpε−1) + log(4/δ)
. (7.2.7)

Proof. Define WL ⊆ W by

WL ≡ {w ∈ W : Lip(fw) ≤ L}.

Denote WL,ε ⊆ WL for an ε
8J -net of WL. We have in particular |Wε| ≤ (60WJε−1)p. We apply

Theorem 36 to FL,ε ≡ {fw,w ∈ WL,ε}:

P

(
∃f ∈ FL,ε :

1

n

n∑
i=1

(yi − f(xi))
2 ≤ σ2 − ε

2

)

≤ (4k + 1) exp

(
−nε

2

94k

)
+

(
20

σ

)3n

exp

(
p log(60WJε−1)− 2ε2nd

87cL2σ2

)
.

Observe that if ‖f − g‖∞ ≤ ε
8 and ‖y‖∞, ‖f‖∞, ‖g‖∞ ≤ 1, then

1

n

n∑
i=1

(yi − f(xi))
2 ≤ ε

2
+

1

n

n∑
i=1

(yi − g(xi))
2.

(We may again assume without loss of generality that all functions in F map to [−1, 1].) Thus we
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obtain for any L > 0:

P

(
∃f ∈ F :

1

n

n∑
i=1

(yi − f(xi))
2 ≤ σ2 − ε and Lip(f) ≤ L

)
(7.2.8)

≤ (4k + 1) exp

(
− nε2

104k

)
+

(
20

σ

)3n

exp

(
p log(60WJε−1)− 2ε2nd

87cL2σ2

)
.

The first assumption ensures that for any w ∈ WL, there is w′ ∈ WL,ε with ‖fw − fw′‖∞ ≤ ε
8 . The

final assumption ensures that (
20

σ

)3n

exp

(
− ε2nd

87cL2σ2

)
≤ 1. (7.2.9)

Finally we use the second assumption to show the probability in (7.2.8) just above is at most δ when

L = ε
211σ

√
c

√
nd

p log(60WJε−1)+log(4/δ) . The first term is estimated via

(4k + 1) exp

(
−nε

2

94k

)
≤ (4k + 1)δ

8k
≤ 3δ

4
.

Using the inequality 222 ≥ 87, we find(
20

σ

)3n

exp

(
p log(60WJε−1)− 2ε2nd

87cL2σ2

)
(7.2.9)

≤ exp

(
p log(60WJε−1)− ε2nd

87cL2σ2

)
≤ e− log(4/δ) =

δ

4
.

Combining these estimates on (7.2.8) concludes the proof of (7.2.6).

To show (7.2.7), the proof proceeds identically after the improved estimate |Wε| ≤ (60WJpε−1)k.

To obtain this estimate, note that the number of k-subsets S ⊆
(

[p]
k

)
is at most pk. LettingWS consist

of those w ∈ W with wi = 0 for all i /∈ S, the size of an ε-net WS,ε for WS is |WS,ε| ≤ (60WJε−1)k.

Therefore the union ⋃
S⊆([p]

k )

WS,ε

is an ε-net of W of size at most (60WJpε−1)k as claimed above.

7.3 Deep neural networks

We now specialize the law of robustness (Theorem 37) to multi-layer neural networks. We consider

a rather general class of depth D neural networks described as follows. First, we require that the

neurons are partitioned into layers L1, . . . ,LD, and that all connections are from Li → Lj for some
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i < j. This includes the basic feed-forward case in which only connections Li → Li+1 are used as

well as more general skip connections. We specify (in the natural way) a neural network by matrices

Wj of shape |Lj | ×
∑
i<j |Li| for each 1 ≤ j ≤ D, as well as 1-Lipschitz non-linearities σj,` and

scalar biases bj,` for each (j, `) satisfying ` ∈ |Lj |. We use fixed non-linearities σj,` as well as a fixed

architecture, in the sense that each matrix entry Wj [k, `] is either always 0 or else it is variable (and

similarly for the bias terms).

To match the notation of Theorem 37, we identify the parametrization in terms of the matrices

(Wj) and bias terms (bj,`) to a single p-dimensional vector w as follows. A variable matrix entry

Wj [k, `] is set to wa(j,k,`) for some fixed index a(j, k, `) ∈ [p], and a variable bias term bj,` is set

to wa(j,`) for some a(j, `) ∈ [p]. Thus we now have a parametrization w ∈ Rp 7→ fw where fw is

the neural network represented by the parameter vector w. Importantly, note that our formulation

allows for weight sharing (in the sense that a shared weight is counted only as a single parameter). For

example, this is important to obtain an accurate count of the number of parameters in convolutional

architectures.

In order to apply Theorem 37 to this class of functions we need to estimate the Lipschitz constant

of the parametrization w 7→ fw. To do this we introduce three more quantities. First, we shall

assume that all the parameters are bounded in magnitude by W , that is we consider the set of

neural networks parametrized by w ∈ [−W,W ]p. Next, for the architecture under consideration,

denote Q for the maximum number of matrix entries/bias terms that are tied to a single parameter

wa for some a ∈ [p]. Finally we define

B(w) =
∏
j∈[D]

max(‖Wj‖op, 1).

Observe that B(w) is an upper bound on the Lipschitz constant of the network itself, i.e., the map

x 7→ fw(x). It turns out that a uniform control on it also controls the Lipschitz constant of the

parametrization w 7→ fw. Namely we have the following lemma:

Lemma 7.3.1. Let x ∈ Rd such that ‖x‖ ≤ R, and w1,w2 ∈ Rp such that B(w1), B(w2) ≤ B.

Then one has

|fw1
(x)− fw2

(x)| ≤ B2
QR
√
p‖w1 −w2‖ .

Moreover for any w ∈ [−W,W ]p with W ≥ 1, one has

B(w) ≤ (W
√
pQ)D.

Proof. Fix an input x and define gx by gx(w) = fw(x). A standard gradient calculation for multi-

layer neural networks directly shows that ‖∇gx(w)‖∞ ≤ B(w)QR so that ‖∇gx(w)‖ ≤ B(w)QR
√
p.

Since the matrix operator norm is convex (and nonnegative) it follows that B(w) ≤ B(w1)B(w2) ≤
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B
2

on the entire segment [w1,w2] by multiplying over layers. Thus ‖∇gx(w)‖ ≤ B2
QR
√
p on that

segment, which concludes the proof of the first claimed inequality. The second claimed inequality

follows directly from ‖Wj‖op ≤ ‖Wj‖2 ≤W
√
pQ.

Lemma 7.3.1 shows that when applying Theorem 37 to our class of neural networks one can

always take J = R(WQp)D (assuming that the covariate measure µ is supported on the ball of

radius R). Thus in this case the law of robustness (under the assumptions of Theorem 37) directly

states that with high probability, any neural network in our class that fits the training data well

below the noise level must also have:

Lip(f) ≥ Ω̃

(√
nd

Dp

)
, (7.3.1)

where Ω̃ hides logarithmic factors in W,p,R,Q, and the probability of error δ. Thus we see that the

law of robustness, namely that the number of parameters should be at least nd for a smooth model

with low training error, remains intact for constant depth neural networks. If taken at face value,

the lower bound (7.3.1) suggests that it is better in practice to distribute the parameters towards

depth rather than width, since the lower bound is decreasing with D. On the other hand, we note

that (7.3.1) can be strengthened to:

Lip(f) ≥ Ω̃

(√
nd

p log(B)

)
, (7.3.2)

for the class of neural networks such that B(w) ≤ B. In other words the dependence on the depth all

but disappears by simply assuming that the quantity B(w) (a natural upper bound on the Lipschitz

constant of the network) is polynomially controlled. Interestingly many works have suggested to

keep B(w) under control, either for regularization purpose (for example [BFT17] relates B(w) to

the Rademacher complexity of multi-layer neural networks) or to simply control gradient explosion

during training, see e.g., [ASB16, CBG+17, MHRB17, MKKY18, JCC+19, YM17]. Moreover, in

addition to being well-motivated in practice, the assumption that B is polynomially controlled

seems also somewhat unavoidable in theory, since B(w) is an upper bound on the Lipschitz constant

Lip(fw). Thus a theoretical construction showing that the lower bound in (7.3.1) is tight (at some

large depth D) would necessarily need to have an exponential gap between Lip(fw) and B(w). We

are not aware of any such example, and it would be interesting to fully elucidate the role of depth

in the law of robustness (particularly if it could give recommendation on how to best distribute

parameters in a neural network).
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7.4 Generalization Perspective

The law of robustness can be phrased in a slightly stronger way, as a generalization bound for

classes of Lipschitz functions based on data-dependent Rademacher complexity. In particular, this

perspective applies to any Lipschitz loss function, whereas our analysis in the main text was specific

to the squared loss. We define the data-dependent Rademacher complexity Radn,µ(F) by

Radn,µ(F) =
1

n

σi,xi
E

[
sup
f∈F

∣∣∣∣∣
n∑
i=1

σif(xi)

∣∣∣∣∣
]

(7.4.1)

where the values (σi)i∈[n] are i.i.d. symmetric Rademacher variables in {−1, 1} while the values

(xi)i∈[n] are i.i.d. samples from µ.

Lemma 7.4.1. Suppose µ =
∑k
i=1 αiµi is a mixture of c-isoperimetric distributions. For finite F

consisting of L-Lipschitz f with |f(x)| ≤ 1 for all (f, x) ∈ F × Rd, we have

Radn,µ(F) ≤ O

(
max

(√
k

n
, L

√
c log(|F|)

nd

))
. (7.4.2)

The proof is identical to that of Theorem 35. Although we do not pursue it in detail, Lemma 7.2.2

easily extends to a sharpening of this result to general σi ∈ [−1, 1] when E[σ2
i ] is small, even if σi

and xi are not independent. We only require that the n pairs ((σi, xi))i∈[n] are i.i.d. and that the

distribution of σi given xi is symmetric. To see that the latter symmetry condition is natural, recall

the quantity Radn,µ classically controls generalization due to the symmetrization trick, in which one

writes σi = yi − y′i for y′i a resampled label for xi. (In the modified proof, one would construct a

noisy copy wi of σi as in Lemma 7.5.1 and in a symmetric way, and then condition on (|wi|)i∈[n] to

preserve the symmetry, to replace the fact that f is not explicitly centered as in Lemma 7.2.2.)

Note that Radn,µ(F) simply measures the ability of functions in F to correlate with random

noise. Using standard machinery it implies the following generalization bound:

Corollary 7.4.2. For any loss function `(t, y) which is bounded and 1-Lipschitz in its first argument

and any δ ∈ [0, 1], in the setting of Lemma 7.4.1 we have with probability at least 1− δ the uniform

convergence bound:

sup
f∈F

∣∣∣∣∣(x,y)∼µ
E [`(f(x), y)]− 1

n

n∑
i=1

`(f(xi), yi)

∣∣∣∣∣ ≤ O
(

max

(√
k

n
, L

√
c log(|F|)

nd
,

√
log(1/δ)

n

))
.

Proof. Using McDiarmid’s concentration inequality it is enough to bound the left hand side in
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expectation over (xi, yi). Using the symmetrization trick, one reduces this task to upper bound

xi,yi,σi
E sup

f∈F

1

n

n∑
i=1

σi`(f(xi), yi) .

Fixing the pairs (xi, yi) and using the contraction lemma (see e.g., [SSBD14, Theorem 26.9]) the

above quantity is upper bounded by Radn,µ(F) which concludes the proof.

Of course, one can again use an ε-net to obtain an analogous result for continuously parametrized

function classes. The law of robustness, now for a general loss function, follows as a corollary (the

argument is similar to [Proposition 1, [BELM20]]). Let us point out that many works have studied

the Rademacher complexity of function classes such as neural networks – see e.g. [BFT17], or

[YKB19] in the context of adversarial examples. The new feature of our result is that isoperimetry

of the covariates yields improved generalization guarantees.

7.5 Proof of Lemma 7.2.2

We begin with a preliminary lemma.

Lemma 7.5.1. Let z be a random variable such that z ∈ [−2, 2] holds almost surely and E[z] = 0,

and fix σ ∈ (0, 1]. Let Γ = 10dlog(1 + σ−1)e. There exists a random variable w such that:

1. E[w|z] = z.

2. |w| ∈
{

4, 2, 1, . . . , 2−Γ, 0
}

almost surely.

3. E[w2] ≤ 16E[z2] + 4σ2.

4. The inequality
P[z ∈ A|w = a]

P[z ∈ A]
≤ (10/σ)3.

holds almost surely for all a ∈
{
± 4,±2,±1, . . . ,±2−Γ, 0

}
and A ⊆ R such that P[z ∈ A] > 0.

In the proof, we will say that (a, b) is a martingale coupling if E[b|a] = a. Thus, the first

conclusion above states that (z, w) is a martingale coupling.

Proof of Lemma 7.5.1. For a > 0, let r(a) = 2−blog2(a)c be the smallest power of 2 larger than a. It

is easy to see that there exists a martingale coupling (z, z̃) such that both P[z̃ = 0|z] = 1
10 and

|z̃| ∈ {2r(|z|), 0}
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holds almost surely. For such z̃, we have

E[z̃2|z] ≤ 4r(|z|)2 ≤ 16z2.

In the case 2r(|z|) ≤ 2−Γ, we may create a second martingale coupling (z̃, ẑ) such that

|ẑ| ∈ {2−Γ, 0}

where z̃ = 0 if and only if ẑ = 0. Moreover we require that z̃ and z are independent conditionally

on ẑ.

E[ẑ2 − z̃2|z̃] ≤ 2−2Γ ≤ σ2.

Letting ẑ = z̃ if 2r(|z|) ≥ 2−Γ, we conclude that (z, ẑ) is a martingale coupling such that:

• ẑ ∈
{

max
(
2−Γ, 2r(|z|)

)}
.

• P[ẑ = 0|z] = 1/10.

• E[ẑ2] ≤ 16E[z2] + σ2.

Finally we let (ẑ, w) be a martingale coupling where ẑ = w almost surely when ẑ 6= 0. If ẑ = 0, then

we take

w = Ẑ ∈
{
± 4,±2,±1, . . . ,±2−Γ, 0

}
independently of (z, z̃) with

P[Ẑ = 2k] = P[Ẑ = −2k] = min

(
1

2Γ + 6
,
σ2

22kΓ

)
, k ∈ {2, 1, 0,−1, . . . ,−Γ}.

The term 1
2Γ+6 ensures these probabilities sum to at most 1, and we take Ẑ = 0 with the remaining

probability. It is easy to see that (z, w) thus constructed is indeed a martingale coupling, verifying

the first desired statement.

The second statement to be proved, namely that |w| ∈
{

4, 2, 1, . . . , 2−Γ, 0
}

, holds by construction.

For the third, we have

E[w2] ≤ E[ẑ2] + E[Ẑ2]

≤ 16E[z2] + σ2 +
2

10

2∑
k=−Γ

σ2

22kΓ
22k

≤ 16E[z2] + 4σ2.

Finally for the fourth, we observe that for any value a ∈
{
±4,±2,±1, . . . ,±2−Γ, 0

}
, we have almost
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surely

P[w = a|z] ≥ 1

10
min

(
1

2Γ + 6
,

σ2

(a2 + 1)Γ

)
≥ σ2

100Γ
.

(Here we write a2 + 1 instead of a2 simply to avoid division by 0 when a = 0.) Using Bayes’ rule,

we find

P[z ∈ A|w = a]

P[z ∈ A]
=

P[w = a|z ∈ A]

P[w = a]

≤ 1

Ez
[
P[w = a|z]

]
≤ 100Γ

σ2
.

for any a ∈
{
± 4,±2,±1, . . . ,±2−Γ, 0

}
and any set A ⊆ R such that P(z ∈ A) > 0. Observing that

Γ ≤ 10
σ for σ ≤ 1 implies the result.

To prove Lemma 7.2.2, we will apply Lemma 7.5.1 to construct variables wi from each zi. These

can be viewed as noisy realizations of zi (with a delicate choice of noise). The last conclusion of

Lemma 7.5.1 ensures that (x1, . . . , xn) is independent of (w1, . . . , wn) up to a “likelihood distortion

factor” eO(n). Since we are in the end concerned with probabilities of order e−Ω(nd), the factor eO(n)

can be absorbed. We then argue that

1

n

n∑
i=1

(f(xi)−
µ`i
E [f ])wi

is O
(
cL2· 1n

∑n
i=1 w

2
i

nd

)
-subgaussian “modulo” the likelihood distortion. Moreover the first conclusion

of Lemma 7.5.1 ensures that this sum dominates the quantity of interest

1

n

n∑
i=1

(f(xi)−
µ`i
E [f ])zi.

Proof of Lemma 7.2.2. For each i ∈ [n], apply Lemma 7.5.1 to zi conditionally on the component

µ`i (and independently of xi) to construct wi. In applying Lemma 7.5.1, we take the same value σ

as in Lemma 7.2.2. Then by the first guarantee,

E[(f(xi)−
µ`i
E [f ])wi | G] = (f(xi)−

µ`i
E [f ])zi

where G is the sigma algebra generated by (xi, wi)i∈[n]. Hence the difference

D ≡
∑
i∈[n]

(f(xi)−
µ`i
E [f ])(wi − zi)
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is, conditionally on G, an independent sum of random variables Ai ≡ (f(xi) − Eµ`i [f ])(wi − zi)

satisfying:

• E[Ai | G] = 0.

• |Ai| ≤ 20 almost surely.

Applying the Berry-Esseen theorem conditionally on G and letting Vi = Var[Ai | G] be the conditional

variance of Ai, we find ∣∣∣∣P[D ≥ 0 | G]− 1

2

∣∣∣∣ ≤ 20

(
n∑
i=1

Vi

)−1/2

.

With V =
∑n
i=1 Vi, we have

P[D ≥ −400 | G] ≥ P[D ≥ 0 | G]

≥ 1

2
− 20V −1/2

≥ 1

4

whenever V ≥ 104. On the other hand, the Chebyshev inequality implies

P[D ≥ −400 | G] ≥ 1

4

when V ≤ 104. Hence in either case, P[D ≥ −400 | G] holds. For ε ≥ 6400
n we conclude:

P

(
1

n

n∑
i=1

(f(xi)−
µ`i
E [f ])wi ≥

ε

16

∣∣∣ G) ≥ 1

4
P

(
1

n

n∑
i=1

(f(xi)−
µ`i
E [f ])zi ≥

ε

16
+

400

n

∣∣∣ G)

≥ 1

4
P

(
1

n

n∑
i=1

(f(xi)−
µ`i
E [f ])zi ≥

ε

8

∣∣∣ G) . (7.5.1)

We now turn to upper-bounding the left hand side of (7.5.1). By the last guarantee in Lemma 7.5.1,

we find

P

(
1

n

n∑
i=1

(f(xi)−
µ`i
E [f ])wi ≥

ε

16

)
≤
(

10

σ

)3n

· P

(
1

n

n∑
i=1

(f(x̂i)−
µ`i
E [f ])wi ≥

ε

16

)
(7.5.2)

where x̂i ∼ µ`i is an independent copy of xi in the same component. Indeed, the bound on the

Radon–Nikodym derivative transfers to the law of xi since xi and wi are conditionally independent

given zi. The final step is to apply subgaussian concentration results to the right side of (7.5.2).

This is very easy thanks to the independence between x̂i and wi.

First, for i ∈ [n] we have wi ∈ [−4, 4] almost surely. Next, let σ2
` = E[z2

i |`i = `] be the average
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label noise level over x ∼ µ`, so that
∑k
`=1 α`σ

2
` = σ2. Then Lemma 7.5.1 ensures E[w2

i |`i] ≤
16σ2

`i
+ 4σ2 and so E[w2

i ] ≤ 20σ2. It follows that the random variables Bi ≡ w2
i − E[w2

i ] satisfy

|Bi| ≤ 16

and

E[B2
i ] ≤ E[w4

i ] + E[w2
i ]

2

≤ 2× 20σ2 × 16

= 640σ2.

Bernstein’s inequality implies

P

[
1

n

n∑
i=1

w2
i ≥ 40σ2

]
= P

[
1

n

n∑
i=1

Bi ≥ 20σ2

]

≤ exp

(
− 400σ4n2

2× (640nσ2) + 320σ2

)
≤ exp

(
−nσ

2

4

)
. (7.5.3)

Assuming 1
n

∑n
i=1 w

2
i ≤ 40σ2, the value

1

n

n∑
i=1

(f(x̂i)−
µ`i
E [f ])wi

is 720cL2σ2

nd -subgaussian by Proposition 7.1.2. Therefore conditioned on (wi)i∈[n] such that 1
n

∑n
i=1 w

2
i ≤

40σ2 holds, we have (using 86 ≥ 162 × 720) that

P

(
1

n

n∑
i=1

(f(x̂i)−
µ`i
E [f ])wi ≥

ε

16

)
≤ 2 exp

(
− ε2nd

86cL2σ2

)
. (7.5.4)

Next for a finite function class F we write

P

(
∃f ∈ F :

1

n

n∑
i=1

(f(xi)−
µ`i
E [f ])zi ≥

ε

8

)
(7.5.3)

≤ |F| · sup
f∈F

sup
(w1,...,wn):

1
n

∑n
i=1 w

2
i≤40σ2

P

(
1

n

n∑
i=1

(f(xi)−
µ`i
E [f ])zi ≥

ε

8

∣∣∣ (wi)i∈[n]

)
+ exp

(
−nσ

2

4

)
.

