
STAT 212 Problem Set 1.
—

Due: Friday, February 7th at 11:59PM

Instructions: Collaboration with your classmates is encouraged. Please identify ev-
eryone you worked with at the beginning of your solution PDF (e.g. Collaborators: Alice,
Bob). Your solutions should be written entirely by you, even if you collaborated to solve
the problems. The first person to report each typo in this problem set (by emailing me and
Somak) will receive 1 extra point; more serious mistakes will earn more points.

1. Let C([0, 1]) = {f : [0, 1] → R continuous}. For f, g ∈ C([0, 1]), define

dsup(f, g) = sup
x∈[0,1]

|f(x)− g(x)|.

• Prove that dsup(·, ·) defines a metric on C([0, 1]).

• A metric space (X, d) is defined to be complete if every Cauchy sequence is con-
vergent. Prove that (C([0, 1]), dsup) is a complete metric space.

• A metric space (X, d) is defined to be separable if there exists a countable set
S ⊆ X which is dense in (X, d). (A subset S is dense if for all x ∈ X and ε > 0,
there exists y ∈ S such that d(x, y) < ε. Prove that (C([0, 1]), dsup) is separable.

Hint: Construct functions with rational values at points of the form i/n, and
interpolate linearly otherwise.

A metric space that is both complete and separable is called a Polish space. For the
purposes of probability theory, Polish spaces enjoy many of the nice properties of R.
This will be very useful in our later study of Brownian Motion, which can be defined
as a “C([0, 1])-valued random variable”.

2. Let (Ω,F ,P) be a probability space.

• Let {Fα : α ∈ I} be any collection of sub-σ-algebras of F . Prove that ∩α∈IFα is
a σ-algebra.

• Let X be a random variable on (Ω,F ,P). By definition, X is measurable with
respect to a σ-algebra G if {X ∈ A} ∈ G for all Borel subsets A of R. Consider
the collection

C = {G ⊂ F : G is aσ − algebra, X isG −measurable}.

It follows from the previous part that ∩G∈CG is a σ-algebra. It is called the ‘σ-
algebra generated by X’, and is often denoted σ(X). By definition, it is the
smallest sigma algebra with respect to which X is measurable.

Prove that σ(X) consists exactly of the sets {X ∈ A} for Borel A ⊆ R.

3. Let {Xn : n ≥ 1}, X be random variables on (Ω,F ,P). Prove that Xn
P→ X if and only

if any subsequence of Xn has a further subsequence converging to X almost surely.
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4. We showed in class that if ν, µ are finite measures on the same sigma-algebra such that

0 ≤ ν(S) ≤ µ(S) (1)

for all measurable sets S, then there exists a [0, 1]-valued measurable function f such
that ν(S) =

∫
S
fdµ for all S. Note that given a general pair (ν, µ) of finite measures,

the pair (ν, ν + µ) always obeys (1). By applying the result from class to this setup,
show the following stronger forms of the Radon–Nikodym theorem:

(a) If ν ≪ µ (i.e. ν(S) = 0 whenever µ(S) = 0), then there exists a non-negative
integrable function f such that ν(S) =

∫
S
fdµ for all S.

(b) In complete generality, there exists a non-negative integrable function f and finite
measure θ such that

ν(S) = θ(S) +

∫
S

fdµ (2)

for all measurable sets S. Furthermore, one can arrange that θ and µ are mutually
singular : there exists a measurable set S∗ with θ(S∗) = 0 and µ(Sc

∗) = 0. (Hint:
consider the set where the function f coming from (ν, ν + µ) equals 1.)

(c) Recall that in class, we showed f is unique in the absolutely continuous case. Show
the decomposition (2) is also unique, i.e. if (θ̃, f̃) is another such decomposition
then θ = θ̃ as measures, and f = f̃ holds µ-almost everywhere.

5. Let (Xi,Fi)i∈N be an adapted process of real-valued random variables. Let f : R → R
be a convex function such that for some fixed constants A,B we have

|f(x)| ≤ A|x|+B, ∀x ∈ R. (3)

Show that:

• If (Xi,Fi)i∈N is a martingale then (f(Xi),Fi)i∈N is a submartingale.

• If (Xi,Fi)i∈N is a submartingale and if f is non-decreasing then (f(Xi),Fi)i∈N is
also a submartingale.

• Both of the previous statements may be false, if the assumption (3) is dropped.

6. A Galton-Watson branching process models the growth of a population, and can be
formally described as follows. Let {X(i, t) : i ≥ 1, t ≥ 1} be an array of iid Z≥0 valued
random variables satisfying m := E[X(1, 1)] ∈ (0,∞). Define Z0 = 1 and

Zt+1 =
Zt∑
i=1

X(i, t+ 1).

• Prove that Mt = Zt/m
t is a martingale with respect to the natural filtration

Ft = σ(Z0, · · · , Zt). Further, prove that E[Zt] = mt.

• Conclude that Mt converges to a non-negative random variable M∞ almost surely,
with E[M∞] ≤ 1.

• Show by example that both E[M∞] = 1 and E[M∞] < 1 are possible.
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Optional questions (not graded)

• Let A,B be two events such that P (B > 0). Denote G to be the sigma-algebra
generated by B. Prove that

P (A|G)(ω) =

{
P (A∩B)
P (B)

ω ∈ B
P (A∩Bc)
P (Bc)

otherwise

• Let X be a square-integrable random variable. Let F be a sub-algebra. Prove that

Var(X) = E(Var(X|F)) + Var(E(X|F)).

• If S ⊆ R is a Borel set, prove that for any ϵ > 0, there exists a compact set K ⊆ S
such that µ(K) ≥ µ(S)− ϵ. (Hint: consider the family of S such that both S and its
complement have this property. Prove this family itself forms a σ-algebra.)

• A related proof of the Radon–Nikodym theorem goes by considering the quadratic
objective

V (f) = 2

∫
fdν −

∫
f 2dµ.

As in class, let’s assume ν(S) ≤ µ(S) for all measurable sets S, and aim to find a
[0, 1]-valued Radon–Nikodym derivative.

1. Explain why if one assumes the Radon–Nikodym theorem, then V is maximized
by the Radon–Nikodym derivative f = dν/dµ.

2. Show that supf :Ω→[0,1] V (f) is attained, by considering a rapidly convergent se-
quence of approximate maximizers. (Hint: it may help to prove that if V (fn) ≈
V (fm) are near-maximal, then fn ≈ fm in L2, by considering V

(
fn+fm

2

)
. The

intuition here is that V is strictly concave.)

3. Letting f∗ attain the maximum value of V , show that f∗ yields a Radon–Nikodym
derivative.
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