We now estimate the main term on the right side above. For any f ∈ F and any sequence ~w =
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(w1, . . . , wn) such that 1
n

∑n
i=1 w

2
i ≤ 40σ2, we have

P

(
1

n

n∑
i=1

(f(xi)−
µ`i
E [f ])zi ≥

ε

8

∣∣∣ ~w) (7.5.1)

≤ 4 · P

(
1

n

n∑
i=1

(f(xi)−
µ`i
E [f ])wi ≥

ε

16

∣∣∣ ~w)
(7.5.2)

≤ 4

(
10

σ

)3n

P

(
1

n

n∑
i=1

(f(x̂i)−
µ`i
E [f ])wi ≥

ε

16

∣∣∣ ~w)
(7.5.4)

≤
(

20

σ

)3n

exp

(
− ε2nd

86cL2σ2

)
.

Combining the final two displays completes the proof.

7.6 Necessity of Polynomially Bounded Weights

In [BLN21] it was conjectured that the law of robustness should hold for the class of all two-layer

neural networks. In this chapter we prove that in fact it holds for arbitrary smoothly parametrized

function classes, as long as the parameters are of size at most polynomial in the dimension d. In this

section we demonstrate that this polynomial size restriction is necessary for bounded depth neural

networks.

First we note that some restriction on the size of the parameters is certainly necessary in the

most general case. Indeed one can build a single-parameter family, where the single real parameter

is used to approximately encode all Lipschitz functions from a compact set in Rd to [−1, 1], simply

by brute-force enumeration. In particular no tradeoff between number of parameters and attainable

Lipschitz constant would exist for this function class.

Showing a counter-example to the law of robustness with unbounded parameters and “reason-

able” function classes is slightly harder. Here we build a three-layer neural network, with a single

fixed nonlinearity σ : R → R, but the latter is rather complicated and we do not know how to

describe it explicitly (it is based on the Kolmogorov-Arnold theorem). It would be interesting to

give similar constructions using other function classes such as ReLU networks.

Theorem 38. For each d ∈ Z+ there is a continuous function σ : R→ R and a sequence (b`)`≤22d

such that the following holds. The function Φa defined by

Φa(x) =

22d∑
`=1

σ(a− `)
2d∑
i=1

σ

b` +

d∑
j=1

σ(xj + b`)

 , |a| ≤ 22d (7.6.1)

is always O(d3/2)-Lipschitz, and the parametrization a→ Φa is 1-Lipschitz. Moreover for n ≤ 2d

100 ,

given i.i.d. uniform points x1, . . . , xn ∈ Sd−1 and random labels y1, . . . , yn ∈ {−1, 1}, with probability
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1− e−Ω(d) there exists ` ∈ [22d ] such that Φ`(xi) = yi for at least 3n
4 of the values i ∈ [n].

Proof. For each coordinate i ∈ [d], define the slab slabi = {x ∈ Sd−1 : |xi| ≤ 1
100d3/2

} and set

slab =
⋃
i∈[d] slabi. Then it is not difficult to see that µ(slab) ≤ 1

10 . We partition Sd−1\slab
into its 2d connected components, which are characterized by their sign patterns in {−1, 1}d; this

defines a piece-wise constant function γ : Sd−1\slab→ {−1, 1}d. If we sample the points x1, . . . , xn

sequentially, each point has probability at least 4
5 to be in a new cell - this implies that with

probability 1 − e−Ω(n), at least 3n
4 are in a unique cell. It therefore suffices to give a construction

that achieves Φ(xi) = yi for all xi /∈ slab such that γ(xi) 6= γ(xj) for all j ∈ [n]\{i}. We do this

now.

For each of the 22d functions g` : {−1, 1}d → {−1, 1}, we now obtain the partial function

h̃` = g` ◦γ : Sd−1\slab→ {−1, 1}. By the Kirszbraun extension theorem, h̃` extends to an O(d3/2)-

Lipschitz function h` : Sd−1 → [−1, 1] on the whole sphere. The Kolmogorov-Arnold theorem

guarantees the existence of an exact representation

Φ`(x) =

2d∑
i=1

σ`

 d∑
j=1

σ`(xj)

 (7.6.2)

of h` by a two-layer neural network for some continuous function σ` : R → R depending on `. It

suffices to give a single neural network capable of computing all functions (Φ`)
22d

`=1. We extend the

definition of Φa to any a ∈ R via:

Φa(x) =

22d∑
`=1

σ(a− `)Φ`(x) (7.6.3)

where σ : R→ R satisfies σ(x) = (1− |x|)+ for |x| ≤ 22d . This ensures that (7.6.3) extends (7.6.2).

To express Φa using only a single non-linearity, we prescribe further values for σ. Let

U = 22d + d · max
x∈[−1,1],`∈[22d ]

|σ`(x)|

so that
∣∣∣∑d

j=1 σ`(xj)
∣∣∣ ≤ U for all x ∈ Sd−1. Define real numbers b` = 10`U + 22d for ` ∈ [22d ] and

for all |x| ≤ U set

σ(x+ b`) = σ`(x).

Due to the separation of the values b` such a function σ certainly exists. Then we have
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Φ`(x) =

2d∑
i=1

σ

b` +

d∑
j=1

σ(xj + b`)

 .

Therefore with this choice of non-linearity σ and (data-independent) constants b`, some function

Φ` fits at least 3n
4 of the n data points with high probability, and the functions Φa are parametrized

in a 1-Lipschitz way by a single real number a ≤ 22d .

Remark 7.6.1. The representation (7.6.1) is a three-layer neural network because the σ(a − `)

terms are just matrix entries for the final layer.

Remark 7.6.2. The construction above can be made more efficient, using only O(n · 2n) uniformly

random functions g` : {−1, 1}d → {−1, 1} instead of all 22` . Indeed by the coupon collector problem,

this results in all functions from {γ(xi) : i ∈ [n]} → {−1, 1} being expressable as the restriction of

some g`, with high probability.
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Umboh. Nested convex bodies are chaseable. In Proceedings of the Twenty-Ninth

Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1253–1260. SIAM, 2018.

[BBH+12] Boaz Barak, Fernando G.S.L. Brandão, Aram W Harrow, Jonathan Kelner, David

Steurer, and Yuan Zhou. Hypercontractivity, sum-of-squares proofs, and their ap-

plications. In Proceedings of the forty-fourth annual ACM symposium on Theory of

computing, pages 307–326. ACM, 2012.
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[BD98a] Sebastian Böcker and Andreas W.M. Dress. Recovering symbolically dated, rooted

trees from symbolic ultrametrics. Advances in mathematics, 138(1):105–125, 1998.

[BD98b] Kenneth S Brown and Persi Diaconis. Random walks and hyperplane arrangements.

Annals of Probability, pages 1813–1854, 1998.



BIBLIOGRAPHY 302

[BD11] Joseph Blitzstein and Persi Diaconis. A sequential importance sampling algorithm for

generating random graphs with prescribed degrees. Internet Mathematics, 6(4):489–

522, 2011.

[BELM20] Sebastien Bubeck, Ronen Eldan, Yin Tat Lee, and Dan Mikulincer. Network size and

size of the weights in memorization with two-layers neural networks. In Advances in

Neural Information Processing Systems, volume 33, pages 4977–4986, 2020.

[BFT17] Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. Spectrally-normalized margin

bounds for neural networks. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,

R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information

Processing Systems, volume 30. Curran Associates, Inc., 2017.

[BGK+15] Nikhil Bansal, Anupam Gupta, Ravishankar Krishnaswamy, Kirk Pruhs, Kevin

Schewior, and Cliff Stein. A 2-competitive algorithm for online convex optimization

with switching costs. In Approximation, Randomization, and Combinatorial Opti-

mization. Algorithms and Techniques (APPROX/RANDOM 2015). Schloss Dagstuhl-

Leibniz-Zentrum fuer Informatik, 2015.

[BH21] Guy Bresler and Brice Huang. The Algorithmic Phase Transition of Random k-SAT

for Low Degree Polynomials. In Proceedings of 62nd FOCS, pages 298–309, 2021.

[BHMM19] Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern

machine-learning practice and the classical bias–variance trade-off. Proceedings of the

National Academy of Sciences, 116(32):15849–15854, 2019.

[BHR99] Pat Bidigare, Phil Hanlon, and Dan Rockmore. A combinatorial description of the

spectrum for the tsetlin library and its generalization to hyperplane arrangements.

Duke Mathematical Journal, 99(1):135–174, 1999.
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volume 1. Universitätsverlag Potsdam, 2014.

[Pit97] Jim Pitman. Probabilistic bounds on the coefficients of polynomials with only real

zeros. Journal of Combinatorial Theory, Series A, 77(2):279–303, 1997.

[PY89] Krzysztof Przeslawski and David Yost. Continuity properties of selectors. Michigan

Math. J, 36(1):13, 1989.

[PY95] Krzysztof Przeslawski and David Yost. Lipschitz retracts, selectors, and extensions.

Michigan Mathematical Journal, 42(3):555–571, 1995.

[PZA+21] Phillip Pope, Chen Zhu, Ahmed Abdelkader, Micah Goldblum, and Tom Gold-

stein. The intrinsic dimension of images and its impact on learning. arXiv preprint

arXiv:2104.08894, 2021.

[RM14] Emile Richard and Andrea Montanari. A statistical model for tensor pca. In Advances

in Neural Information Processing Systems, pages 2897–2905, 2014.

[Roc70] R Tyrrell Rockafellar. Convex analysis, volume 36. Princeton University Press, 1970.

[RS00] Sam T Roweis and Lawrence K Saul. Nonlinear dimensionality reduction by locally

linear embedding. Science, 290(5500):2323–2326, 2000.



BIBLIOGRAPHY 317

[RTV86] Rammal Rammal, Gérard Toulouse, and Miguel Angel Virasoro. Ultrametricity for

physicists. Reviews of Modern Physics, 58(3):765, 1986.

[Rue87] David Ruelle. A mathematical reformulation of Derrida’s REM and GREM. Commu-

nications in Mathematical Physics, 108(2):225–239, 1987.

[RV17a] Mustazee Rahman and Bálint Virág. Local algorithms for independent sets are half-

optimal. The Annals of Probability, 45(3):1543–1577, 2017.

[RV17b] Mustazee Rahman and Balint Virag. Local algorithms for independent sets are half-

optimal. The Annals of Probability, 45(3):1543–1577, 2017.

[RW94] L. Chris G. Rogers and David Williams. Diffusions, Markov processes and martingales:
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Appendix A

State evolution: Proof of

Proposition 3.6.1

In this and the following sections we prove Proposition 4.2.3. It will be more convenient to restate

things directly in terms of the Gaussian tensors defining the Hamiltonian HN . Throughout, we

denote by W (k) ∈ (RN )⊗k, k ≥ 2 a sequence of standard Gaussian tensors defined as follows.

Let W (k) ∈ (RN )⊗k, k ≥ 2, be a standard symmetric Gaussian tensor of order k with entries

W (k) ≡ (W
(k)
i1,··· ,ik)1≤i1,··· ,ik≤N . Namely, if {G(k)

i1,...,ik
: k ≥ 2, 1 ≤ i1, · · · , ik ≤ N} is a collection of

i.i.d. standard normal N(0, 1) random variables, we set W (k) ≡ N−(k−1)/2
∑
π∈Sk G

(k)
π where the

sum is over the group of permutations of k objects, and G(k)
π is obtained by permuting the indices

of G(k) according to π.

We write A(k) = ckW
(k) for the rescaled tensors, and ξ(t) =

∑
k≥2 c

2
kt
k. Recall the notation

A(p){u} ∈ RN , for a symmetric tensor A(p) ∈ (RN )⊗p:

A(p){u}i =
1

(p− 1)!

∑
1≤i1,··· ,ip−1≤N

A
(p)
i,i1,··· ,ip−1

ui1 · · ·uip−1 . (A.0.1)

Analogously, if T ∈ (RN )⊗(p−1), A(p){T } ∈ RN is the vector with components

A(p){T }i =
1

(p− 1)!

∑
1≤i1,··· ,ip−1≤N

A
(p)
i,i1,··· ,ip−1

Ti1...ip−1
. (A.0.2)

We will use the notation 〈v〉N = N−1
∑
i≤N vi and 〈u,v〉N = N−1

∑
i≤N uivi when u,v ∈ RN

are vectors. The corresponding norm is ‖u‖N = 〈u,u〉1/2N . We will write aN
p
' bN to mean that

aN − bN converges in probability to 0. Analogously, for two vectors uN ,vN , we write uN
p
' vN

321
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when ‖uN−vN‖N converges in probability to 0. When f : Rk+1 → R is a function of k+1 variables,

and v0,v1, . . . ,vk ∈ RN are k + 1, we define f(v0,v1, . . . ,vk) ∈ RN component-wise via

f(v0,v1, . . . ,vk)i = f(v0
i , . . . , v

k
i ). (A.0.3)

Finally, for a sequence of vectors x0,x1, . . . , we write x≤t = (x0,x1, . . . ,xt).

To deduce the state evolution result for mixed tensors, we analyze a slightly more general iteration

where each homogenous p-tensor is tracked separately, while restricting ourselves to the case where

the mixture ξ has finitely many components: ck = 0 for all k ≥ D + 1 for some fixed D ≥ 2. We

then proceed by an approximation argument to extend the convergence to the general case D =∞.

We begin by introducing the Gaussian process that captures the asymptotic behavior of AMP.

For each t ∈ N, let ft : Rt+1 → R be a Lipschitz function. Let (Uk,0)2≤k≤D a collection of

random variables with bounded second moment, and (Uk,t)k≤D,1≤t≤T a centered Gaussian process,

independent of (Uk,0)2≤k≤D, with covariance defined by:

1. Uk,t, Uk
′,s are independent whenever k 6= k′.

2. For each k, the covariance of (Uk,t)t≤T is defined recursively via

E[Uk,t+1Uk,s+1] = kc2k E
{
ft
(
X0, . . . , Xt

)
fs
(
X0, . . . , Xs

)}k−1
, (A.0.4)

Xt ≡
D∑
k=2

Uk,t . (A.0.5)

We are now in position to define the AMP algorithm. For each iteration t, the state of the

algorithm is given by vectors xt ∈ RN , and zk,t ∈ RN , with k ∈ {2, . . . , D}. (In the following we

will often omit mentioning explicitly that k starts from 2 and simply write k ≤ D.) We define the

AMP mapping via

AMPt
(
x0, . . . ,xt

)
k

:= A(k){ft(x0, . . . ,xt)} −
∑
s≤t

dt,s,kfs−1(x0, . . . ,xs−1) , (A.0.6)

dt,s,k := c2k · k(k − 1)E
{
ft
(
X0, . . . , Xt

)
fs−1

(
X0, . . . , Xs−1

)}k−2
(A.0.7)

· E
{ ∂ft
∂xs

(X0, X1, . . . , Xt)
}
.

The tensor AMP iteration then reads

xt =

D∑
k=2

zk,t , zk,t+1 = AMPt
(
x0, . . . ,xt

)
k
. (A.0.8)

Theorem 39 (State Evolution for AMP). Let {W (k)}k≥2 be independent standard Gaussian tensors
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with W (k) ∈ (RN )⊗k, and define A(k) = ckW
(k), ξ(t) =

∑D
k=2 c

2
kt
k. Let f0, f1, . . . , be a sequence

of Lipschitz functions fk : Rk+1 → R. Let z2,0, · · · zD,0 ∈ RN be deterministic vectors and x0 =∑D
k=2 z

k,0. Assume that, the empirical distribution of the vectors (z2,0
i , · · · zD,0i ), i ≤ N converges

in W2 distance to the law of the vector (Uk,0)2≤k≤D.

Let xt, zk,t, t ≥ 1 be given by the tensor AMP iteration. Then, for any T ≥ 1 and for any

pseudo-Lipschitz function ψ : RD×T → R, we have

p-lim
N→∞

1

N

N∑
i=1

ψ
(
(zk,ti )k≤D,t≤T

)
= E

{
ψ
(
(Uk,t)k≤D,t≤T

)}
. (A.0.9)

where (Uk,t)k≤D,t≤T is a centered Gaussian process, independent of (Uk,0)2≤k≤D, with covariance

defined above.

In the above proposition, W2 refers to the Wasserstein, or optimal transport, distance between

probability measures on RD with quadratic cost c(x,y) = ‖x− y‖2.

Proposition 3.6.1 in the special case ck = 0 for all k ≥ D + 1 follows immediately from this

theorem by considering ψ((zk,t)k≤D,t≤T ) only a function of (
∑
k≤D z

k,t)t≤T . We extend Proposition

3.6.1 to the general case D =∞ in Section A.8.

A.1 Further definitions

We define the notations

Xt = [x0|x1| · · · |xt] ,

Zkp,t = [z⊗kp,0|z
⊗k
p,1| · · · |z

⊗k
p,t ] ,

where we replaced superscripts by subscripts for notational convenience. Given a N× (t+1) matrix,

such as Xt, and a tensor A(p) ∈ (RN )⊗p, we write A(p){Xt} for the N×(t+1) matrix with columns

A(p){x0}, . . . , A(p){xt}:

A(p){Xt} =
[
A(p){x0}

∣∣∣A(p){x1}
∣∣∣ · · · ∣∣∣A(p){xt}

]
.

When k = 1 we omit k, e.g. Z1
p,t = Zp,t. We will write ft(Xt) = ft(x

0, . . . ,xt), and we also set

yp,t+1(Zp,t) = Ap {ft(Zp,t)} = zp,t+1 +
∑
s≤t

dt,s,pfs−1(x0, . . . ,xs−1) , (A.1.1)

Y p,t = [yp,1| · · · |yp,t] , yt(Zp,t) =
∑
p

yp,t(Zp,t) . (A.1.2)
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For any positive integer k and p× T matrix max of length n vectors we define F kt (max) to be the

length t+ 1 vector of k-tensors

F kt (max) = [f0(max)⊗k|f1(max)⊗k| · · · |ft(max)⊗k]. (A.1.3)

We also define an associated (t + 1) × (t + 1) Gram matrix Gk
t = Gk

t (M) via (Gk
t (M))i,j =

〈fi(M), fj(M)〉kN . The matrix Gk
t can be represented by the following tensor network diagram:

F⊗kt F⊗kt

N[k]t t
Gk
t

We recall that in tensor networks, tensors correspond to vertices, and edges joining them to indices

contracted between tensors. We use the convention of labeling vertices by the corresponding tensors,

and edges by the dimension of the corresponding index. Since we often have indices with dimension

N , we label the edges by N1, N2, . . . and so on. When two tensors are contracted along multiple

indices of the same dimension (say N), we draw a single line between them labelled NS where S is

the set of contracted indices. For example, the middle edge in the above figure represents k edges

with labels N1, · · · , Nk.

Finally, we let Ft denote the σ-algebra generated by all iterates up to time t:

Ft = σ
(
{zp,s}p≤D,s≤t

)
= σ({zp,s,xs, fs}p≤D,s≤t) . (A.1.4)

A.2 Preliminary lemmas

Lemma A.2.1. For any deterministic u,v ∈ RN and standard Gaussian symmetric p-tensor

W (p) ∈ (RN )⊗p we have:

1. Letting g0 ∼ N(0, 1) independently of g ∼ N(0, IN ), we have

W (p){u} d
=
√
p‖u‖p−1

N g +
√
p(p− 1)‖u‖p−2

N

u√
N
g0 . (A.2.1)

2. Letting g0, g1 ∼ N(0, 1) independent, we have

√
N〈v,W (p){u}〉N

d
=
√
p‖u‖p−1

N ‖v‖N g1 +
√
p(p− 1)‖u‖p−2

N 〈u,v〉N g0 . (A.2.2)

3. 〈W (p){u},W (p){v}〉N
p
' p〈u,v〉p−1

N .

4. For a deterministic symmetric tensor T ∈ (RN )⊗p−1, the vector W (p){T } is Gaussian, with
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zero mean and covariance

E{W (p){T }iW (p){T }j} =
p

Np−1
‖T ‖2F +

p(p− 1)

Np−1

N∑
i1,...,ip−2=1

Ti,i1,...,ip−1Tj,i1,...,ip−1 .

(A.2.3)

5. Let P ∈ RN×N be the orthogonal projection onto a d-dimensional subspace S ⊆ RN . ‖PW (p){u}−
W (p){u}‖2/‖W (p){u}‖2

p
' 0.

6. Recall that the operator (injective) norm of a tensor is given by

‖W (p)‖op ≡ max
‖u1‖≤1,...,‖up‖≤1

〈W (p),u1 ⊗ · · · ⊗ up〉,

or, equivalently for a symmetric tensor, by ‖W (p)‖op ≡ max|u‖≤1〈W (p),u⊗p〉. If ξ(t) <∞ for

some t > 1, then there exists a constant C = C(ξ) such that, with probability at least 1−2e−N ,

‖A‖op ≡
∞∑
k=2

Nk/2

k!
‖A(k)‖op =

∞∑
k=2

ckN
k/2

k!
‖W (k)‖op ≤ CN . (A.2.4)

Proof. All of these statements are the elementary Gaussian calculations. The only exception is the

upper bound (A.2.4), which follows from the concentration bound

P
(
N (k−2)/2 · ‖W (k)‖op ≥ k!

√
log k +

k!√
k
s
)
≤ e−Ns

2/2k ∀s ≥ 0.

The above is a restatement of [RM14, Lemma 2]. We conclude by using the fact |ck| ≤ c∗α
k for

some α < 1 and letting s = k.

We next develop a formula for the conditional expectation of a Gaussian tensor A(p) given a

collection of linear observations. We set D to be the t × t × t tensor with entries Dijk = 1 if

i = j = k and Dijk = 0 otherwise.

Lemma A.2.2. Let E{A(p)|Ft} be the conditional expectation of A(p) given the σ-algebra Ft =

σ({zp,s,xs, fs}p≤D,s≤t) generated by observations up to time t. Equivalently E{A(p)|Ft} is the con-

ditional expectation of A(p) given the t linear (in A(p)) observations

A(p){fs} = yp,s+1 for s ∈ {0, . . . , t− 1}. (A.2.5)
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Then we have for i1, i2, . . . , ip ≤ n,

E[A(p)|Ft]i1,i2,...,ip =
1

p

p∑
j=1

∑
0≤r,s≤t−1

(Ẑp,t)ij ,s · (G
−1
p−1,t−1)s,r · (fr,i1 · · · fr,ij−1fr,ij+1 · · · fr,ip) .

(A.2.6)

Here, the matrix Ẑp,t ∈ RN×t is defined as the solution of a system of linear equations as follows.

Define the linear operator Tp,t : RN×t → RN×t by letting, for i ≤ N , 0 ≤ s ≤ t− 1:

[Tp,t(Z)]i,s =
∑
j≤N

∑
0≤r,r′≤t−1

(fr′)i(fs)j(G
−1
p−1,t−1)r′,r(Gp−2,t−1)r′,s(Z)j,r , (A.2.7)

Then Ẑp,t is the unique solution of the following linear equation (with Y p,t defined as per Eq. (A.1.1))

Ẑp,t + (p− 1)Tp,t(Ẑp,t) = Y p,t. (A.2.8)

(Here, Ẑp,t = [ẑp,0, · · · , ẑp,t−1] and Y p,t = [ŷp,1, · · · , ŷp,t] have dimensions N × t.)

The above formulas for E{A(p)|Ft} and Tp,t are somewhat difficult to parse. It is therefore useful

to draw the associated tensor networks

E[A(p)|Ft] =
1
p

∑
j Ẑp,t G−1

p−1,t−1 F p−1
t−1

Nj t t N[p]\j

The operator Tp,t is represented by the following diagram, with input on the left and output on the

right.
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Tp,t =

G−1
p−1,t−1

D

Gp−2,t−1

Dt

F t−1

F t−1

t

t

t

t

t

tN t

N

Proof of Lemma A.2.2. Let Vp,t be the affine space of symmetric tensors satisfying the constraint

(A.2.5). The conditional expectation E[A(p)|Ft] is the tensor with minimum Frobenius norm in

the affine space Vp,t. By Lagrange multipliers, there exist vectors m1, . . . ,mt ∈ RN such that

E[A(p)|Ft] = Â
(p)

takes the form

Â
(p)

t :=

t−1∑
s=0

p∑
j=1

fs ⊗ · · · ⊗ fs︸ ︷︷ ︸
j − 1 times

⊗ms ⊗ fs ⊗ · · · ⊗ fs︸ ︷︷ ︸
p− j times

. (A.2.9)

Further, again by duality, if a tensor Â
(p)

of this form (i.e., a choice of vectors m1, . . . ,mt) satisfies

the constraints Â
(p)
{fs} = yp,s+1 for s < t, then such a tensor is unique, and corresponds to

E[A(p)|Ft]. Without loss of generality, we write

mr =

t−1∑
s=0

(G−1
p−1,t−1)r,sẑs , Ẑp,t = [ẑ1| · · · |ẑt] . (A.2.10)

By direct calculation we obtain

Â
(p)

t {fs} =

t−1∑
r=0

(Gp−1,t−1)s,rmr + (p− 1)

t−1∑
r=0

(Gp−2,t−1)s,r〈fs,mr〉fr (A.2.11)

= ẑs + (p− 1)

t−1∑
r=0

(Gp−2,t−1)s,r〈fs,mr〉fr . (A.2.12)

We next stack these vectors as columns of an N × t matrix. The first term obviously yields Ẑp,t.
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We claim that the second term coincides with (p− 1)Tp,t(Ẑp,t) so that overall we get

[
Â

(p)

t {f0}, · · · , Â
(p)

t {ft−1}
]

= Ẑp,t + (p− 1)Tp,t(Ẑp,t) . (A.2.13)

This in turns implies that the equation determining Ẑp,t takes the form (A.2.8). The desired claim

is simply obtained by rearranging the order of sums in Eq. (A.2.12).

A.3 Long AMP

As an intermediate step towards proving Theorem 39, we introduce a new iteration that we call

Long AMP (LAMP), following [BMN19]. This iteration is less compact but simpler to analyze. For

each p ≤ D, let Sp,t ⊆ (RN )⊗p be the linear subspace of tensors T that are symmetric and such

that T {fs} = 0 for all s < t. We denote by P⊥t (A(p)) be the projection of A(p) onto Sp,t. We then

define the LAMP mapping

LAMPt
(
~v≤t
)
p

:= P⊥t (A(p)){ft(~v0, . . . , ~vt)}+
∑

0≤s≤t

ht,s−1,pq
p,s, (A.3.1)

ht,s,p :=
∑

0≤r≤t−1

[
G−1
p−1,t−1

]
s,r

[
Gp−1,t

]
r,t
, ht,−1,p = 0. (A.3.2)

Here we use the same notations ft = ft(V t) and Gk,t = Gk,t(V t) = (〈fs, fr〉k)s,r≤t that we intro-

duced for the case of AMP, however, these quantities are now different: they are computed using

the vectors v0, . . . ,vt.

~vt =

D∑
p=2

qp,t , qp,t+1 = LAMPt
(
~v≤t
)
p
. (A.3.3)

Our proof strategy will be similar to the one of [BMN19], and proceed along the following steps:

1. Prove state evolution for LAMP, under a non-degeneracy assumption.

2. Deduce state evolution for AMP, under the previous non-degeneracy assumption.

3. Deduce general state evolution for AMP, by perturbing the functions ft slightly to give a

non-degenerate instance.

We will use notations analogous to the ones introduced for AMP. In particular:

V t = [~v1|~v2| . . . |~vt] (A.3.4)

Qp,t = [q⊗pp,1|q
⊗p
p,2| . . . |q

⊗p
p,t ]. (A.3.5)
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A.4 State Evolution for LAMP

Theorem 40. Under the assumptions of Theorem 39, let q2,0, · · · qD,0 ∈ RN be deterministic vectors

and v0 =
∑D
p=2 qp,0. Assume that, the empirical distribution of the vectors (q2,0

i , · · · , qD,0i ), i ≤ N

converges in W2 distance to the law of the vector (Up,0)2≤p≤D.

Further assume that there exist a constant C <∞ such that, for all t ≤ T ,

(i) The matrices Gp,t = Gp,t(V ) are well-conditioned, i.e., C−1 ≤ σmin(Gp,t) ≤ σmax(Gp,t) ≤ C

for all p ≤ D, t ≤ T .

(ii) Let the linear operator Tp,t : RN×t → RN×t be defined as per Eq. (A.2.7), with Gp,t = Gp,t(V ),

and ft = ft(V ), and define Lp,t = 1 + (p− 1)Tp,t. Then C−1 ≤ σmin(Lp,t) ≤ σmax(Lp,t) ≤ C.

Then the following statements hold for any t ≤ T and sufficiently large N :

(a) Correct conditional law:

qp,t+1|Ft
d
= E[qp,t+1|Ft] + P⊥t (Ã

(p)
){ft(V t)} . (A.4.1)

where Ã
(p)

is a symmetric tensor distributed identically to A(p) and independent of everything

else, and P⊥t is the projection onto the subspace Sp,t defined in Section A.3. Further

E[qp,t+1|Ft] =
∑

0≤s≤t

ht,s−1,pq
p,s . (A.4.2)

Moreover, the vectors (qp,t+1)p≤D are conditionally independent given Ft.

(b) Approximate isometry: we have

〈qp,r+1, qp,s+1〉N
p
' pc2p〈fr(V r), fs(V s)〉p−1

N , (A.4.3)

〈~vr+1, ~vs+1〉N
p
' ξ′

(
〈fr(V r), fs(V s)〉N

)
. (A.4.4)

Moreover, both sides converge in probability to constants as N →∞, and for p 6= p′,

〈qp,r+1, qp
′,s+1〉N

p
' 0. (A.4.5)

(c) State evolution: for any pseudo-Lipschitz function ψ : RD×T → R, we have

p-lim
N→∞

1

N

N∑
i=1

ψ
(
(qp,ti )p≤D,t≤T

)
= E

{
ψ
(
(Up,t)p≤D,t≤T

)}
. (A.4.6)
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where (Up,t)p≤D,1≤t≤T is a centered Gaussian process, independent of (Up,0)2≤p≤D, as defined

in the statement of Theorem 39.

Note that the conditional expectation, as given by Eqs. (A.3.2), (A.4.2) can be represented by

the following tensor network:

E[qp,t+1|Ft] = Qp,t

Gp−1,t−1(V t−1)
−1

F t−1(V t−1)
p−1 ft(V t)

⊗p−1

t

t

N N[p−1]

In the next section, we will prove these statements by induction on t. The crucial point we exploit

is the representation (a).

As a preliminary remark, we emphasize that the iteration number t is bounded as N → ∞,

and therefore all numerical quantities not depending on N (but possibly on t) will be treated as

constants. Further we will refer to the condition C−1
T ≤ σmin(Gk.t) ≤ σmax(Gk,t) ≤ CT simply by

saying that the matrices Gk,t are ‘well conditioned’.

A.5 Proof of Theorem 40

The proof will be by induction over t. The base case is clear, so we focus on the inductive step. We

assume the statements above for t− 1 and prove them for t.

A.5.1 Proof of (a)

Note that P⊥t (A(p)) is by construction independent of Ft, and therefore we can replace A(p) by a

fresh independent matrix in Eq. (A.3.1), whence we get the desired expression.

A.5.2 Proof of (b): Approximate isometry

We will repeatedly apply Lemma A.2.1. We start with Eq. (A.4.3). As we are inducting on t, we

may limit ourselves to considering inner products 〈qp,t+1, qp,u+1〉N , for u ≤ t. We first state a useful

lemma.
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Lemma A.5.1. For all v ∈ RN Ft-measurable,〈
v,P⊥t (A(p)){ft}

〉
N

p
' 0. (A.5.1)

Moreover,

P⊥t (Ã
(p)

){(f⊗p−1
t )⊥}

p
' Ã(p){(f⊗p−1

t )⊥} . (A.5.2)

Using the first assertion,Eq. (A.5.1), of the above lemma, we get, for u ≤ t− 1,

〈qp,t+1, qp,u+1〉N
p
' 〈E[qp,t+1|Ft], qp,u+1〉N . (A.5.3)

We next use the formula in (a) for E[qp,t+1|Ft] (together with the expression in Eq. (A.3.1)):

〈E[qp,t+1|Ft], qp,u+1〉N
p
'

〈 ∑
0≤r,s≤t−1

qp,s+1(G−1
p−1,t−1)s,r〈fr, ft〉p−1

N , qp,u+1

〉
N

(A.5.4)

=
∑

0≤r,s≤t−1

〈qp,s+1, qp,u+1〉N (G−1
p−1,t−1)s,r〈fr, ft〉p−1

N (A.5.5)

p
' pc2p

∑
0≤r,s≤t−1

(Gp−1,t−1)s,u(G−1
p−1,t−1)s,r〈fr, ft〉p−1

N (A.5.6)

= pc2p〈fu, ft〉
p−1
N . (A.5.7)

The third equality was obtained by the induction hypothesis. We next prove Eq. (A.4.3) when

u = t. We set (f⊗p−1
t )‖ to be the projection of f⊗p−1

t onto span(f⊗p−1
s )s<t and (f⊗p−1

t )⊥ = f⊗p−1
t −

(f⊗p−1
t )‖. We then have

P⊥t (Ã
(p)

){ft} = P⊥t (Ã
(p)

){(f⊗p−1
t )⊥} ,

where the right-hand side is defined according to Eq. (A.0.2). Using the second assertion, Eq. (A.5.2),

of Lemma A.5.1 and Lemma A.2.1 (point 4), we have

∥∥P⊥t (Ã
(p)

){ft}
∥∥2

N

p
'

pc2p
Np−1

‖(f⊗p−1
t )⊥‖2 . (A.5.8)

Further, again using P⊥t (Ã
(p)

){(f⊗p−1
t )⊥}

p
' Ã(p){(f⊗p−1

t )⊥}, and Lemma A.2.1 (point 2) we obtain

〈P⊥t (Ã
(p)

){ft},E[qp,t+1|Ft]〉N
p
' 0 . (A.5.9)
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We next claim that

∥∥E[qp,t+1|Ft]
∥∥2

N

p
'

pc2p
Np−1

‖(f⊗p−1
t )‖‖2 . (A.5.10)

In order to prove this, recall the expression for E[qp,t+1|Ft] from part (a), and the corresponding

tensor network diagram which we reproduce here

E[qp,t+1|Ft] = Qp,t

Gp−1,t−1(V t−1)
−1

F t−1(V t−1)
p−1 ft(V t)

⊗p−1

t

t

N N[p−1]

Further, by the formula for simple linear regression, we have

(f⊗p−1
t )‖ =

∑
0≤s≤t−1

αs,tf
⊗p−1
s , (A.5.11)

αs,t =
∑

0≤r≤t−1

(G−1
p−1,t−1)s,r〈fr, ft〉p−1

N . (A.5.12)

This can be represented by a tensor network as follows:

(f⊗p−1
t )|| = F p−1

t−1 G−1
p−1,t−1 F p−1

t−1 f⊗p−1
t

t tN[p−1] N[p−1]

However by part (b) of the inductive step,
√
pcpF

⊗p−1
t−1 and Qp,t are approximately unitarily

equivalent in that pc2p〈fr, fs〉
p−1
N

p
' 〈qp,r+1, qp,s+1〉N . Therefore the above expressions have approx-

imately the same norm up to the factor p1/2cp, since they are linear combinations with the same

coefficients:

∥∥E[qp,t+1|Ft]
∥∥2

N

p
'

pc2p
Np−1

‖(f⊗p−1
t )‖‖2. (A.5.13)
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Using together Eqs. (A.5.8), (A.5.9), and (A.5.13), we get

〈qp,t+1, qp,t+1〉N
p
' ‖E[qp,t+1|Ft]‖2N +

pc2p
Np−1

‖(f⊗p−1
t )⊥‖2N

p
'

pc2p
Np−1

〈f⊗p−1
t , f⊗p−1

t 〉N

= pc2p〈ft, ft〉
p−1
N

finishing the proof of Eq. (A.4.3).

Next consider Eq. (A.4.5), i.e., approximate orthogonality of qp,r and qp
′,r for p 6= p′. This

follows easily from the representation in point (a) which, together with Lemma A.2.1, inductively

implies that the iterates qs,p for different p are approximately orthogonal. Finally, Eq. (A.4.4)

follows directly from Eq. (A.4.3) and (A.4.5). We now prove Lemma A.5.1.

Proof of Lemma A.5.1. Since v is Ft-measurable, we can replace w.l.o.g. A(p) with a fresh random

tensor Ã independent of everything else. By Lagrange multipliers, there exists (λs)s≤t−1 vectors in

RN such that P⊥t (Ã) = Ã−Q, where

Q =
(p− 1)!

Np−1

t−1∑
s=0

p∑
j=1

fs ⊗ · · · ⊗ fs︸ ︷︷ ︸
j − 1 times

⊗λs ⊗ fs ⊗ · · · ⊗ fs︸ ︷︷ ︸
p− j times

.

The vectors (λs)s≤t−1 are determined by the set of equations P⊥t (Ã){fs} = 0 for all s ≤ t− 1 which

are equivalent to

∑
r<t

(Gp−1,t−1)s,rλr + (p− 1)
∑
r<t

(Gp−2,t−1)s,r〈fs,λr〉N fr = Ã{fs} .

Multiplying these equations by G−1
p−1,t−1 (recall that we assume Gp−1,t−1 well conditioned with high

probability), we obtain

λs + (p− 1)
∑
r′,r<t

(G−1
p−1,t−1)s,r′(Gp−2,t−1)r′,r〈fr′ ,λr〉N fr =

∑
r<t

(G−1
p−1,t−1)s,rÃ{fr} . (A.5.14)

This in particular implies that

λs = λ0
s + λ‖s , λ0

s ≡
∑
r<t

(G−1
p−1,t−1)s,rÃ{fr} ,

where λ‖s ∈ span((fr)r<t). We claim that ‖λ‖‖N
p
' 0, i.e., λs

p
' λ0

s. Indeed, letting Λ ∈ RN×t be the

matrix with columns (λs)s<t, and Λ0 the matrix with columns (λ0
s)s<t Eq. (A.5.14) can be written
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as

LT
p,t(Λ) = Λ0 .

Here we recall Lp,t = 1 + (p− 1)Tp.t and Tp,t ∈ RNt×Nt is defined in Eq. (A.2.7). Substituting the

decomposition Λ = Λ0 + Λ‖ in the above, we obtain

LT
p,t(Λ

‖) = −(p− 1)T T
p,t(Λ

0) .

Since by assumption Lp,t is well conditioned, it is sufficient to prove that T T
p,t(Λ

0)
p
' 0. Let

c0, · · · , ct−1 ∈ RN be the columns of the matrix T T
p,t(Λ

0). Since cs ∈ span((fr)r<t) for all s < t, and

the Gram matrixG1,t−1 = (〈fr, fs〉)r,s<t is well conditioned, it is sufficient to check that 〈fr, cs〉N
p
' 0

for each s, r < t. This is in turn equivalent to

∑
r′,r<t

(G−1
p−1,t−1)s,r′(Gp−2,t−1)r′,r〈fr′ ,λ0

r〉N 〈fr, fq〉N
p
' 0 ,

for all s, q < t. Finally, this last claim follows by substituting the expression for λ0
r, and using the

fact that 〈fs, Ã{fq}〉N
p
' 0 for all r, q ≤ t, by Lemma A.2.1.

We are now in position to prove the claim of this lemma. For the first assertion, we have

〈v,Q{ft}〉N =
∑
s≤t−1

〈fs, ft〉p−1
N 〈λs,v〉N + (p− 1)

∑
s≤t−1

〈fs, ft〉p−2
N 〈λs, ft〉N 〈fs,v〉N

p
'
∑
s≤t−1

〈fs, ft〉p−1
N 〈λ0

s,v〉N + (p− 1)
∑
s≤t−1

〈fs, ft〉p−2
N 〈λ0

s, ft〉N 〈fs,v〉N .

Further, using Lemma A.2.1 (point 2), we have for any u ∈ RN which is Ft-measurable,

〈λ0
s,u〉N =

∑
r≤t−1

(G−1
p−1,t−1)s,r〈Ã{fr},u〉N

p
' 0.

Whence
〈
v,Q{ft}

〉
N

p
' 0, and,

〈
v,P⊥t (Ã){ft}

〉
N

=
〈
v, Ã{ft}

〉
N
−
〈
v,Q{ft}

〉
N

p
' 0.

We next prove the second assertion of the lemma, Eq. (A.5.2).

Note that Ã{(f⊗p−1
t )⊥} − P⊥t (Ã){(f⊗p−1

t )⊥} = Q{(f⊗p−1
t )⊥} and

Q{(f⊗p−1
t )⊥} =

(p− 1)

Np−1

∑
s<t

〈λs ⊗ f⊗(p−2)
s , (f

⊗(p−1)
t )⊥〉 fs ≡ (p− 1)

∑
s≤t

csfs .

Since the Gram matrixG1,t−1 = (〈fs, fr〉)s,r<t is well conditioned, in order to show ‖Q{(f⊗p−1
t )⊥}‖N

p
'

0, it is sufficient to check that each of the coefficients cs
p
' 0 for each s. Notice that (f

⊗(p−1)
t )⊥ =



APPENDIX A. STATE EVOLUTION: PROOF OF PROPOSITION 3.6.1 335

∑
r≤t βrf

⊗(p−1)
r , where the βs are bounded thanks to the fact that Gp−1,t−1 is well conditioned.

Using λs
p
' λ0

s, we get

cs
p
' 1

Np−1
〈λ0

s ⊗ f⊗(p−2)
s , (f⊗p−1

t )⊥〉

=
1

Np−1

∑
r≤t

∑
q<t

βr(G
−1
p−1,t−1)s,r′〈Ã{fq} ⊗ f⊗(p−2)

s , f⊗(p−1)
r 〉N

=
∑
r≤t

∑
q<t

βr(G
−1
p−1,t−1)s,r′〈Ã{fq}, ft〉N 〈fs, fr〉p−2

N

p
' 0 ,

where in the last step we used 〈Ã{fq}, ft〉N
p
' 0, thanks to Lemma A.2.1.

A.5.3 Proof of (c)

Recall that the process (Up,t)t≥1 is Gaussian by construction, and independent of Up,0, Define

Cr,s = E{Up,rUp,s} and C≤t = (Cr,s)r,s≤t. We then have

E[Up,t+1|Up,0, . . . , Up,t] =

t∑
s=1

α̃sU
p,s , (A.5.15)

α̃s =

t∑
r=1

(C−1
≤t )s,rCr,t+1 . (A.5.16)

On the other hand, from point (a), we know that

E[qp,t+1|Ft] =
∑

1≤s≤t

αsq
s,p , (A.5.17)

αs =

t∑
r=1

(G−1
p−1,t−1)s−1,r−1(Gp−1,t)r−1,t . (A.5.18)

Moreover, by the induction hypothesis we know that, for r, s ≤ t

(Gp−1,t)r,s
p
' E{fr(X0, . . . , Xr)ft(X

0, . . . , Xs)}p−1 ,

where we recall that Xt ≡
∑
p≤D U

p,t. Therefore, using the definition of the process (Up,t)t≥0 we

obtain (Gp−1,t)r,s
p
' Cr+1,s+1/(pc

2
p) for r, s ≤ t, whence αs

p
' α̃s (where we used the fact that Gp−1,t
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is well conditioned by assumption). Therefore we also have

∥∥∥E[qp,t+1|Ft]−
t∑

s=1

α̃sq
p,s
∥∥∥2

N
=
∥∥∥ t∑
s=1

(αs − α̃s)qp,s
∥∥∥2

N

=

t∑
s,r=1

(αs − α̃s)(αr − α̃r)〈qp,s, qp,r〉N

p
'

t∑
s,r=1

(αs − α̃s)(αr − α̃r)Cr,s
p
' 0. (A.5.19)

Moreover, Lemma A.2.1 (point 4) shows that P⊥t (Ã
(p)

){ft}
p
' Ã(p){(f⊗p−1

t )⊥} has entries which are

approximately independent Gaussian with variance σ2
t ≡ pc2p‖(f

⊗p−1
t )⊥‖2/Np−1, even conditionally

on Ft. Therefore

qp,t+1 d
=

t∑
s=1

α̃sq
p,s + σtg + ep,t+1 , (A.5.20)

where ‖e‖N
p
' 0 and g ∼ N(0, IN ) is independent of everything else. From here on, the rest of the

argument for state evolution for pseudo-Lipschitz functions is exactly the same as in Lemma 5 (b)

in [BMN19]. As proved in the previous point, for any s ≤ t,

〈qp,t+1, qp,s+1〉2N
p
' pc2p〈ft, fs〉

p−1
N

p
' E{Up,t+1Up,s+1} .

Therefore, in order to prove Eq. (A.4.6),it is sufficient to consider ψ : RD×t+1 → R Lipschitz. Using

the representation (A.5.20), and focusing for simplicity on a single p, we get

1

N

N∑
i=1

ψ(qp,≤ti , qp,t+1
i )

p
' 1

N

N∑
i=1

ψ

(
qp,≤ti ,

t∑
s=1

α̃sq
p,s + σtgi

)
p
' 1

N

N∑
i=1

Eψ

(
qp,≤ti ,

t∑
s=1

α̃sq
p,s + σtG

)
,

where the second equality follows by Gaussian concentration. At this point we apply the induction

hypothesis.

A.6 Asymptotic equivalence of Tensor AMP and Tensor LAMP

Here we show that tensor AMP and tensor LAMP produce approximately the same iterates.
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Lemma A.6.1. Let {W (p)}p≤D be standard Gaussian tensors, and A(p) = cpW
(p) for p ≥ 2. Con-

sider the corresponding AMP iterates Zt ≡ (zp,s)p≤D,s≤t and LAMP iterates Qt ≡ (qp,s)p≤D,s≤t,

from the same initialization initialization Z0 = Q0 satisfying the assumptions of Theorem 39 and

Theorem 40.

Let ft = ft(V t), t ≥ 0 be the nonlinearities applied to LAMP iterates and (Gp,t(V ))r,s = 〈ft, fs〉p

be the corresponding Gram matrices. Further assume that there exist a constant C < ∞ such that,

for all t ≤ T ,

(i) The LAMP Gram matrices Gp,t = Gp,t are well-conditioned, i.e., C−1 ≤ σmin(Gp,t) ≤
σmax(Gp,t) ≤ C for all p ≤ D, t ≤ T .

(ii) Let the linear operator Tp,t : RN×t → RN×t be defined as per Eq. (A.2.7), with Gp,t = Gp,t(V ),

and ft = ft(V ), and define Lp,t = 1 + (p− 1)Tp,t. Then C−1 ≤ σmin(Lp,t) ≤ σmax(Lp,t) ≤ C.

Then, for any t ≤ T , we have

‖Zt −Qt‖N
p
' 0 . (A.6.1)

Proof. Throughout the proof we will write ft(Xt) or ft(V t) to distinguish AMP and LAMP iterates,

and analogously for Gp,t(Xt) or Gp,t(V t). The proof is by induction over the iteration number, so

we will assume it to hold at iteration t, and prove it for iteration t+ 1. We prove the induction step

by establishing the following two facts:

∥∥AMPt+1(Zt)p − AMPt+1(Qt)p
∥∥
N

p
' 0 , (A.6.2)∥∥AMPt+1(Qt)p − LAMPt+1(Qt)p

∥∥
N

p
' 0 . (A.6.3)

Let us first consider the claim (A.6.2), and note that

AMPt+1(Zt)p − AMPt+1(Qt)p = A(p){ft(Xt)} −A(p){ft(V t)}

−
∑
s≤t

dt,s,p
(
fs−1(Xs−1)− fs−1(V s−1)

)
,

where we wrote dt,s,p for the coefficients of Eq. (A.0.7), with AMP iterates replaced by LAMP

iterates. We then have

∥∥AMPt+1(Zt)p − AMPt+1(Qt)p
∥∥
N
≤ D1,t +D2,t , (A.6.4)

D1,t ≡
∥∥A(p){ft(Xt)} −A(p){ft(V t)}

∥∥
N
, (A.6.5)

D2,t ≡
∑
s≤t

|dt,s,p|
∥∥fs−1(Xs−1)− fs−1(V s−1)

∥∥
N
. (A.6.6)
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Notice that, by the induction assumption (and recalling that ft is Lipschitz continuous and acts

component-wise):

∥∥ft(Xt)− ft(V t)
∥∥
N
≤ CT

∑
s≤t,p≤D

‖xp,s − vp,s‖N
p
' 0 . (A.6.7)

Further, for any tensor T ∈ (RN )⊗p, and any vectors v1, bv2 ∈ RN ,

‖T {v1} − T {v2}‖N ≤ (N
p−2
2 ‖T ‖op)(‖v1‖N + ‖v2‖N )p−2‖v1 − v2‖N (A.6.8)

Using Lemma A.2.1, this implies that the following bound holds with high probability for a constant

C:

D1,t ≤ C(‖ft(Xt)‖N + ‖ft(V t)‖N )p−2‖ft(Xt)− ft(V t)‖N (A.6.9)

≤ C(2‖ft(V t)‖N + ‖ft(Xt)− ft(V t)‖N )p−2‖ft(Xt)− ft(V t)‖N
p
' 0 (A.6.10)

Where the last step follows from Eq. (A.6.7) and Theorem 40, which implies (using the fact that

ft is Lipschitz) ‖ft(V t)‖N ≤ C with high probability. Notice that the same argument implies

‖ft(Xt)‖N ≤ C with high probability.

Similarly, D2,t
p
' 0 follows since ‖fs−1(Xs−1) − fs−1(V s−1)‖N

p
' 0 and |dt,s,p| ≤ CT by con-

struction, thus yielding the desired claim (A.6.2).

We now turn to proving Eq. (A.6.3). Comparing Eq. (A.0.7) and (A.3.1), and letting P‖t = 1−P⊥t
we obtain

AMPt+1(Qt)p − LAMPt+1(Qt)p = P‖t (A(p)){ft(V t)} − onsp,t+1 −
∑

0≤s≤t−1

ht,s,pq
p,s+1 , (A.6.11)

onsp,t+1 =
∑
s≤t

dt,s,pfs−1(V s−1) (A.6.12)

Note that P‖t (A(p)) = E{A(p)|Ft}, where Ft is the σ-algebra generated by {qp,s}s≤t,p≤D. Equiva-

lently, this is the conditional expectation of A(p) given the linear constraints

A(p){fs(V s)} = yp,s+1 , for s ∈ {0, . . . , t− 1} , (A.6.13)

Also notice that, by the induction hypothesis, and the definition of yp,s, Eq. (A.1.1), we have for all

s ≤ t,

yp,s
p
' qp,s + onsp,s . (A.6.14)

Lemma A.2.2 implies that P‖t (A(p)) takes the form of Eq. (A.2.6) for a suitable matrix Ẑp,t ∈ RN×t.
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The key claim is that

Ẑp,t
p
' Qt . (A.6.15)

In order to establish this claim, we show that, under the inductive hypothesis,

(1 + (p− 1)Tp,t)Qt
p
' Y p,t.

Since Lp,t = 1 + (p − 1)Tp,t is well-conditioned by assumption, Eq. (A.2.8) implies Ẑp,t
p
' Qt.

Notice that, by Eq. (A.6.14) in order to prove this claim, it is sufficient to show that (p− 1)TtQt
p
'

ONSp,t := [onsp,1| · · · |onsp,t].

In order to prove this claim, we use Theorem 40. Recall Cr,s = E{Up,rUp,s}, Xr =
∑
p U

p,r and

C≤t = (Cr,s)r,s≤t. By Theorem 40, Cr+1,s+1
p
' 〈qp,r+1, qp,s+1〉

p
' pc2p(Gp−1,t(V ))r,s for r, s ≤ t.

This implies for any 0 ≤ r ≤ t− 1,

t−1∑
j=0

(G−1
p−1,t−1)rj〈qp,j+1, ft−1(V t−1)〉N

p
' pc2p

t−1∑
j=0

(C−1
≤t )r+1,j+1 E{Up,j+1ft−1(X0, . . . , Xt−1)}

= pc2p E
{
∂ft−1

∂xr+1
(X0, . . . , Xt−1)

}
1r≤t−2 , (A.6.16)

where we used Stein’s lemma in the second equality. Using this last expression and the definition

(A.0.7) allows to check we conclude (p− 1)Tp,tQt
p
' ONSp,t as claimed. Indeed we have

(p− 1)
[
Tp,tQt

]
t

=

t−1∑
r=0

(Gp−2,t−1)r,t−1fr

( t−1∑
r′=0

(G−1
p−1,t−1)r,r′〈qp,r

′+1, ft−1〉
)

p
' p(p− 1)c2p

t−2∑
r=0

〈fr, ft−1〉p−2
N fr · E

{
∂ft−1

∂xr+1
(X0, . . . , Xt−1)

}
= onsp,t.

Having established Eq. (A.6.15), we can use the representation of P‖t (A(p)) = E{A(p)|Ft} given

in Eq. (A.2.6) to get

P‖t (A(p)){ft}
p
'
∑
s≤t

αsq
p,s + (p− 1)

∑
s≤t

βsfs , (A.6.17)

αs =
∑

0≤r≤t−1

(G−1
p−1,t−1)s,r〈fr(V r), ft(V t)〉p−1

N , (A.6.18)

βs =
( ∑

0≤r≤t−1

(G−1
p−1,t−1)s,r〈qp,r, ft〉N

)
〈fs, ft〉p−2

N . (A.6.19)
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On the other hand, using again Eq. (A.6.16), we obtain

(p− 1)
∑
s≤t

βsfs
p
'
∑
s≤t−1

dt,s,pfs−1 = onsp,t+1, (A.6.20)

and
∑
s≤t

αsq
p,s p
'

∑
0≤s≤t−1

ht,s,pq
p,s+1. (A.6.21)

We therefore conclude, from Eq. (A.6.11), that ‖AMPt+1(Qt)p−LAMPt+1(Qt)p‖N
p
' 0, and this

finishes our proof.

A.7 Reduction to the well-conditioned case

Theorem 40 and Lemma A.6.1 imply the conclusion of the main statement Theorem 39, under the

additional assumptions in points (i) and (ii) of Lemma A.6.1. Here we show how to approximate an

arbitrary AMP algorithm with one satisfying those conditions, completing the proof of Theorem 39.

This strategy was already employed in [JM13, BMN19], and we refer to these references for further

background.

Lemma A.7.1. Let (ft)t≥0, with ft : Rt+1 → R, be any sequence of Lipschitz functions. Then

for any ε > 0 there exists a sequence of smooth functions ϕt : Rt+1 → R, with ‖ϕt‖L∞ ≤ 1,

‖∇ϕt‖L∞ ≤ 1, such that the following holds. Defining fεt = ft + εϕt, the sequence of functions

(fεt )t≥0 satisfies conditions (i) and (ii) of Lemma A.6.1.

The proof of this lemma is presented in the next two subsections, considering first condition (i),

and then condition (ii). Before presenting this proof, we show that this lemma indeed allows to

prove Theorem 39.

Proof of Theorem 39. Let (fεt )t∈N be a sequence of functions as per Lemma A.7.1, and denote by

zε,p,t the corresponding iterates, and Zεt = (zε,p,s)p≤D,s≤t. We instead use Zt = (zp,s)p≤D,s≤t

for the unperturbed AMP iteration. Using the same argument as in the proof of Lemma A.6.1 (in

particular, the argument to prove Eq. (A.6.2)) we obtain, for every fixed t,

p-lim
ε→0

lim sup
N→∞

‖Zt −Zεt‖N = 0 . (A.7.1)

On the other hand, for any ε > 0, the iterates satisfy the non-degeneracy conditions (i) and (ii) of

Lemma A.6.1. We can therefore apply this lemma, and Theorem 40 to conclude that, for any test
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pseudo-Lipschitz function ψ : RD×T → R, we have

p-lim
N→∞

1

N

N∑
i=1

ψ((zε,p,ti )p≤D,t≤T ) = E
{
ψ
(
(Uε,p,t)p≤D,t≤T

)}
. (A.7.2)

Here (Uε,p,t)p≤D,t≥0 is the Gaussian process associated to the nonlinearities (fεt )t≥0, namely with

covariance determined recursively via

E[Uε,p,t+1Uε,p,s+1] = pc2p E
{
fεt
(
Xε,0, . . . , Xε,t

)
fεs
(
Xε,0, . . . , Xε,s

)}p−1
, (A.7.3)

Xε,t ≡
D∑
k=2

Uε,k,t . (A.7.4)

Recalling that fεt = ft + εϕt with ϕt bounded, with bounded gradient, it is immediate to show

by induction that E[Uε,p,tUε,p,s] → E[Up,tUp,s] as ε → 0. In particular, it is possible to couple

(Uε,p,t)p≤D,t≥0 and (Up,t)p≤D,t≥0 so that E{(Uε,p,t − Up,t)2} → 0 for any p, t. We thus conclude

that

p-lim
N→∞

1

N

N∑
i=1

ψ((zp,ti )p≤D,t≤T )
(a)
= lim

ε→0
p-lim
N→∞

1

N

N∑
i=1

ψ((zε,p,ti )p≤D,t≤T )

(b)
= lim

ε→0
E
{
ψ
(
(Uε,p,t)p≤D,t≤T

)} (c)
= E

{
ψ
(
(Uε,p,t)p≤D,t≤T

)}
,

where (a) follows from Eq. (A.7.1), (b) from Eq. (A.7.2), and (c) from the remark that E{(Uε,p,t −
Up,t)2} → 0.

A.7.1 Condition (i): Control of Gp,t

We begin with condition (i) which requires C−1 ≤ σmin(Gp,t) ≤ σmax(Gp.t) ≤ C with high prob-

ability for some constant C independent of N . Note that Lemma A.6.1 requires these bounds to

hold for a finite collections of values of p, t. Since this collection is fixed independently of N , it is

sufficient to consider a single pair (p, t). By Theorem 40, we know that

p-lim
N→∞

(Gp,t)r,s = (G∞p,t)r,s =
(
E{fr(X0, . . . , Xr)fs(X0, . . . , Xs)}

)p
. (A.7.5)

It is therefore sufficient to prove σmin(G∞p,t) > 0 for all p, t. Note that σmin(G∞p,t) <∞ is immediate

since G∞p,t has finite entries, and is a matrix of fixed dimensions t+ 1× t+ 1.

Recall that Hadamard product preserves positive-semidefinite (PSD) ordering: if A1 � B1 � 0

and A2 � B2 � 0, then A1 �A2 � B1 �B2. (This follows from decomposing any PSD matrices

as a sum of rank-one PSD matrices.) In particular, G∞1,t � CI implies G∞p,t � CpI. It is therefore
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sufficient to prove σmin(G∞1,t) > 0, which we do in the next lemma

Lemma A.7.2. Under the assumptions of Lemma A.7.1, there exist functions ϕt : Rt+1 → R, with

‖ϕt‖L∞ ≤ 1, ‖∇ϕt‖L∞ ≤ 1, and an ε0 > 0 such that the following holds. Letting G∞1,t denote the

Gram matrices associated to (fεt )t≥0 we have σmin(G∞1,t) > 0 for ε < ε0.

Proof. We construct ϕt satisfying the claim inductively in t. The base case is clear: g∞1,0 =

E{f0(X0)}2 > 0 for f0 non vanishing. Assuming we have constructed these functions up to ϕt−1,

we know that the vector (Xε
1 , X

ε
2 , . . . , X

ε
t ) defined by state evolution (for nonlinearities fεt ) is a

non-degenerate Gaussian.

In order to prove our claim, we need to construct ϕt so that the vector {fεs (Xε
0 , . . . , X

ε
s )}s≤t has

non-degenerate covariance. Since we know already that {fεs (Xε
0 , . . . , X

ε
s )}s≤t−1 is non-degenerate,

it is sufficient to show that, for any coefficients (αs)s≤t,

E
{(
fεt (Xε

0 , . . . , X
ε
t )−

∑
s≤t−1

αsf
ε
s (Xε

0 , . . . , X
ε
s )
)2}

> 0 . (A.7.6)

It is always possible to choose ϕt so that this is the case. Indeed, the space of functions spanned

by fεs for s ≤ t has dimension at most t. Therefore, we can take any t + 1 linearly independent

bounded smooth functions of xt only, and choose ϕt to be a linear combination of these that is

outside the span of (fεs )s≤t−1. Since non-degenerate Gaussians have full support, this implies the

non-degeneracy condition (A.7.6) and therefore the induction claim.

In preparation for the next part, we argue that when the Gram matrices G∞1,t are non-degenerate,

we can perturb the nonlinearities (ft)t≥0 to induce any desired small change in G∞1,t. (Below Sm

denotes the space of m×m symmetric matrices.)

Lemma A.7.3. Under the assumptions of Lemma A.7.1, assume the nonlinearities (ft)t≥0 are

such that G∞1,t is non-degenerate. Then there exists finite sets of functions As = {ϕs,1, . . . , ϕs,n(s)}
of smooth functions ϕs,j : Rs → R, with ‖ϕs,j‖L∞ ≤ 1, ‖∇ϕs,j‖L∞ ≤ 1, such that the following is

true. For ε = (εs,j)j≤n(s),s≤t ∈ Rn∗ , n∗ :=
∑
s≤t n(s), consider the nonlinearities (fεs )s≤t defined

by fεs = fs +
∑
j≤n(s) εs,jϕs,j, and let G∞1,t(ε) to be the corresponding (asymptotic) Gram matrix. If

Gt : Rn∗ → St is the mapping Gt : ε 7→ G∞1,t(ε), then its derivative DGt|ε=0 is surjective.

Proof. Note that St
∼= R × R2 × · · · × Rt, by identifying M ∈ St which a list of columns M11,

(M1,2,M2,2), . . . , (Mj,t)j≤t. Also Rn∗ ∼= Rn(1) × · · · × Rn(t), by identifying ε = (ε1, . . . , εt), εs =

(εs,j)j≤n(s). The matrix DGt|ε=0 is block-triangular with respect to this decomposition. By an

induction argument, it is therefore sufficient to show that At can be constructed so that the last

diagonal block DGt|ε=0 : Rn(t) → Rt is surjective.
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Note that Gt is the map that takes as input εt, and outputs the last column of the asymptotic

Gram matrix corresponding to the nonlinearities f1, . . . , ft−1 and fεt = ft +
∑
j≤n(t) εt,jϕt,j . Since

by assumption Gt,1 is non-degenerate, the functions f1, . . . , ft are linearly independent (viewed as

vectors in the L2 space associated to the joint distribution of (Xs)s≤t). We can therefore construct

functions (ϕt,s)s≤t such that E{ϕt,s(X0, . . . , Xt)fr(X0, . . . , Xr)} = 0 if r 6= s, and > 0 if r = s. It is

then immediate to show that the resulting map DGt|ε=0 is surjective.

A.7.2 Condition (ii): Control of Lp,t

We are left with the task of showing that –after a small perturbation of the nonlinearities (ft)t≥0–

condition (ii) of Lemma A.6.1 holds, namely C−1 ≤ σmin(Lp,t) ≤ σmax(Lp,t) ≤ C for all p ≤ D,

t ≤ T , with high probability. Given the results of the previous section A.7.1, we can assume without

loss of generality that C−1 ≤ σmin(G∞p,t) ≤ σmax(G∞p,t) ≤ C for all p, t. Indeed, if this is not the case,

we can modify the nonlinearities as described above, as to satisfy this condition. Also, as before, we

can consider a single pair (p, t) since we only are interested in a finite (independent of N) collection

of such pairs.

Recall that Lp,t = 1 + (p− 1)Tp,t, and, by Eq. (A.2.7),

(Tp,t)is;jr =

t−1∑
r′=0

Fir′Fjs(G
−1
p−1,t−1)r′,r(Gp−2,t−1)r′,s , (A.7.7)

where Fis = (F t−1)is = (fs)i for 0 ≤ s ≤ t− 1, F t−1 ∈ RN×t (for consistency, we index the columns

of F t−1 as 0, . . . , t− 1). This implies that Tp,t has rank at most t2 since

(Tp,t)is;jr =

t−1∑
a,b=0

(Up,t)as;brFir′Fjs , (A.7.8)

(Up,t)as;br := (G−1
p−1,t−1)ra(Gp−2,t−1)saδb,s , (A.7.9)

or, in matrix notation

Tp,t = (It ⊗ F t−1)Up,t(It ⊗ F T
t−1) . (A.7.10)

It follows that the (N − t)t singular values of Lp,t are equal to 1, and the other t2 singular values

coincide with the ones of L̃p,t = 1t2 + (p− 1)T̃p,t, where

T̃p,t = (It ⊗G−1/2
1,t−1)Up,t(It ⊗G−1/2

1,t−1) . (A.7.11)

Indeed T̃p,t is unitarily equivalent to Tp,t (when the latter is restricted to its range), using the fact
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that F T
t−1F t−1/N = G1,t−1.

We now proceed by induction over the iteration number. Assuming the claim to hold up to

iteration t − 1, we need to to show that (for a suitable perturbation of the nonlinearities) C−1 ≤
σmin(L̃p,t) ≤ σmax(L̃p,t) ≤ C with high probability. By using the induction hypothesis Theorem 40

and Lemma A.6.1 we know that Gp,t converges in probability to the deterministic limit G∞p,t which

is non-degenerate. Therefore, it is sufficient to prove that (again, for a suitable perturbation of the

nonlinearities) C−1 ≤ σmin(L̃∞p,t) ≤ σmax(L̃∞p,t) ≤ C, where L̃∞p,t = 1t2 + (p − 1)T̃ ∞p,t , and T̃ ∞p,t is

obtained from T̃p,t by replacing Gk,s by its asymptotic version G∞k,s everywhere. Since the resulting

matrix L̃∞p,t is finite (and of dimension independent of N), it is sufficient to prove that σmin(L̃∞p,t) > 0.

Since G∞1,t−1 is non-degenerate, it is sufficient to prove σmin(W∞p,t) > 0, where

W∞p,t := It ⊗G∞1,t−1 + (p− 1)U∞p,t , (A.7.12)

(U∞p,t)as;br := ((G∞p−1,t−1)−1)ra(G∞p−2,t−1)saδb,s . (A.7.13)

In order to prove the desired non-degeneracy bound for W∞p,t, it is useful to introduce a piece of

terminology.

Definition A.7.4. We say a subset S ⊆ Rd is locally full if for any open set U ⊆ Rd with U ∩S 6= ∅
we have λ(U ∩ S) > 0 (with λ denoting the Lebesgue measure on Rd).

For instance, a full-dimensional convex set is locally full.

Lemma A.7.5. Let K ⊆ Rd be locally full and R : Rd → R a rational function which is not

identically zero or infinity. For any ε > 0 and x ∈ K there is x′ ∈ K with ‖x − x′‖ ≤ ε and

R(x′) 6∈ {0,±∞}.

Proof. Simply recall that any nontrivial polynomial vanishes on a measure zero set.

We are now in position to show that the nonlinearities (fs)0≤s≤t can be modified so that the

resulting matrix W∞p,t has σmin(W∞p,t) > 0, thus completing the proof.

Lemma A.7.6. Under the assumptions of Lemma A.7.1, further assume the nonlinearities (fs)s≥0

to be such that σmin(G∞p,t) > 0 for all p ≤ D, t ≤ T . Then, for any ε > 0 there exist functions

ϕs : Rs+1 → R, with ‖ϕs‖L∞ ≤ 1, ‖∇ϕs‖L∞ ≤ 1, such that the following holds.

Let W∞p,t(ε) the matrix defined in Eqs. (A.7.12), (A.7.13), for nonlinearities fεs = fs+εϕs, s ≤ t.
Then, for any p ≤ D and t ≤ T , σmin(W∞p,t(ε)) > 0.

Proof. Notice that W∞p,t is a function of the matrix G∞1,t (the matrices G∞p,t being themselves

Hadamard powers of G1,t). With a slight abuse of notation, we will write W∞p,t = W∞p,t(G
∞
1,t).
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Define R : St+1 → R to be the function that takes as input a t+ 1× t+ 1 symmetric matrix G and

outputs

R(G) ≡
∏
p≤D

det(W∞p,t(G)) . (A.7.14)

By checking Eqs. (A.7.12), (A.7.12), we see that this is a rational function on St
∼= R(t+1

2 ). Further,

it is not identically zero or infinity, as it can be checked by computing W∞p,t(I). Applying Lemma

A.7.5 to the set of PSD matrices, which is locally full in R(t2), and the rational function R, we obtain

that, for any ξ > 0, there exists G∗ � 0, with ‖G∗ −G∞p,t‖F ≤ ξ, and R(G∗) 6∈ {0,±∞}, which

implies σmin(W∞p,t(G∗)) > 0 for all p ≤ D.

Finally, using Lemma A.7.3 and the implicit function theorem, we conclude that we can find a

perturbation (ϕs)s≤t, and ε0 > 0 such that G1,t(ε) = G∗. By taking ξ sufficiently small, we can

ensure that ε can also be arbitrarily small.

A.8 Extension to the case D =∞

Here we extend the state evolution result proved for finite mixtures to the general case where ξ has

infinitely many components. The proof proceeds by induction over the number of iterations, and is

similar to previous arguments. Let us write ξ̃(x) :=
∑
k≤D c

2
kx

k while ξ(x) =
∑∞
k=2 c

2
kx

k. Denote

by (X̃0, · · · , X̃`) the state evolution Gaussian process corresponding to ξ̃, and (X0, · · · , X`) the one

based on ξ. First, using the fact that f` is Lipschitz, it is easy to show by induction over ` that

there exists a coupling such that E[(X̃` −X`)2] = oD(1) (throughout this section, oD(1) is a term

independent of N that vanishes as D → ∞). We deduce from this that d̃`,j − d`,j = oD(1) for all

`, j. (Here, d̃`,j is defined similarly to d`,j , based on the mixture ξ̃.)

Next we show that the AMP iterates are close. Let z̃0, · · · z̃` be the AMP iterates based on ξ̃

and z0, · · · z` those based on ξ. Let z̃0 = z0 = 0 and assume limD→∞ p-limN→∞ ‖z̃j − zj‖N = 0

for all j ≤ `. Further let f̃` = f`(z̃
0, · · · , z̃`). Then

∥∥z̃`+1 − z`+1
∥∥
N
≤
∥∥∥ D∑
p=2

cp
p!
W (p){f̃`} −

∞∑
p=2

cp
p!
W (p){f`}

∥∥∥
N

+
∥∥∥∑̀
j=0

d̃`,j f̃j−1 − d`,jfj
∥∥∥
N

(A.8.1)

=: E1 + E2. (A.8.2)

We have

E1 ≤
∑

p≥D+1

cp
p!

∥∥W (p){f̃`}
∥∥
N

+

∞∑
p=2

cp
p!

∥∥W (p){f`} −W (p){f̃`}
∥∥
N
.
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The first term in the above is bounded by

∑
p≥D+1

cp
p!
N (p−2)/2‖W (p)‖op · ‖f̃`‖p−1

N .

Using Theorem 40, ‖f̃`‖N ≤ C with high probability. Lemma A.2.1 then implies that the above is

oD(1) with high probability. Next, the second term in E1 is similarly bounded by

∞∑
p=2

cp
p!
N (p−2)/2‖W (p)‖op · (‖f̃`‖N + f`‖N )p−2‖f̃` − f`‖N .

Since f` is Lipschitz, and using the induction hypothesis, similar considerations show that this term

converges to zero in probability as N →∞. Next,

E2 ≤
∑̀
j=0

(d̃`,j − d`,j)‖f̃j−1‖N +
∑̀
j=0

|d`,j |‖f̃j−1 − fj−1‖N
p
' oD(1).

This implies

lim
D→∞

p-lim
N→∞

∥∥z̃`+1 − z`+1
∥∥
N

= 0,

which concludes the inductive argument. Finally, for ψ a pseudo-Lipschitz function, we have

p-lim
N→∞

1

N

N∑
i=1

ψ(z0, · · · , z`) = p-lim
N→∞

1

N

N∑
i=1

ψ(z̃0, · · · , z̃`) + oD(1) (A.8.3)

= E[ψ(X̃0, · · · , X̃`)] + oD(1) (A.8.4)

= E[ψ(X0, · · · , X`)] + oD(1). (A.8.5)

This concludes our proof of state evolution, Proposition 3.6.1.



Appendix B

Properties of the Parisi PDE and

Variational Problem

In this Chapter we prove several useful properties of the extended variational principle infγ∈L P(γ).

A first set of properties concerns the solution of the Parisi PDE (4.1.1) for γ ∈ L . Most of these are

generalizations of results obtained in [JT16] for γ ∈ U bounded (hence, with finite total variation

over [0, 1]). We will refer to the proofs of [JT16] whenever they can be adapted without significant

changes. In several cases, new arguments are required, e.g. in the regularity result of Lemma B.1.3,

in the first variation formula of Proposition B.2.1 and elsewhere. The second set of technical results

concerns properties of the minimizers. These are of course entirely new because the minimizer is —in

general— outside U . Finally in the third section we establish several Lemmas used in Chapter 4.

We consider the function space L from (4.1.5), endowed with the weighted L1 distance ‖γ1 −

γ2‖1,ξ′′ =
∫ 1

0
ξ′′(t)|γ1(t) − γ2(t)|dt. We will write γn

L1
ξ−→ γ, whenever ‖γn − γ‖1,ξ′′ → 0 as n → ∞.

We recall the space of piecewise constant functions

SF+ =
{
g =

m∑
i=1

aiI[ti−1,ti) : 0 = t0 < t1 < · · · < tm = 1, ai ≥ 0,m ∈ N
}
. (B.0.1)

We study the PDE (4.1.1), with a slightly more general initial condition

∂tΦ(t, x) +
1

2
ξ′′(t)

(
∂2
xΦ(t, x) + γ(t)(∂xΦ(t, x))2

)
= 0 ,

Φ(1, x) = f0(x) .

(B.0.2)

Throughout we assume f0 to be convex, continuous, non-negative, with f0(−x) = f0(x) ≥ 0, and

347
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differentiable for x 6= 0, with 0 ≤ f ′0(x) ≤ 1 for all x > 0. We will write f ′0(x) for the weak derivative

of f0 (the right and left derivatives exist but are potentially different at x = 0). Associated to the

above PDE, we consider the following stochastic differential equation driven by Brownian motion

(Bt)t≥0:

dXt = ξ′′(t)γ(t)∂xΦ(t,Xt) dt+
√
ξ′′(t) dBt , X0 = h . (B.0.3)

In the following we will also write Φx, Φxx and so on for the partial derivatives of Φ, and Φγ whenever

we want to emphasize the dependence of Φ on γ. We write ∂±t Φ for the left and right derivatives of

Φ.

B.1 Existence, Uniqueness, and Regularity

We first collect a few properties of Φ(t, x) when γ ∈ SF+.

Proposition B.1.1. (a) For any γ ∈ SF+ the solution Φ : [0, 1] × R → R of Eq. (B.0.2) ex-

ists uniquely in the classical sense and is smooth for t ∈ [0, 1). Namely, for any j > 0,

‖∂jxΦ‖L∞([0,1−ε)×R) ≤ C(γ, ε), and ‖∂±t ∂jxΦ‖L∞([0,1−ε)×R) ≤ C(γ, ε), with ∂+
t ∂

j
xΦ(t, x) =

∂−t ∂
j
xΦ(t, x) whenever t is a continuity point of γ.

(b) For any γ ∈ SF+ the solution Φ of Eq. (B.0.2) is such that x 7→ ∂xΦ(t, · ) is non-decreasing

for all t ∈ [0, 1], with |∂xΦ(t, x)| ≤ 1 for all x ∈ R.

(c) If γ1, γ2 ∈ SF+ and Φγ1 , Φγ2 are the corresponding solutions, then

‖Φγ1 − Φγ2‖∞ ≤ ‖γ1 − γ2‖1,ξ′′ .

Proof. Point (a) follows from the Cole-Hopf representation which allows us to write an explicit

form of the solution for γ ∈ SF+ [Gue01, AC17b]. This solution is C∞ except (possibly) when

t ∈ {t1, . . . , tm−1}, the set of discontinuity points of γ. As a consequence of point (a), the SDE

(B.3.1) is well defined, with unique strong solution on [0, 1]. Further, Φ satisfies the following

representation, for γ ∈ SF+ [JT16]:

∂xΦ(t, x) = E
[
f ′0(X1)|Xt = x

]
.

Since ‖f ′0‖∞ ≤ 1, this implies |∂xΦ(t, x)| ≤ 1. The non-decreasing property also follows again by

the Cole-Hopf representation.

Finally, point (c) is identical to Lemma 14 in [JT16] (the assumption that γ is non-decreasing is

never used there).
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As a consequence of Proposition B.1.1, we can define Φγ by continuity for any γ ∈ L . Namely,

we construct a sequence γn ∈ SF+, γn
L1
ξ−→ γ and

Φγ(t, x) = lim
n→∞

Φγn(t, x) .

Lemma B.1.2. For any γ ∈ L , Φγ constructed above is such that ∂xΦγ exists in weak sense, is

non-decreasing, and |∂xΦγ(t, x)| ≤ 1 for all t ∈ [0, 1], x ∈ R. Further, if γn ∈ SF+, γn
L1
ξ−→ γ, for

any t ∈ [0, 1], we have ∂xΦγn(t, x)→ ∂xΦγ(t, x) for almost every x.

Finally, Φ = Φγ is a weak solution of the PDE (B.0.2). Namely, for any g ∈ C∞c ((0, 1]×R), we

have

0 =

∫
(0,1]

∫
R

{
−Φ∂th+

1

2
ξ′′(t)

(
Φ∂2

xh+ γ(t)(∂xΦ)2h
)}

dxdt+

∫
R

Φ(1, x) f0(x) dx . (B.1.1)

Proof. Since Φγ(t, · ) is the uniform limit of convex 1-Lipschitz functions, it is also convex 1-

Lipschitz. Hence its weak derivative exists, is non-decreasing and is bounded as claimed. The

claim ∂xΦγn(t, x)→ ∂xΦγ(t, x) follows by dominated convergence.

In order to show that Φ is a weak solution, let Φn = Φγn for γn ∈ SF+, γn
L1
ξ−→ γ (hence

‖Φn − Φ‖∞ → 0). Since Φn is a classical solution corresponding to γn, we have

0 =

∫
(0,1]

∫
R

{
−Φn∂th+

1

2
ξ′′(t)

(
Φn∂

2
xh+ γn(t)(∂xΦn)2h

)}
dxdt+

∫
R

Φn(1, x) f0(x) dx .

Letting ∆ denote the right-hand side of Eq. (B.1.1), we have (since Φn(1, x) = Φ(1, x) is independent

of n)

∆ =

∫
(0,1]

∫
R

{
(Φn − Φ)∂th−

1

2
ξ′′(t)(Φn − Φ)∂2

xh

}
dx dt

−
∫

(0,1]

∫
R

1

2
ξ′′(t)

(
γn(t)(∂xΦn)2 − γ(t)(∂xΦ)2

)
hdxdt .

The first term vanishes as n → ∞ by dominated convergence. For the second term, by the bound

on ∂xΦ, ∂xΦn, we have

|∆| ≤ 1

2

∫
(0,1]

∫
R
ξ′′(t) |γn(t)− γ(t)| |h|dx dt+

1

2

∫
(0,1]

∫
R
ξ′′γ(t)

∣∣(∂xΦn)2 − (∂xΦ)2
∣∣ |h|dx dt .

The first term vanishes as n→∞ since γn
L1
ξ−→ γ, and the second vanishes by dominated convergence,

using the fact that ‖ξ′′γ‖1 <∞.

Lemma B.1.3. For γ ∈ L and any t ∈ [0, 1), the second derivative ∂2
xΦ(t, · ) exists in the weak
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sense, with sup0≤t≤1−ε ‖∂2
xΦ(t, · )‖L2(R) <∞ for any ε > 0.

Proof. Following [JT16], it is useful to introduce the the smooth time change θ(t) = (ξ′(1)−ξ′(t))/2,

and define u : [0, θM ]×R, θM = ξ′(1)/2, via u(θ(t), x) = Φ(t, x). By a simple change of variables, u

is a weak solution of the PDE

∂θu−∆u = m(θ)u2
x , u(0, x) = f0(x) ,

where m(s) = γ(θ−1(s)). The desired claim is implied by showing that the partial derivative ∂2
xu

exists in weak sense and is bounded uniformly over θ > ε (for any ε > 0).

Again, as in [JT16] the fact that u is a weak solution implies the Duhamel principle

u(θ) = Gθ ∗ f0 +

∫ θ

0

m(s)Gθ−s ∗ ux(s)2ds ,

Gt(x) ≡ 1√
4πt

e−x
2/4t .

(B.1.2)

(Here ∗ denotes convolution and this equation is to be interpreted in weak sense, namely, for any

g ∈ C∞c (R),
∫
g(x)u(θ, x) dx is given by the convolution with g of the right hand side.) Note that by

Lemma B.1.2, x 7→ ux(s, x)2 is bounded between 0 and 1, non-increasing in (−∞, 0], non-decreasing

in [0,∞) and symmetric (the value at x = 0 is immaterial). Hence, there exists a measure νs on

[0,∞), with total mass νs([0,∞)) ≤ 1, such that

ux(s, x)2 = νs([0, x)) Ix>0 + νs([0,−x)) Ix<0 .

We then obtain, from Eq. (B.1.2)

uxx(θ) = G′θ ∗ f ′0 +

∫ θ

0

m(s)

∫
R≥0

[G′θ−s( · − x) +G′θ−s( · + x)]dνs(x) ds . (B.1.3)

The claim follows by showing that each of the two terms on the right hand side of Eq. (B.1.3)

is a well defined function, bounded in L2(R). For the first term, notice that f ′0 is bounded and

non-decreasing. Hence there exists a measure ω0 on R with ω0(R) ≤ 2, such that G′θ ∗f ′0 = Gθ ∗dω0,

whence

‖G′θ ∗ f ′0‖2 =

∥∥∥∥∫ Gθ( · − x) dω0(x)

∥∥∥∥
2

≤ 2‖Gθ‖2 ≤
C

θ1/4
,

where the upper bound follows from Jensen’s inequality. The second term on the right-hand side of
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(B.1.3) can be treated analogously. Denoting it by w(θ), we have, again by Jensen with θ = θ(1−ε),

‖w(θ)‖2 ≤
∫ θ

0

m(s)

∫
R≥0

‖G′θ−s( · − x) +G′θ−s( · + x)‖2dνs(x) ds

≤ C
∫ θ

0

m(s)
1

(θ − s)3/4
ds ≤ C ′

∫ 1

1−ε

ξ′′γ(s)

(ξ′(s)− ξ′(1− ε))3/4
ds ,

where the second inequality follows by ‖G′t‖2 ≤ C t−3/4. Decomposing the last integral, we get

‖w(θ)‖2 ≤ C ′
∫ 1−ε/2

1−ε

ξ′′γ(s)

(ξ′(s)− ξ′(1− ε))3/4
ds+ C ′

∫ 1

1−ε/2

ξ′′γ(s)

(ξ′(s)− ξ′(1− ε))3/4
ds

≤ C ′ξ′′γ(1− ε/2)

∫ 1−ε/2

1−ε

1

(ξ′(s)− ξ′(1− ε))3/4
ds

+
C ′

(ξ′(1− ε/2)− ξ′(1− ε))3/4

∫ 1

1−ε/2
ξ′′γ(s) ds

≤ C ′′‖ξ′′γ‖TV[0,1−ε/2] + C ′′ε−3/4 ‖ξ′′γ‖1 .

The last expression is bounded by some C(ε) <∞ since γ ∈ L .

Lemma B.1.4. For any γ ∈ L , the solution Φ = Φγ constructed above is continuous on [0, 1]×R,

and further satisfies the following regularity properties for any ε > 0

(a) ∂jxΦ ∈ L∞([0, 1− ε];L2(R) ∩ L∞(R)) for j ≥ 2.

(b) ∂tΦ ∈ L∞([0, 1]× R) and ∂t∂
j
xΦ ∈ L∞([0, 1− ε];L2(R) ∩ L∞(R)) for j ≥ 1.

Proof. Continuity follows since Φγ is the uniform limit of continuous functions. Point (a) and (b)

follows from the same proof as Lemma 10 in [JT16], applied to the PDE (B.0.2) with boundary

condition at t = 1− ε, whereby we use Lemma B.1.3 to initiate the bootstrap procedure.

As a consequence of the stated regularity properties of Φ, we can solve the SDE (B.3.1).

Lemma B.1.5. For any γ ∈ L , let Φ = Φγ be the PDE solution defined above. Then the stochas-

tic differential equation (B.3.1) has unique strong solution on (Xt)t∈[0,1], which is almost surely

continuous. Further, for any t ∈ [0, 1]

∂xΦ(t,Xt) =

∫ t

0

√
ξ′′(s) ∂2

xΦ(s,Xs) dBs . (B.1.4)

Proof. Existence and uniqueness for t ∈ [0, 1 − ε) follow because ∂xΦ(t, · ) is Lipschitz continuous

and ξ′′γ is bounded on such interval (see, e.g., [Oks13, Chapter 5].) By letting ε ↓ 0, we obtain
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existence and uniqueness on [0, 1). Further Xt can be extended at t = 1, letting

X1 =

∫ 1

0

ξ′′(t)γ(t)∂xΦ(t,Xt)dt+

∫ 1

0

√
ξ′′(t)dBt .

It is easy to check that this extension is almost surely continuous at t = 1, since

∣∣X1 −Xt

∣∣ ≤ ∫ 1

t

ξ′′γ(s)ds+

∫ 1

t

√
ξ′′(t)dBt .

The first integral vanishes as t→ 1 since
∫ 1

0
ξ′′γ(t) dt <∞, while the second vanishes by continuity

of the Brownian motion.

Next notice that, since Φx = ∂xΦ smooth in space and weakly differentiable in time for t ∈ [0, 1)

by Lemma B.1.4, it is a weak solution of

∂tΦx(t, x) +
1

2
ξ′′(t)

(
∂2
xΦx(t, x) + γ(t)∂x(Φx(t, x))2

)
= 0 .

More precisely, for any x ∈ R and any g ∈ Cc((0, 1)), we have∫ {
g(t)∂tΦx(t, x) +

ξ′′(t)

2
g(t)

(
∂2
xΦx(t, x) + γ(t)∂x(Φx(t, x))2

)}
dt = 0 . (B.1.5)

Equation (B.1.4) is then obtained by Itô’s formula (see Proposition 22 in [JT16])

∂xΦ(t,Xt) =

∫ t

0

√
ξ′′(s) ∂2

xΦ(s,Xs) dBs

+

∫ t

0

(
∂sΦx(s,Xs) +

1

2
ξ′′(s)

(
∂2
xΦx(s,Xs) + γ(s)∂x(Φx(s,Xs))

2
)}

ds ,

The second term vanishes by Eq. (B.1.5).

Corollary B.1.6. For any γ ∈ L and any t ∈ [0, 1),

E
[
∂xΦγ(t,Xt)

2
]

=

∫ t

0

ξ′′(s) E
[(
∂xxΦγ(s,Xs)

)2]
ds .

Proof. This follows from Lemma B.1.5, using the regularity properties of Lemma B.1.4.

Lemma B.1.7. For any γ ∈ L , the values

E
[
∂xΦγ(t,Xt)

2
]
, E

[
∂xxΦγ(t,Xt)

2
]

are continuous functions of t ∈ [0, 1).

Lemma B.1.8. The function P = Pξ,Lh is strictly convex on L .
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Proof. The proof is exactly the same as [CHL18, Lemma 5] which shows strict convexity on U .

B.2 Properties of the Minimizing Order Parameter

We now compute the first variation of the Parisi functional.

Proposition B.2.1. Let γ ∈ L , and δ : [0, 1)→ R be such that ‖ξ′′δ‖TV [0,t] <∞ for all t ∈ [0, 1),

‖ξ′′δ‖1 <∞, and δ(t) = 0 for t ∈ (1− ε, 1], ε > 0. Further assume that γ + sδ ≥ 0 for all s ∈ [0, s0)

for some positive s0. Then

dP

ds
(γ + sδ)

∣∣∣∣
s=0+

=
1

2

∫ 1

0

ξ′′(t)δ(t)
(
E
[
∂xΦγ(t,Xt)

2
]
− t
)

dt . (B.2.1)

Proof. Let γs ≡ γ + sδ, s ∈ [0, ε), and denote by Φs the corresponding solution of the Parisi PDE.

Following the proof of Lemma 14 in [JT16], we get

Φs(0, 0)− Φ0(0, 0) =
s

2

∫ 1

0

ξ′′(t)δ(t)E{∂xΦ0(t, Y st )2} dt , (B.2.2)

where Y st is the solution of the SDE

dY st =
1

2
ξ′′(t)γs(t)

[
∂xΦ0(t, Y st ) + ∂xΦs(t, Y

s
t )
]

dt+
√
ξ′′(t) dBt , Y s0 = 0 . (B.2.3)

We also obtain (by the same argument as in [JT16, Lemma 14], using Lemma B.1.4, and noting

that δ(t) = 0 for t > 1− ε and ξ′′γ is bounded on [0, 1− ε))

‖∂xΦs − ∂xΦ0‖∞ ≤ C(ε, γ)‖ξ′′δ‖1 · s . (B.2.4)

Taking the difference between this Eqs. (B.2.3) and (B.3.1), we get, for t ∈ [0, 1− ε0)

|Y st −Xt| ≤C
∫ t

0

ξ′′(u)|γs(u)− γ(u)|du+ C

∫ t

0

ξ′′γ(u)
∣∣∂xΦ0(u, Y su )− ∂xΦs(u, Y

s
u )
∣∣du

+ C

∫ t

0

ξ′′γ(u)
∣∣∂xΦ0(u,Xu)− ∂xΦ0(u, Y su )

∣∣du
≤ C‖ξ′′(γs − γ0)‖1 + C(ε, γ)‖ξ′′(γs − γ0)‖1‖ξ′′γ‖1

+ C(ε0)

∫ t

0

ξ′′γ(u)
∣∣Y su −Xu

∣∣du .
In the second inequality we used Eq. (B.2.4), and the fact that ∂2

xΦ is bounded for t ∈ [0, 1 − ε0),
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see Lemma B.1.4. Since ξ′′γ(u) ≤ ‖ξ′′γ‖TV[0,1−ε0] for u ∈ [0, 1− ε0), we finally obtain

|Y st −Xt| ≤ C(γ, ε) s‖ξ′′δ‖1 + C(γ, ε0)

∫ t

0

∣∣Y su −Xu

∣∣du .
Therefore, we conclude by Gronwall lemma that

sup
t≤1−ε0

∣∣Y st −Xt

∣∣ ≤ C(ε, ε0, γ)‖ξ′′δ‖1 s

Using this in Eq. (B.2.2), together with the fact that ∂xΦ0 is bounded and Lipschitz, and δ(t) = 0

for t > 1− ε, we get

Φs(0, 0)− Φ0(0, 0) =
s

2

∫ 1

0

ξ′′(t)δ(t)E{∂xΦ0(t,Xt)
2} dt+O(s2) ,

whence Eq. (B.2.1) immediately follows.

For any γ ∈ L , we have ‖γ‖TV[0,t] < ∞ for any t ∈ [0, 1). We can therefore modify γ in (at

most) countably many points to obtain a right-continuous function. Since this modification does

not change the solution Φγ , by Proposition B.1.1, we will hereafter assume that any γ ∈ L is

right-continuous.

For γ ∈ L , we denote by S(γ) ≡ {t ∈ [0, 1) : γ(t) > 0} the support of γ, and by S(γ) the closure

of S(γ) in [0, 1) (in particular, note that 1 6∈ S(γ)).

Lemma B.2.2. The support of γ ∈ Lq is a disjoint union of countably many intervals S(γ) =

∪α∈AIα, where Iα = (aα, bα) or Iα = [aα, bα), q ≤ aα < bα ≤ 1, and A is countable.

Proof. If t0 ∈ S(γ), then by right continuity there exists δ > 0 such that [t0, t0 + δ) ⊆ S(γ). This

implies immediately the claim.

Corollary B.2.3. Assume γ∗ ∈ L is such that P(γ∗) = infγ∈L P(γ). Then

t ∈ S(γ∗) ⇒ E{∂xΦγ∗(t,Xt)
2} = t , (B.2.5)

t ∈ [0, 1) \ S(γ∗) ⇒ E{∂xΦγ∗(t,Xt)
2} ≥ t . (B.2.6)

Proof. First consider Eq. (B.2.7). For any 0 ≤ t1 < t2 < 1, set δ(t) = γ∗(t)I(t ∈ [t1, t2)). Clearly

γ∗ + sδ ∈ L for s ∈ (−1, 1). By the optimality of γ∗, and using Proposition B.2.1, we have

0 =
dP

ds
(γ∗ + sδ)

∣∣∣∣
s=0

=
1

2

∫ t2

t1

ξ′′(t)γ∗(t)
(
E{∂xΦγ∗(t,Xt)

2} − t
)

dt
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Since t1, t2 are arbitrary, and ξ′′(t) > 0 for t ∈ (0, 1) this implies γ∗(t)(E{∂xΦγ∗(t,Xt)
2} − t) = 0

for almost every t ∈ [0, 1). Since γ∗(t) is right-continuous and E{∂xΦγ∗(t,Xt)
2} is continuous (see

Corollary B.1.6), it follows that γ∗(t)(E{∂xΦγ∗(t,Xt)
2} − t) = 0 for every t ∈ [0, 1). This in turns

implies E{∂xΦγ∗(t,Xt)
2} = t for every t ∈ S(γ∗). This can be extended to t ∈ S(γ∗) again by

continuity of t 7→ E{∂xΦγ∗(t,Xt)
2}.

Next consider Eq. (B.2.8). Notice that, by Lemma B.2.2, [0, 1)\S(γ∗) is a disjoint union of open

intervals. Let J be such an interval, and consider any [t1, t2] ⊆ J . Set δ(t) = I(t ∈ (t1, t2]), and

notice that γ∗ + sδ ∈ L for s ≥ 0. By Proposition B.2.1, we have

0 ≤ dP

ds
(γ + sδ)

∣∣∣∣
s=0

=
1

2

∫ t2

t1

ξ′′(t)
(
E{∂xΦ(t,Xt)

2} − t
)

dt .

Since t1, t2 are arbitrary, ξ′′(t) > 0 for t ∈ (0, 1) and t 7→ E{∂xΦ(t,Xt)
2} is continuous, this implies

E{∂xΦ(t,Xt)
2} ≥ t for all t ∈ J , and hence all t ∈ [0, 1) \ S(γ∗).

Corollary B.2.4. Assume γ∗ ∈ L is such that P(γ∗) = infγ∈L P(γ). Then

t ∈ S(γ∗) ⇒ ξ′′(t)E{∂2
xΦγ∗(t,Xt)

2} = 1 .

Proof. Set Φ(t, x) = Φγ∗(t, x). By Lemma B.2.2, S(γ∗) is a disjoint union of closed intervals with

non-empty interior. Let K be one such intervals. Then, for any [t1, t2] ∈ K, we have, by Lemma

B.2.3

t2 − t1 = E{∂xΦ(t2, Xt2)2} − E{∂xΦ(t1, Xt1)2} =

∫ t2

t1

ξ′′(t)E{∂2
xΦ(t,Xt)

2}dt .

Since t1, t2 are arbitrary, we get ξ′′(t)E{∂2
xΦ(t,Xt)

2} = 1 for almost every t ∈ K. Using Lemma

B.1.7 we get ξ′′(t)E{∂2
xΦ(t,Xt)

2} = 1 for every t ∈ S(γ∗).

Throughout this section we let γ
Lq

∗ be the minimizer of P over Lq, assuming it exists. Note that

we will eventually show in Lemma 4.1.3 that γ
Lq

∗ = γL
∗ if either minimizer exists.

Lemma B.2.5. Assume γ
Lq

∗ exists. Then

t ∈ supp(γ
Lq

∗ ) ⇒ E[∂xΦ
γ

Lq
∗

(t,Xt)
2] = t , (B.2.7)

t ≥ q ⇒ E[∂xΦ
γ

Lq
∗

(t,Xt)
2] ≥ t . (B.2.8)

Proof. We first show Equation (B.2.7). For q ≤ t1 < t2 < 1 we take δ(t) = γ
Lq

∗ (t)1t∈[t1,t2). Clearly

γ
Lq

∗ + sδ ∈ Lq. Since γ
Lq

∗ minimizes P(·) over Lq,
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0 ≤ dP

ds
(γ

Lq

∗ + sδ)

∣∣∣∣
s=0

=
1

2

∫ t2

t1

ξ′′(t)γ
Lq

∗ (t)
(
E
[
∂xΦ

γ
Lq
∗

(t,Xt)
2
]
− t
)

dt

Since t1, t2 are arbitrary, and ξ′′(t) > 0 for t ∈ (0, 1) this implies γ
Lq

∗ (t)(E
[
∂xΦ

γ
Lq
∗

(t,Xt)
2
]
−t) =

0 for almost every t ∈ [q, 1). Since γ
Lq

∗ (t) is right-continuous and E
[
∂xΦ

γ
Lq
∗

(t,Xt)
2
]

is continuous

by Lemma B.1.7, it follows that γ
Lq

∗ (t)(E
[
∂xΦ

γ
Lq
∗

(t,Xt)
2
]
− t) = 0 for every t ∈ [q, 1). This in

turns implies E
[
∂xΦ

γ
Lq
∗

(t,Xt)
2
]

= t for every t ∈ S(γ
Lq

∗ ) by right-continuity of γ
Lq

∗ . This can be

extended to all t ∈ supp(γ
Lq

∗ ) by again using continuity of t 7→ E
[
∂xΦ

γ
Lq
∗

(t,Xt)
2
]
.

Next consider Eq. (B.2.8), where it suffices now to consider t ∈ [q, 1) \ supp(γ
Lq

∗ ). By Lemma

B.2.2, [q, 1)\ supp(γ
Lq

∗ ) is a disjoint union of open intervals. Let J be such an interval, and consider

any [t1, t2] ⊆ J . Set δ(t) = I(t ∈ (t1, t2]), and notice that γ
Lq

∗ + sδ ∈ Lq for s ≥ 0. By Proposition

B.2.1, we have

0 ≤ dP

ds
(γ + sδ)

∣∣∣∣
s=0

=
1

2

∫ t2

t1

ξ′′(t)
(
E
[
∂xΦ

γ
Lq
∗

(t,Xt)
2
]
− t
)

dt .

Since t1, t2 are arbitrary, ξ′′(t) > 0 for t ∈ (0, 1) and t 7→ E
[
∂xΦ

γ
Lq
∗

(t,Xt)
2
]

is continuous, this

implies E
[
∂xΦ

γ
Lq
∗

(t,Xt)
2
]
≥ t for all t ∈ J , and hence all t ∈ [q, 1) \ supp(γ

Lq

∗ ).

Corollary B.2.6. Assume γ
Lq

∗ exists. Then

t ∈ supp(γ
Lq

∗ ) ⇒ ξ′′(t)E
[
∂xxΦ

γ
Lq
∗

(t,Xt)
2
]

= 1 .

Proof. By Lemma B.2.2, supp(γ
Lq

∗ ) is a disjoint union of closed intervals with non-empty interior.

Let K be one such interval. Then, for any [t1, t2] ∈ K, Corollary B.1.6 and Lemma B.2.5 imply

t2 − t1 = E
[
∂xΦ(t2, Xt2)2

]
− E

[
∂xΦ(t1, Xt1)2

]
=

∫ t2

t1

ξ′′(t)E
[
∂xxΦ(t,Xt)

2
]

dt .

Since t1, t2 are arbitrary, ξ′′(t)E
[
∂xxΦ(t,Xt)

2
]

= 1 for almost every t ∈ K. By Lemma B.1.7 it

follows that ξ′′(t)E
[
∂xxΦ(t,Xt)

2
]

= 1 for all t ∈ supp(γ
Lq

∗ ).

Lemma B.2.7. Let γ ∈ L satisfy γ(t) = 0 for all t ∈ (t1, 1), where t1 < 1. Then, for any

t∗ ∈ (t1, 1), the probability distribution of Xt∗ has a density pt∗ with respect to the Lebesgue measure.

Further, for any t∗ ∈ (t1, 1) and any M ∈ R≥0, there exists ε(t∗,M, γ) > 0 such that

inf
|x|≤M,t∈[t∗,1]

pt(x) ≥ ε(t∗,M, γ) .
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Proof. Since the SDE (B.3.1) has strong solutions, Xt1 is a well defined random variable taking

values in R. Therefore, there exists C1 = C1(γ) <∞ such that P(|Xt1 | ≤ C1) ≥ 1/2. For t ∈ (t1, 1),

Xt satisfies dXt =
√
ξ′′(t) dBt and therefore the law of Xt is the convolution of a Gaussian (with

variance θ(t)2 ≡ ξ′(t) − ξ(t1) > 0) with the law of Xt1 , and therefore has a density. To prove the

desired lower bound on the density, let fG(x) = exp(−x2/2)/
√

2π denote the standard Gaussian

density. Note that, for any |x| ≤M ,

pt(x) = E
{ 1

θ(t)
fG

(x−Xt1

θ(t)

)}
≥ E

{ 1

θ(t)
fG

(x−Xt1

θ(t)

)
I|Xt2 |≤C1

}
≥ 1

θ(t)
fG

(M + C1

θ(t)

)
P(|Xt1 | ≤ C1) ≥ 1

2θ(t)
fG

(M + C1

θ(t)

)
.

The latter expression is lower bounded by ε(t∗,M, γ) > 0 for any t ∈ [t∗, 1], as claimed.

Proposition B.2.8. For any γ ∈ L , the following identities hold:

d

dt
E [Φγ(t,Xt)] =

1

2
ξ′′(t)γ(t)E

[
∂xΦγ(t,Xt)

2
]

(B.2.9)

d

dt
E [Xt∂xΦγ(t,Xt)] = ξ′′(t)γ(t)E

[
∂xΦγ(t,Xt)

2
]

+ ξ′′(t)E [∂xxΦγ(t,Xt)] . (B.2.10)

Proof. We will write Φt = ∂tΦ, Φx = ∂xΦ and Φxx = ∂2
xΦ. For the first identity, using the regularity

properties of Lemma B.1.4 and Itô’s formula, we get

dΦ(t,Xt) =Φt(t,Xt) dt+ ξ′′(t)γ(t)Φx(t,Xt)
2dt+

√
ξ′′(t) Φx(t,Xt) dBt +

1

2
Φxx(t,Xt) ξ

′′(t)dt

=
1

2
ξ′′(t)γ(t)Φx(t,Xt)

2dt+
√
ξ′′(t) Φx(t,Xt) dBt ,

where the equalities hold after integrating over a test function g ∈ C∞c ([0, 1)) and in the second

step we used the fact that Φ is a weak solution of Eq. (B.0.2). The claim (B.2.9) follows by taking

expectations.

We proceed analogously for the second identity. Using Lemma B.1.5, and the fact that the

(Xt)t∈[0,1) solved the SDE (B.3.1), we get

d
(
XtΦx(t,Xt)

)
=Φx(t,Xt)dXt +Xtd

(
Φx(t,Xt)

)
+ ξ′′(t)Φxx(t,Xt) dt

=ξ′′(t)γ(t)Φx(t,Xt)
2dt+

√
ξ′′(t)Φx(t,Xt)dBt +

√
ξ′′(t)XtΦxx(t,Xt)dBt

+ ξ′′(t)Φxx(t,Xt) dt .

The claim (B.2.9) follows again by taking expectations.
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We now show that any minimizer γ∗ of the Parisi functional over the extended space L has

support given by an interval containing 1. Note that this is unrelated to the no-overlap gap property

which concerns solutions γ∗ that are non-decreasing, and concerns the points of increase of γ∗.

Lemma B.2.9. Assuming γ
Lq

∗ exists, we have supp(γ
Lq

∗ ) = [q, 1).

Proof. By Lemma B.2.2, [q, 1) \ supp(γ
Lq

∗ ) is a countable union of disjoint intervals, open in [q, 1).

First assume that at least one of these intervals is of the form (t1, t2) with q ≤ t1 < t2 < 1. By

Lemma B.2.5 and Corollary B.2.6 we know that

E
[
∂xΦ

γ
Lq
∗

(ti, Xti)
2
]

= ti , ξ′′(ti)E
[
∂xxΦ

γ
Lq
∗

(ti, Xti)
2
]

= 1 , i ∈ {1, 2} , (B.2.11)

E
[
∂xΦ

γ
Lq
∗

(t,Xt)
2
]
≥ t ∀t ∈ (t1, t2) . (B.2.12)

Further, for t ∈ (t1, t2), Φ
γ

Lq
∗

solves the PDE

∂tΦγLq
∗

(t, x) +
ξ′′(t)

2
∂xxΦ

γ
Lq
∗

(t, x) = 0

which is simply the heat equation up to a time change. We therefore obtain

Φ
γ

Lq
∗

(t, x) =
Z∼N(0,1)

E
[
Φ
γ

Lq
∗

(t2, x+
√
ξ′(t2)− ξ′(t)Z)

]
, ∀t ∈ (t1, t2].

Differentiating this equation and using dominated convergence (recall that ∂xxΦ
γ

Lq
∗

(t2, x) is bounded

by Proposition 4.2.5), we obtain ∂xxΦ
γ

Lq
∗

(t, x) = EZ∼N(0,1)
[
∂xxΦ

γ
Lq
∗

(t2, x+
√
ξ′(t2)− ξ′(t)Z)

]
.

Because dXt =
√
ξ′′(t) dBt, we can rewrite the last equation as

∂xxΦ
γ

Lq
∗

(t,Xt) = E
[
∂xxΦ

γ
Lq
∗

(t2, Xt2)|Xt

]
.

By Jensen’s inequality,

E
[
∂xxΦ

γ
Lq
∗

(t,Xt)
2
]
≤ E

[
∂xxΦ

γ
Lq
∗

(t2, Xt2)2
]

=
1

ξ′′(t2)
, (B.2.13)

where in the last step we used Eq. (B.2.11). Using Corollary B.1.6 we get, for t ∈ [t1, t2]

E
[
∂xΦ

γ
Lq
∗

(t,Xt)
2
]

= E
[
∂xΦ

γ
Lq
∗

(t1, Xt1)2
]

+

∫ t

t1

ξ′′(s)E
[
∂xxΦ

γ
Lq
∗

(s,Xs)
2
]

ds

≤ t1 +

∫ t

t1

ξ′′(s)

ξ′′(t2)
ds < t ,

where in the last step we used the fact that t 7→ ξ′′(t) is increasing. The last equation is in

contradiction with Eq. (B.2.12), and therefore [q, 1) \ supp(γ
Lq

∗ ) is either empty or consists of a
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single interval (t1, 1).

In order to complete the proof, we need to rule out the case [q, 1)\supp(γ
Lq

∗ ) = (t1, 1). Assume for

sake of contradiction that indeed [q, 1)\supp(γ
Lq

∗ ) = (t1, 1). For t ∈ (t1, 1), let r = r(t) = ξ′(1)−ξ′(t),
and notice that r(t) is decreasing with r(t) = ξ′′(1)(1 − t) + O((1 − t)2) as t → 1. By solving the

Parisi PDE in the interval (t1, 1), we find that for all t ∈ (t1, 1),

∂xΦ
γ

Lq
∗

(t, x) =
Z∼N(0,1)

E

[
sign

(
Z +

x√
r(t)

)]

and therefore

1− E
[
∂xΦ

γ
Lq
∗

(t,Xt)
2
]

= E

[
Q

(
Xt√
r(t)

)]
,

Q(x) ≡ 1−
Z∼N(0,1)

E [sign(x+ Z)]
2
.

Note that 0 ≤ Q(x) ≤ 1 is continuous, with Q(0) = 1. Hence, there exists a numerical constant

δ0 ∈ (0, 1) such that Q(x) ≥ 1/2 for |x| ≤ δ0. Therefore, fixing t∗ ∈ (t1, 1), for any t ∈ (t∗, 1)

1− E
[
∂xΦ

γ
Lq
∗

(t,Xt)
2
]
≥ 1

2
P
[
|Xt| ≤ δ0

√
r(t)

]
(a)

≥ δ0ε(t∗, 1, γ)
√
r(t)

(b)

≥ C
√

1− t ,

where (a) follows by Lemma B.2.7 and (b) holds for some C = C(γ) > 0. We therefore obtain

E
[
∂xΦ

γ
Lq
∗

(t,Xt)
2
]
≤ 1− C

√
1− t, which contradicts Lemma B.2.5 for t close enough to 1.

In the next lemma, we show that minimization of P over L subsumes minimization over Lq. A

priori, one might expect that tuning the value of q could lead to many different minima.

Lemma B.2.10. Suppose γ
Lq

∗ exists. Then γL
∗ = γ

Lq

∗ .

Proof. Let f(t) = E[∂xΦ
γ

Lq
∗

(t,Xt)
2]. First by Proposition B.2.1, it suffices to show that f(t) ≥ t

for all 0 ≤ t ≤ q. Indeed this combined with Corollary B.1.6 and Lemma B.2.5 would imply that
dP
ds ((1− s)γLq

∗ + sγ)|s=0+ ≥ 0 for any γ ∈ L . This suffices as P is convex by Lemma B.1.8.

To show f(t) ≥ t for all 0 ≤ t ≤ q, we first recall that Xt is simply a time-changed Brownian

motion on 0 ≤ t ≤ q while Φ
γ

Lq
∗

solves the time-changed heat equation on the same time interval,

therefore ∂xxΦ
γ

Lq
∗

(t,Xt) = Et[∂xxΦ
γ

Lq
∗

(q,Xq)]. By Jensen’s inequality, it follows that for 0 ≤ t ≤ q,
we have
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E[∂xxΦ
γ

Lq
∗

(t,Xt)
2] ≤ E[∂xxΦ

γ
Lq
∗

(q,Xq)
2]

=
1

ξ′′(q)

≤ 1

ξ′′(t)
.

In the last line we used that ξ′′ is increasing as ξ is a power series with non-negative coefficients.

Next, from Lemma B.2.5 and Lemma B.2.9 it follows that f(q) = q. In light of Corollary B.1.6, we

showed just above that f ′(t) ≤ 1 for t ≤ q. It now follows that f(t) ≥ t for all 0 ≤ t ≤ q which

completes the proof.

B.3 Proofs of Lemmas 4.1.3, 4.1.4, and 4.2.8

We first restate and prove Lemmas 4.1.3 and 4.1.4.

Lemma 4.1.3. For γ∗ ∈ L and q = inf(supp(γ∗)), the following are equivalent:

1. γ∗ is optimizable.

2. P(γ∗) = infγ∈L P(γ).

3. P(γ∗) = infγ∈Lq
P(γ).

Moreover if a minimizer exists in either variational problem just above, then it is unique.

Proof. Lemma B.1.8 immediately implies uniqueness of minimizers. The second statement imme-

diately implies the third, while Lemma B.2.10 provides the converse result. To show that the first

statement implies the third, we observe that Proposition B.2.1 immediately yields

d

ds
P((1− s)γ∗ + sγ)|s=0+ = 0

for any γ ∈ Lq when γ∗ is optimizable; this implies the third statement by again invoking Lemma B.1.8.

It only remains to show that if P(γ∗) = infγ∈L P(γ), then γ∗ is q-optimizable, which follows from

Lemmas B.2.5 and B.2.9.

Lemma 4.1.4. If γU
∗ strictly increases on [q, 1) for q = inf(supp(γU

∗ )), then no overlap gap holds,

i.e. γU
∗ is optimizable.
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Proof. Fix q < t1 < t2 < 1 and define δ(t) = [γU
∗ (t1) − γU

∗ (t)]I(t1,t2)(t). It is easy to see that this

satisfies the assumptions of Proposition B.2.1 with s0 = 1. Letting γs = γU
∗ + sδ,

dP

ds
(γs)

∣∣∣∣
s=0+

= −1

2

∫ t2

t1

ξ′′(t)
(
γU
∗ (t)− γU

∗ (t1))
(
E
[
∂xΦγU

∗
(t,Xt)

2
]
− t
)

dt.

On the other hand, γs ∈ U for s ∈ [0, 1] (since γU
∗ is strictly increasing on [q, 1)), so

∫ t2

t1

ξ′′(t)
(
γU
∗ (t)− γU

∗ (t1))
(
E[∂xΦγU

∗
(t,Xt)

2] − t
)

dt ≤ 0 .

for all t1 < t2. Since γU
∗ (t)− γU

∗ (t1) > 0 strictly for all t > t1, this implies

E[∂xΦγU
∗

(t,Xt)
2] ≤ t

for almost every t, and therefore for every t. The inequality

E[∂xΦγU
∗

(t,Xt)
2] ≥ t

is proved in the same way using δ(t) = [γU
∗ (t2)− γU

∗ (t)]I(t1,t2)(t).

Finally we turn to Lemma 4.2.8, for which we recall some technical results on solutions to SDEs

with non-Lipschitz coefficients. We say the 1-dimensional SDE

dXt = b(t,Xt)dt+ σ(t,Xt)dBt (B.3.1)

satisfies the Yamada-Watanabe criteria if |σ(s, x)−σ(s, y)|2 ≤ 1
|x−y| and b(t, x) is uniformly Lipschitz

in x on compact time-sets.

Proposition B.3.1 ([RY13, Chapter IX, Theorem 3.5 part (ii)]). If the solution Xt to Equa-

tion (B.3.1) satisfies the Yamada-Watanabe criteria, then Xt also satisfies pathwise uniqueness.

Proposition B.3.2 ([IW77, Theorem 1.1]). Let the measurable functions σ1(t, x), σ2(t, x), b1(t, x), b2(t, x)

be such that (σ1, b1), (σ2, b2) satisfy the Yamada-Watanabe criteria. Further suppose that

b1(t, x) ≤ b2(t, x)

holds for all t, x. Let X1
t , X

2
t solve

dXi
t = bi(t,Xt)dt+ σi(t,Xt)dBt, i ∈ {1, 2}.

If X1
0 = X2

0 , then almost surely X1
t ≤ X2

t for all t ≥ 0.
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Lemma 4.2.8. If γ∗ ∈ L is q-optimizable then it satisfies:

E[∂xxΦγ∗(t,Xt)
2] =

1

ξ′′(t)
, t ≥ q, (4.2.7)

E[∂xxΦγ∗(t,Xt)] =

∫ 1

t

γ∗(s)ds, t ∈ [0, 1]. (4.2.8)

Proof. First, (4.2.7) is clear given Corollary B.1.6. To establish (4.2.8), we first show that

d(∂xxΦγ∗(t,Xt)) = −ξ′′(t)γ∗(t)(∂xxΦγ∗(t,Xt))
2dt+ ∂xxxΦγ∗(t,Xt)

√
ξ′′(t)dBt. (B.3.2)

Indeed (B.3.2) follows by using Ito’s formula to derive

d(∂xxΦγ∗(t,Xt)) =

(
∂txxΦγ∗(t,Xt) + ∂xΦγ∗(t,Xt)∂xxxΦγ∗(t,Xt)ξ

′′(t)γ∗(t) +
ξ′′(t)∂xxxxΦγ∗(t,Xt)

2

)
dt

+ ∂xxxΦγ∗(t,Xt)
√
ξ′′(t)dBt

and taking the second derivative with respect to x of the Parisi PDE to obtain

0 = ∂xx

(
∂tΦγ∗(t, x) +

ξ′′(t)

2

(
∂xxΦγ∗(t, x) + γ∗(t)(∂xΦγ∗(t, x))2

))
= ∂txxΦγ∗(t, x) +

ξ′′(t)∂xxxxΦγ∗(t, x)

2
+ ξ′′(t)γ∗(t)

(
(∂xxΦγ∗(t, x))2 + ∂xΦγ∗(t, x)∂xxxΦγ∗(t, x)

)
.

In particular (B.3.2) implies that for all t ∈ [0, 1),

d

dt
E[∂xxΦγ∗(t, x)] = −ξ′′(t)γ∗(t)E[(∂xxΦγ∗(t, x))2] (B.3.3)

= −γ∗(t). (B.3.4)

Therefore to show (4.2.8) it suffices to show limt→1 E[∂xxΦγ∗(t,Xt)] = 0. Recalling that E[(∂xxΦγ∗(t,Xt))
2] =

1
ξ′′(t) is bounded on t ∈ [q, 1], we use the general inequality

E[Y ] ≤ E[Y · IY≥ε] + ε

≤
√

E[Y 2] · P[Y ≥ ε] + ε

which holds for any random variable Y . Taking Y = ∂xxΦγ∗(t,Xt)) and noting that E[Y 2] is

uniformly bounded (independent of t), it suffices to show p-limt→1 ∂xxΦγ∗(t,Xt) = 0. To this end

we recall that Φγ∗(t, x) is continuous on [0, 1]×R and is convex in x, with Φγ∗(1, x) = |x|. It follows



APPENDIX B. PROPERTIES OF THE PARISI PDE AND VARIATIONAL PROBLEM 363

that for any ε > 0,

lim
t→1

sup
|x|≥ε

∂xxΦγ∗(t, x) = 0.

Therefore to establish p-limt→1 ∂xxΦγ∗(t,Xt) = 0 it suffices to show

lim
ε→0

lim
t→1

P[|Xt| ≤ ε] = 0. (B.3.5)

To do this we will use Proposition B.3.2 to show that |Xt| is stochastically larger than |Zt| for

Zt =
∫ t

0

√
ξ′′(t)dBt ∼ N(0, ξ′(t)), which implies (B.3.5). Applying Ito’s formula to (Xt)

2, (Zt)
2 gives

d(Xt)
2 = (ξ′′(t)γ∗(t)Xt∂xΦγ∗(t,Xt) + ξ′′(t))dt+ 2Xt

√
ξ′′(t)dBt,

d(Zt)
2 = ξ′′(t)dt+ 2Zt

√
ξ′′(t)dBt.

We now define Brownian motions B1
t , B

2
t via B1

t = sign(Xt)Bt and B2
t = sign(Zt)dBt. It is

easy to see by symmetry of the above SDEs that these are both Brownian motions. Then taking

Yt = (Xt)
2,Wt = (Zt)

2,

dYt = (ξ′′(t)γ∗(t)
√
Yt∂xΦγ∗(t,

√
Yt) + ξ′′(t))dt+ 2

√
Ytξ′′(t)dB

1
t ,

dWt = ξ′′(t)dt+ 2
√
Wtξ′′(t)dB

2
t .

Here we use the fact that x∂xΦγ∗(t, x) is an even function (because Φγ∗(t, x) is even for any t) to

obtain the first equation. Proposition B.3.1 applies to both SDEs, implying pathwise uniqueness and

hence uniqueness in law for Yt,Wt. Moreover x∂xΦγ∗(t, x) ≥ 0 holds for all (t, x) because Φγ∗(t, x)

is convex and even in x. Hence Proposition B.3.2 applies to the above pair of SDEs, ensuring that

Yt ≥Wt ≥ 0

holds pathwise if B1
t = B2

t . (Here we treat B1
t , B

2
t as unrelated Brownian motions which can be

coupled together, forgetting their definitions based on Bt.) Uniqueness in law now implies that Yt is

stochastically larger than Wt, hence |Xt| is stochastically larger than |Zt|. We conclude that (B.3.5)

holds, completing the proof of Equation (4.2.8) when γ∗ is optimizable.



Appendix C

Deferred Proofs from Chapter 5

C.1 Overlap Concentration of Standard Optimization Algo-

rithms

In this section we prove using Gaussian concentration of measure and Kirszbraun’s theorem that

approximately τ -Lipschitz functions A : HN → BN are (λ, e−cλ,τN ) overlap concentrated. We also

show that common optimization algorithms such as gradient descent, AMP, and Langevin dynamics

are approximately Lipschitz.

C.1.1 Overlap Concentration of Approximately Lipschitz Algorithms

Recall that we identify each Hamiltonian HN with its disorder coefficients (G(p))p∈2N, which we

concatenate into an infinite vector g = g(HN ). We can define a (possibly infinite) distance on these

Hamiltonians by

‖HN −H ′N‖N =
1√
N
‖g(HN )− g(H ′N )‖2. (C.1.1)

We consider algorithms A : HN → BN that are τ -Lipschitz with respect to the ‖·‖N norms, i.e. A
satisfying

‖A(HN )−A(H ′N )‖N ≤ τ‖HN −H ′N‖N . (C.1.2)

for all HN , H
′
N ∈ HN . This is the same notion of Lipschitz as in Theorem 22, though the current

scaling with ‖·‖N norms will be more convenient for proofs.

We will show overlap concentration for the following class of algorithms that relax the Lipschitz

condition to a high probability set of inputs.

364
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Definition C.1.1. Let τ, ν > 0. An algorithm A : HN → BN is (τ, ν)-approximately Lipschitz if

there exists a τ -Lipschitz A′ : HN → BN with

P [A(HN ) = A′(HN )] ≥ 1− ν. (C.1.3)

Proposition C.1.2. If A : HN → BN is τ -Lipschitz, then for all λ > 0 it is
(
λ, exp

(
− λ2

8τ2N
))

overlap concentrated.

Proof. We write A(g) to mean A(HN ) for the Hamiltonian HN with disorder coefficients g = g(HN ).

Let Ai(g) denote the i-th coordinate of A(g), so A(g) = (A1(g), . . . ,AN (g)). Define the gradient

matrix ∇A(g) ∈ RN×N by

∇A(g) =
[
∇A1(g) ∇A2(g) · · · ∇AN (g)

]
.

Because A is τ -Lipschitz, we have for all g,g′ ∈ RN that

λ ≥
‖A(g)−A(g′)‖N
‖g − g′‖N

.

By taking the limit g′ → g from the best direction, we conclude that for all g ∈ RN,

λ ≥ smax(∇A(g)), (C.1.4)

where smax denotes the largest singular value.

Consider any p ∈ [0, 1]. We can generate p-correlated g(1),g(2) ∈ RN by generating i.i.d.

g[0],g[1],g[2] ∈ RN, each with i.i.d. standard Gaussian entries, and setting, for i = 1, 2,

g(i) =
√
pg[0] +

√
1− pg[i].

We will apply Gaussian concentration to the function

F (g[0],g[1],g[2]) = R
(
A(g(0)),A(g(1))

)
,

which is a function of i.i.d. standard Gaussians. For each i ∈ N, let ∇A·,i(g) denote the i-th row of

∇A(g), i.e.

∇A·,i(g) =
[
∂A1

∂gi
(g) ∂A2

∂gi
(g) · · · ∂AN

∂gi
(g)
]
.
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We can compute that

∂F

∂g
[0]
i

(g[0],g[1],g[2]) =

√
p

N

[
∇A·,i(g(1))A(g(2)) +∇A·,i(g(2))A(g(1))

]
, (C.1.5)

∂F

∂g
[1]
i

(g[0],g[1],g[2]) =

√
1− p
N

∇A·,i(g(1))A(g(2)), (C.1.6)

∂F

∂g
[2]
i

(g[0],g[1],g[2]) =

√
1− p
N

∇A·,i(g(2))A(g(1)). (C.1.7)

By the inequality (x+ y) ≤ 2x2 + 2y2, (C.1.5) implies

∂F

∂g
[0]
i

(g[0],g[1],g[2])2 ≤ 2p

N2

[(
∇A·,i(g(1))A(g(2))

)2

+
(
∇A·,i(g(2))A(g(1))

)2
]
.

Similarly, (C.1.6) and (C.1.7) imply

∂F

∂g
[1]
i

(g[0],g[1],g[2])2 ≤ 2(1− p)
N2

(
∇A·,i(g(1))A(g(2))

)2

,

∂F

∂g
[2]
i

(g[0],g[1],g[2])2 ≤ 2(1− p)
N2

(
∇A·,i(g(2))A(g(1))

)2

.

Summing over the last three inequalities and over i ∈ N gives∥∥∥∇F (g[0],g[1],g[2])
∥∥∥2

2
≤ 2

N2

∑
i∈N

(
∇A·,i(g(1))A(g(2))

)2

+
2

N2

∑
i∈N

(
∇A·,i(g(2))A(g(1))

)2

=
2

N2

∥∥∥∇A(g(1))A(g(2))
∥∥∥2

2
+

2

N2

∥∥∥∇A(g(2))A(g(1))
∥∥∥2

2
.

Since A(g(1)),A(g(2)) ∈ BN , this implies

∥∥∥∇F (g[0],g[1],g[2])
∥∥∥2

2
≤ 2

N
smax

(
∇A(g(1))

)2

+
2

N
smax

(
∇A(g(2))

)2

≤ 4τ2

N

for all g[0],g[1],g[2] ∈ RN. The last inequality uses (C.1.4). By Gaussian concentration,

P
[∣∣∣F (g[0],g[1],g[2])− EF (g[0],g[1],g[2])

∣∣∣ ≥ λ] ≤ exp

(
− λ2

8τ2
N

)
.

Note that Gaussian concentration of measure applies in infinite-dimensional abstract Weiner spaces

as explained just before [Led01, Theorem 2.7] regarding Equation (2.10) therein. Alternatively if one

wishes to avoid infinite-dimensional Gaussian measures, it suffices to prove the present proposition

for the (still τ -Lipschitz) conditional expectations

Ap(HN ) = E[A(HN )|G(2), . . . ,G(p)]
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and observe that limp→∞Ap(HN ) = A(HN ) holds almost surely and in L1.

Proposition C.1.3. Suppose A : HN → BN is (τ, ν)-approximately Lipschitz. Then, for any λ > 0,

it is
(
λ, exp

(
− (λ−4ν)2+

8τ2 N
)

+ 2ν
)

overlap concentrated.

Proof. If λ ≤ 4ν the result is trivial, so suppose λ > 4ν. Let A′ be such that (C.1.3) holds.

Let p ∈ [0, 1], and let H
(1)
N , H

(2)
N be p-correlated. We have∣∣∣R(A(H

(1)
N ),A(H

(2)
N )
)
−R

(
A′(H(1)

N ),A′(H(2)
N )
)∣∣∣ ≤ 2

pointwise. Furthermore, (C.1.3) implies that

A(H
(1)
N ) = A′(H(1)

N ) and A(H
(2)
N ) = A′(H(2)

N ) (C.1.8)

with probability at least 1− 2ν. So,∣∣∣ER(A(H
(1)
N ),A(H

(2)
N )
)
− ER

(
A′(H(1)

N ),A′(H(2)
N )
)∣∣∣ ≤ 4ν. (C.1.9)

By Proposition C.1.3, we have∣∣∣R(A′(H(1)
N ),A′(H(2)

N )
)
− ER

(
A′(H(1)

N ),A′(H(2)
N )
)∣∣∣ ≤ λ− 4ν (C.1.10)

with probability at least 1−exp
(
− (λ−4ν)2

8τ2 N
)

. The events (C.1.8) and (C.1.10) occur simultaneously

with probability at least 1− exp
(
− (λ−4ν)2

8τ2 N
)
− 2ν. On this event, (C.1.9) and (C.1.10) imply

∣∣∣R(A(H
(1)
N ),A(H

(2)
N )
)
− ER

(
A(H

(1)
N ),A(H

(2)
N )
)∣∣∣ ≤ λ,

as desired.

C.1.2 Standard Deterministic Optimization Algorithms are Approximately

Lipschitz

Fix constants T0, T, k0 ∈ N and r ∈ [1,
√

2). We take as initialization a sequence (x−T0 , . . . ,x−1)

of vectors in BN , which is independent of the Hamiltonian HN . We consider rather general k0-th

order optimization algorithms which compute

xt+1 = ft

(
(xs)−T0≤s≤t ,

(
∇kHN (xs)

)
1≤k≤k0,−T0≤s≤t

)
, 0 ≤ t ≤ T − 1 (C.1.11)
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and output xT . Here, (f0, f1, . . . , fT−1) is a deterministic sequence of functions such that f0, . . . , fT−2

have codomain rBN , fT−1 has codomain BN , and these functions are all Lipschitz in the sense that

there exist constants c0, . . . , cT−1 > 0 such that∥∥∥ft ((xs)−T0≤s≤t , (A
s
k)1≤k≤k0,−T0≤s≤t

)
− ft

(
(ys)−T0≤s≤t , (B

s
k)1≤k≤k0,−T0≤s≤t

)∥∥∥
N

≤ ct

[
t∑

s=−T0

‖xs − ys‖N +

k0∑
k=1

t∑
s=−T0

‖Ask −Bsk‖op

]
. (C.1.12)

As we review below, the majority of standard convex optimization algorithms fall into this class.

However we remark that some optimization algorithms for highly smooth and convex functions, such

as Newton’s method and the recent advances [GDG+19, Nes21], do not fall into this class. This is

because they require inverting a Hessian matrix or solving another inverse problem each iteration.

Example C.1.1. Projected gradient descent is of the form in (C.1.11) via

fk = ρ
(
xk − ηk∇HN (xk)

)
.

Here ρ is the projection map onto either BN or CN and the learning rate parameters (η1, . . . , ) are

arbitrary constants. Other variants such as accelerated gradient descent, ISTA, and FISTA (see e.g.

[Bub15]) can similarly be expressed in the form (C.1.11).

Example C.1.2. Approximate message passing (AMP) with arbitrary Lipschitz non-linearities

can be expressed in the form of (C.1.11). Given a deterministic sequence of Lipschitz functions

ft : Rt+1 → R for each t ≥ 0, the AMP iterates are given by

xt+1 = ∇H̃N (ft(x
0, . . . ,xt))−

t∑
s=1

dt,sfs−1(x0, . . . ,xs−1), (C.1.13)

dt,s = ξ′′
(
R
(
ft(x

0, . . . ,xt), fs−1(x0, . . . ,xs−1)
))
· E
[
∂ft
∂Xs

(X0, . . . , Xt)

]
. (C.1.14)

Here X0 ∼ p0 is a uniformly bounded random variable, and x0 has i.i.d. coordinates generated

from the same law. The non-linearities ft are applied entry-wise as functions ft : RN×(t+1) → RN .

The sequence (Xt)t≥1 is an independent centered Gaussian process with covariance Qt,s = E[XtXs]

defined recursively by

Qt+1,s+1 = ξ′
(
E
[
ft
(
X0, . . . , Xt

)
fs
(
X0, . . . , Xs

)])
, t, s ≥ 0. (C.1.15)

It is not difficult to see that the iteration (C.1.13) is captured by (C.1.11), by defining the non-

linearities ft(x
0, . . . ,xt) as additional iterates x` so that their gradients can be evaluated.

Theorem 41. For any functions f0, . . . , fT−1 as above and any initialization (x−T0 , . . . ,x−1) of
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vectors in BN , there exist constants τ, c such that the map HN → xT defined by the iteration (C.1.11)

is (τ, ν)-approximately Lipschitz with ν = e−cN .

Proof. We will first show the existence of τ such that the map HN → xT , with domain restricted to

KN (recall Proposition C.2.1), is τ -Lipschitz with respect to the ‖·‖N norms. Consider running the

iteration (C.1.11) on two Hamiltonians HN , H
′
N ∈ KN with the same initializaton (x−T0 , . . . ,x−1);

call the respective iterates x0, . . . ,xT and y0, . . . ,yT . A straightforward induction using Proposi-

tion C.2.2 and (C.1.12) gives constants C0, . . . , CT such that for 0 ≤ t ≤ T ,

∥∥xt − yt∥∥
N
≤ Ct‖HN −H ′N‖N .

In particular, we may take τ = CT .

By Kirszbraun’s theorem, there exists a τ -Lipschitz A′ such that A(HN ) = A′(HN ) for HN ∈
KN . By Proposition C.2.1, there exists c such that P(HN ∈ KN ) ≥ 1 − e−cN . Therefore A is

(τ, ν)-approximately Lipschitz for ν = e−cN .

The following corollary follows immediately from Theorem 41 and Proposition C.1.3.

Corollary C.1.4. For any functions f0, . . . , fT−1 as above and any initialization (x−T0 , . . . ,x−1)

of vectors in BN , for every λ > 0 there exists a constant cλ such that for sufficiently large N , the

map HN → xT defined by the iteration (C.1.11) is (λ, e−cλN ) overlap concentrated.

C.1.3 Reflected Langevin Dynamics are Approximately Lipschitz

Here we show that a natural version of Langevin dynamics, run for bounded time, is approximately

Lipschitz for almost any realization of the driving Brownian motion and hence falls into the scope

of our main results. The Langevin dynamics for a Hamiltonian HN are given by the diffusion

dXt =
β

2
∇HNdt+ dBt.

When Xt can range over all of space, the SDE above may explode to infinity in finite time. We

therefore modify the näıve dynamics above by enforcing an inward-normal reflecting boundary for

the convex body K = rBN or K = rCN . We refer the reader to [Pil14] for the relevant definitions.

In short, the result is a stochastic differential equation of the form

dXt =
β

2
∇HN (Xt)dt+ dBt − vtd`t. (C.1.16)

Here `t is non-decreasing and only increases at times when Xt ∈ ∂K. Meanwhile vt ∈ RN is contained

in the outward normal cone of Xt ∈ ∂K for all t. Note that there may be several inequivalent choices
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for such a reflected process; our results apply to any of these choices. The Langevin dynamics we

consider consists of solving (C.1.16) for a constant time T starting from X0 which is independent of

HN , and then projecting XT onto BN or CN .

The corresponding Skorokhod problem was shown to have a Lipschitz solution for convex poly-

hedra such as rCN in [DI91, Proposition 2.2]. In this case, solving (C.1.16) reduces to solving an

SDE with Lipschitz coefficients as explained in [Pil14, Section 2.2]. As a result, the solutions to

(C.1.16) from different starting points X0 (but with a shared Brownian motion) can be coupled

together to give a continuous stochastic flow (see [RW94, Chapter 5, Section 13]). In the case of a

smooth boundary such as BN , although the Skorokhod problem does not have a Lipschitz solution,

the results of [LS84] imply the existence of a stochastic flow as explained in [Bur09].

Lemma C.1.5. Let Xt, Yt solve (C.1.16) inside a convex body K with the same Brownian motion.

Then ∫ t

0

〈
Xt − Yt, vXt d`Xt − vYt d`Yt

〉
≥ 0.

Here (vXt , `
X
t ) denote the reflecting boundary terms for Xt and similarly for Yt.

Proof. Recall that `Xt , `
Y
t are increasing. Moreover 〈Xt − Yt, vXt 〉 ≥ 0 whenever Xt ∈ ∂K by the

definition of the normal cone, and similarly 〈Yt − Xt, v
Y
t 〉 ≥ 0 whenever Yt ∈ ∂K. The result

follows.

Theorem 42. Both variants of Langevin dynamics above define, for any initialization X0 ∈ BN
and for almost every path (Bt)t∈[0,T ], a (τ, ν) approximately Lipschitz map A : HN → BN with

τ = Oξ,h,T (1) and ν ≤ e−Ω(N).

Proof. Fix Hamiltonians

HX
N , H

Y
N ∈ KN ⊆ HN

satisfying
∥∥HX

N −HY
N

∥∥
N

= ∆. Let Xt, Yt be the solutions to (C.1.16) driven by a shared Brownian

motion with HX
N and HY

N for HN respectively, and with shared initial condition X0 = Y0. We will

show that

‖XT − YT ‖N ≤ C∆

holds almost surely for some constant C = C(ξ, h, T ). This suffices to imply the result. (Note that

A might not be defined on all of HN , but it suffices for it to be well-defined and Lipschitz on KN .)

First observe that Xt−Yt is a finite variation process, i.e. it has no Brownian component. With
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`X and `Y the corresponding finite variation processes in (C.1.16), Ito’s formula gives

1

2
d‖Xt − Yt‖22 = 〈Xt − Yt,dXt − dYt〉dt

= 〈Xt − Yt,−vXt d`Xt + vYt d`Yt 〉dt+ β〈Xt − Yt,∇HX
N (Xt)−∇HY

N (Yt)〉dt.

Integrating and using Lemma C.1.5, we find

‖Xt − Yt‖22 ≤
∫ t

0

〈Xs − Ys,−vXs d`Xs + vYs d`Ys 〉ds+ β

∫ t

0

〈Xs − Ys,∇HX
N (Xs)−∇HY

N (Ys)〉ds

≤ β
∫ t

0

〈Xs − Ys,∇HX
N (Xs)−∇HY

N (Ys)〉ds.

By Proposition C.2.2 with C = C ′1,

∥∥∇HX
N (Xt)−∇HY

N (Yt)
∥∥
N
≤ C(∆ + ‖Xt − Yt‖N ).

Using AM-GM and rescaling, we obtain for each t ∈ [0, T ] the self-bounding inequality

‖Xt − Yt‖2N ≤ C
∫ t

0

∆‖Xs − Ys‖N + ‖Xs − Ys‖2Ndt

≤ 2C

∫ t

0

∆2 + ‖Xs − Ys‖2Ndt

≤ 2C∆2T + 2C

∫ t

0

‖Xs − Ys‖2Ndt.

Grönwall’s inequality now implies ‖XT − YT ‖2N ≤ 2C∆2Te2CT . This concludes the proof.

C.2 Bounds on Hamiltonian Derivatives

In this section we will prove high-probability bounds on the derivatives of HN , including Proposi-

tion 5.2.3. We write HN (σ) = 〈h,σ〉+ H̃N (σ) for

H̃N (σ) =
∑
p∈2N

γpHN,p(σ),

where the p-tensor component is

HN,p(σ) =
1

N (p−1)/2
〈G(p),σ⊗p〉.

By slight abuse of notation, we also denote 1
N(p−1)/2 G(p) = HN,p.
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Proposition C.2.1. There exists universal constants c, C > 0 such that for all sufficiently large N ,

‖HN,p‖op ≤ C
√
p

for all p ∈ 2N with probability at least 1− e−cN

Proof. By [BASZ20, Equation B.6] with k = p, we have for some universal constant K and all

p ∈ 2N,

P
[
‖HN,p‖op ≥ 2K

√
p
]
≤ e−K

2pN/2.

Take C = 2K. The result follows by a union bound over p ∈ 2N.

Proof of Proposition 5.2.3. Let KN ⊆ HN be the set of Hamiltonians HN satisfying the conclusion

of Proposition C.2.1. We will take

Ck = C
∑

p∈2N,p≥k
γpr

p−kpk
√
p+ hI{k = 1},

where C is given by Proposition C.2.1 and pk = p(p−1) · · · (p−k+1) denotes the k-th falling power

of p. This is finite because r <
√

2 and
∑
p∈2N γ

2
p2p <∞ implies lim supp→∞

γp+2

γp
≤ 1

2 .

If HN ∈ KN , for each σ1, . . . ,σk ∈ SN we have

1

N

〈
∇kH̃N (x),σ1 ⊗ · · · ⊗ σk

〉
=

∑
p∈2N,p≥k

γp
N

〈
∇kHN,p(x),σ1 ⊗ · · · ⊗ σk

〉
=

∑
p∈2N,p≥k

γpp
k

N

〈
HN,p,x

⊗(p−k) ⊗ σ1 ⊗ · · · ⊗ σk
〉

≤
∑

p∈2N,p≥k
γpr

p−kpk‖HN,p‖op

≤ C
∑

p∈2N,p≥k
γpr

p−kpk
√
p,

by Proposition C.2.1. Thus ∥∥∥∇kH̃N (x)
∥∥∥

op

≤ C
∑

p∈2N,p≥k
γpr

p−kpk
√
p.

For k ≥ 2, ∇kHN (x) = ∇kH̃N (x), and for k = 1, ‖∇HN (x)‖
op
≤
∥∥∥∇H̃N (x)

∥∥∥
op

+ h. This proves
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the first claim. Similarly,

1

N

〈
∇kHN (x)−∇kHN (y),σ1 ⊗ · · · ⊗ σk

〉
=

∑
p∈2N,p≥k

γp
N

〈
∇kHN,p(x)−∇kHN,p(y),σ1 ⊗ · · · ⊗ σk

〉
=

∑
p∈2N,p≥k

γpp
k

N

〈
HN,p,

(
x⊗(p−k) − y⊗(p−k)

)
⊗ σ1 ⊗ · · · ⊗ σk

〉

=
∑

p∈2N,p≥k

γpp
k

N

p−k−1∑
j=0

〈
HN,p, (x− y)⊗ x⊗(p−k−1−j) ⊗ y⊗j ⊗ σ1 ⊗ · · · ⊗ σk

〉
≤

∑
p∈2N,p≥k

γpr
p−k−1pk(p− k)‖x− y‖N‖HN,p‖op

≤ Ck+1‖x− y‖N ,

so
∥∥∇kHN (x)−∇kHN (y)

∥∥
op
≤ Ck+1‖x− y‖N , proving the second claim.

Proposition C.2.2. Fix a model (ξ, h) and a constant r ∈ [1,
√

2). Let KN be given by Propo-

sition 5.2.3. There exists a sequence of constants (C ′k)k≥1 independent of N such that for all

HN , H
′
N ∈ KN and x,y ∈ RN with ‖x‖N , ‖y‖N ≤ r,∥∥∇kHN (x)−∇kH ′N (y)

∥∥
op
≤ C ′k (‖x− y‖N + ‖HN −H ′N‖N ) ,

where ‖HN −H ′N‖N is defined by (C.1.1).

Note that when ‖HN −H ′N‖N is infinite, this proposition is vacuously true.

Proof. We have that

∥∥∇kHN (x)−∇kH ′N (y)
∥∥

op
≤
∥∥∇kHN (x)−∇kH ′N (x)

∥∥
op

+
∥∥∇kH ′N (x)−∇kH ′N (y)

∥∥
op
,

and by (5.2.8), ∥∥∇kH ′N (x)−∇kH ′N (y)
∥∥

op
≤ Ck+1‖x− y‖N .

For all σ1, . . . ,σk ∈ SN , we have

1

N

〈
∇kHN (x)−∇kH ′N (x),σ1 ⊗ · · · ⊗ σk

〉
=

∑
p∈2N,p≥k

γp
N

〈
∇kHN,p(x)−∇kH ′N,p(x),σ1 ⊗ · · · ⊗ σk

〉
=

∑
p∈2N,p≥k

γpp
k

N

〈
HN,p −H ′N,p,x⊗(p−k) ⊗ σ1 ⊗ · · · ⊗ σk

〉
≤

∑
p∈2N,p≥k

γpr
p−kpk

∥∥HN,p −H ′N,p
∥∥

op
.
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Moreover,

∥∥HN,p −H ′N,p
∥∥

op
=

1

N (p+1)/2
max

σ1,...,σp∈SN
〈G(p) −G′

(p)
,σ1 ⊗ · · · ⊗ σp〉

≤ 1√
N

∥∥∥G(p) −G′
(p)
∥∥∥

2

≤ ‖HN −H ′N‖N .

Thus we have

1

N

〈
∇kHN (x)−∇kH ′N (x),σ1 ⊗ · · · ⊗ σk

〉
≤

∑
p∈2N,p≥k

γpr
p−kpk · ‖HN −H ′N‖N .

Because this holds for all σ1, . . . ,σk ∈ SN , we have

∥∥∇kHN (x)−∇kH ′N (x)
∥∥

op
≤

∑
p∈2N,p≥k

γpr
p−kpk · ‖HN −H ′N‖N .

The result follows by taking C ′k to be the larger of Ck+1 and
∑
p∈2N,p≥k γpr

p−kpk.

C.3 Explicit Formula for the Spherical Algorithmic Thresh-

old

In this section, we will prove Proposition 5.2.2, which gives an explicit formula for ALGSp
ξ,h.

We first remark that the q̂ defined in the second case of Proposition 5.2.2 exists and is unique.

Define f(q) = qξ′′(q)−ξ′(q) =
∑
p∈2N p(p−2)γ2

pq
p−1. If we are in the second case of the proposition,

then h2 + ξ′(1) < ξ′′(1), so f(1) > h2. Since f(0) = 0 ≤ h2, existence of q̂ follows from the

Intermediate Value Theorem. Moreover, f(1) > h2 ≥ 0 implies γp > 0 for some p > 2, so f(q) is

strictly increasing for q ∈ [0, 1]. This implies uniqueness.

Recall that the spherical Parisi functional PSp (5.2.2) is defined in terms of a function Bζ(t) =

B −
∫ 1

t
ξ′′(q)ζ(q) dq. As (B, ζ) ranges over K (ξ), Bζ(t) ranges over all continuous, nondecreas-

ing functions from [0, 1] to R>0. We can thus reparametrize the minimizaton (5.2.5) as one over

continuous and nondecreasing B : [0, 1] → R>0. By slight abuse of notation, for continuous and

nondecreasing B : [0, 1]→ R>0 define

PSp(B) = PSp
ξ,h(B) =

1

2

[
h2

B(0)
+

∫ 1

0

(
ξ′′(q)

B(q)
+B(q)

)
dq.

]
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Proof of Proposition 5.2.2. We first handle the case h = 0. By AM-GM,

PSp(B) =
1

2

∫ 1

0

(
ξ′′(q)

B(q)
+B(q)

)
dq ≥

∫ 1

0

ξ′′(q)1/2 dq.

Equality holds when B(q) = ξ′′(q)1/2 for all q ∈ [0, 1]. However, this requires B(0) = 0, so this

objective is not attained, though approximations to this B get arbitrarily close. Thus ALGSp =∫ 1

0
ξ′′(q)1/2 dq. We will show this ALGSp equals the value claimed. If γp > 0 for some p > 2, then

ξ′(1) < ξ′′(1), so we are in the second case of the proposition. Since q̂ = 0, we are done. Otherwise,

γp = 0 for all p > 2, and ξ′(1) = ξ′′(1). Then ξ′′(q) is constant, so ALGSp = ξ′′(1)1/2 = ξ′(1)1/2 as

claimed.

Otherwise, h > 0. We extend the definition of q̂ to

q̂ = sup
{
q ∈ [0, 1] : h2 + ξ′(q) ≥ qξ′′(q)

}
.

This gives q̂ = 1 in the first case of the proposition, and matches the definition of q̂ in the second

case. Note that q̂ > 0. Define

B̂ =

(
h2 + ξ′(q̂)

q̂

)1/2

.

We will prove both cases simultaneously by showing that for any continuous and nondecreasing

B : [0, 1]→ R>0, we have

PSp(B) ≥ q̂1/2
(
h2 + ξ′(q̂)

)1/2
+

∫ 1

q̂

ξ′′(q)1/2 dq,

with equality if and only if

B(q) =

B̂ q ≤ q̂,

ξ′′(q)1/2 q > q̂.

It is easy to check that this B is continuous and nondecreasing (i.e. if q̂ < 1, then B̂ = ξ′′(q̂)1/2)

and that it corresponds to the equality cases claimed in the proposition. By AM-GM,

1

2

∫ 1

q̂

(
ξ′′(q)

B(q)
+B(q)

)
dq ≥

∫ 1

q̂

ξ′′(q)1/2 dq, (C.3.1)

with equality if and only if B(q) = ξ′′(q)1/2 on (q̂, 1]. Define the truncated Parisi operator

PSp,q̂(B) =
1

2

[
h2

B(0)
+

∫ q̂

0

(
ξ′′(q)

B(q)
+B(q)

)
dq

]
.

Let B̃ : [0, q̂]→ R>0 be given by B̃(q) = B̂, and note that PSp,q̂(B̃) = q̂1/2
(
h2 + ξ′(q̂)

)1/2
. We will
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show that for continuous and nondecreasing B : [0, q̂] → R>0, we have PSp,q̂(B) ≥ PSp,q̂(B̃), with

equality if and only if B ≡ B̃ on [0, q̂]. Along with (C.3.1), this implies the conclusion. We consider

two cases.

Case 1: B(0) < B̂. Define

q̃ = sup
{
q ∈ [0, q̂] : B(q) ≤ B̂

}
.

It is possible that q̃ = q̂. For q ∈ [q̃, q̂], we have B(q) ≥ B̂, so

∫ q̂

q̃

(
ξ′′(q)

B(q)
+B(q)

)
−
∫ q̂

q̃

(
ξ′′(q)

B̂
+ B̂

)
=

∫ q̂

q̃

(
1

B̂
− 1

B(q)

)(
B(q)B̂ − ξ′′(q)

)
dq.

Because

B(q)B̂ ≥ B̂2 ≥ h2 + ξ′(q̂)

q̂
≥ ξ′′(q̂) ≥ ξ′′(q),

we have ∫ q̂

q̃

(
ξ′′(q)

B(q)
+B(q)

)
≥
∫ q̂

q̃

(
ξ′′(q)

B̂
+ B̂

)
. (C.3.2)

Moreover, for q ∈ [0, q̃], we have B(q) ≤ B̂, so

2
(
PSp,q̃(B)− PSp,q̃(B̃)

)
= h2

(
1

B(0)
− 1

B̂

)
−
∫ q̃

0

(
B(q)B̂ − ξ′′(q)

)( 1

B(q)
− 1

B̂

)
dq

≥ h2

(
1

B(0)
− 1

B̂

)
−
∫ q̃

0

(
B̂2 − ξ′′(q)

)( 1

B(q)
− 1

B̂

)
dq

= h2

(
1

B(0)
− 1

B̂

)
−
∫ q̃

0

(
h2 + ξ′(q̂)

q̂
− ξ′′(q)

)(
1

B(q)
− 1

B̂

)
dq

≥ h2

(
1

B(0)
− 1

B̂

)
−
∫ q̃

0

(
h2 + ξ′(q̂)

q̂
− ξ′′(q)

)(
1

B(0)
− 1

B̂

)
dq

=

(
1

B(0)
− 1

B̂

)[
h2 −

∫ q̃

0

(
h2 + ξ′(q̂)

q̂
− ξ′′(q)

)
dq

]

≥
(

1

B(0)
− 1

B̂

)[
h2 −

∫ q̂

0

(
h2 + ξ′(q̂)

q̂
− ξ′′(q)

)
dq

]
= 0.

Thus PSp,q̃(B) ≥ PSp,q̃(B̃), with equality only if q̃ = q̂ and B(q) = B̂ for all q ∈ [0, q̃]. Combining

this with (C.3.2) gives that PSp,q̂(B) ≥ PSp,q̂(B̃), with equality only if B ≡ B̃ on [0, q̂].
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Case 2: B(0) ≥ B̂. In this case, B(q) ≥ B̂ for all q ∈ [0, q̂]. So,

2
(
PSp,q̂(B)− PSp,q̂(B̃)

)
= −h2

(
1

B̂
− 1

B(0)

)
+

∫ q̂

0

(
B(q)B̂ − ξ′′(q)

)( 1

B̂
− 1

B(q)

)
dq

≥ −h2

(
1

B̂
− 1

B(0)

)
+

∫ q̂

0

(
B̂2 − ξ′′(q)

)( 1

B̂
− 1

B(q)

)
dq

= −h2

(
1

B̂
− 1

B(0)

)
+

∫ q̂

0

(
h2 + ξ′(q̂)

q̂
− ξ′′(q)

)(
1

B̂
− 1

B(q)

)
dq

≥ −h2

(
1

B̂
− 1

B(0)

)
+

∫ q̂

0

(
h2 + ξ′(q̂)

q̂
− ξ′′(q)

)(
1

B̂
− 1

B(0)

)
dq

=

(
1

B̂
− 1

B(0)

)[
−h2 +

∫ q̂

0

(
h2 + ξ′(q̂)

q̂
− ξ′′(q)

)
dq

]
= 0.

For equality to hold, we must have B(q) = B̃ for all q ∈ [0, q̂], so B ≡ B̃ on [0, q̂].


