
STAT 212 Problem Set 3.
—

Due: Friday, March 7th at 11:59PM

Instructions: Collaboration with your classmates is encouraged. Please identify ev-
eryone you worked with at the beginning of your solution PDF (e.g. Collaborators: Alice,
Bob). Your solutions should be written entirely by you, even if you collaborated to solve
the problems. The first person to report each typo in this problem set (by emailing me and
Somak) will receive 1 extra point; more serious mistakes will earn more points.

In all problems below, Bt denotes standard Brownian motion.

1. In this problem, you will complete the construction of Brownian motion from class.

(i) Show by induction on k that for each k ≥ 1, the random function B
(k)
t obeys

the distributional conditions of Brownian motion, restricted to the set of times
2−kZ ∩ [0, 1].

(ii) Show that the limiting function Bt = limk→∞B
(k)
t we constructed obeys the dis-

tributional conditions of Brownian motion at all real times t ∈ [0, 1]. (Hint: in
approximating real numbers by dyadic rationals, it may help to recall that almost
sure convergence of scalar random variables implies convergence in distribution.)

2. In this problem, you will investigate the maximum absolute value of Brownian motion.

(i) Prove that f 7→ maxt∈[0,1] |f(t)| is measurable on f ∈ C([0, 1]), relative to the
usual σ-field on the latter space. Conclude that maxt∈[0,1] |Bt| is a bona-fide
random variable.

(ii) Prove that E[maxt∈[0,1] |Bt|] < ∞.

(iii) Establish the stronger estimate

P
[
max
0≤t≤1

|Bt| > λ
]
≤ Ce−cλ2

for universal constants C, c > 0.

(iv) Show that |Bt| almost surely attains its maximum value on t ∈ [0, 1] at exactly
one value of t.

Hints: For part (ii), the estimates involved in constructing Brownian Motion in class
may be useful. For part (iii), the reflection principle may help. For part (iv), you may
want to show that P[max0≤t≤a |Bt| = maxa≤t≤1 |Bt|] = 0 for each fixed a ∈ [0, 1].

3. Planar Brownian motion is defined to be a random continuous function B⃗t = (B1
t , B

2
t )

in which B1, B2 are IID standard Brownian motions.
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(i) Show that for any fixed θ ∈ [0, 2π), the rotated process

B⃗
(θ)
t =

(
cos(θ)B1

t + sin(θ)B2
t ,− sin(θ)B1

t + cos(θ)B2
t

)
also has the law of planar Brownian motion. Thus, planar Brownian motion is
rotationally invariant.

(ii) Show that B⃗t is a continuous R2-valued martingale relative to its natural filtration
Ft = σ({(B1

s , B
2
s ) : 0 ≤ s ≤ t})

(iii) Show that τ = inf{t ≥ 0 : |B⃗t| = 1} is a stopping time (relative to the natural
filtration).

4. (Extra credit) In this problem, you will investigate the modulus of continuity of
Brownian motion. In general, given a continuous function f : [0, 1] → R, the modulus
of continuity is the function ω : R+ → R+ defined by

ω(ε) = sup
x,y∈[0,1]
|x−y|≤ε

|f(x)− f(y)|.

For any continuous f , one has limε→0 ω(ε) = 0. Below, we let ω be the modulus of
continuity of standard Brownian motion (thus ω is random).

(i) Show there is a universal constant c > 0 such that P[ω(ε) ≥ c
√
ε log(1/ε)] ≥ 1/2

for all sufficiently small ε.

(ii) Show there is a universal constant C > 0 such that P[ω(ε) ≤ C
√
ε log(1/ε)] ≥ 1/2

for all sufficiently small ε.

(iii) Show there are random constants C, c (depending on the Brownian motion) such
that

ω(ε) ∈ [c
√

ε log(1/ε), C
√

ε log(1/ε)]

holds simultaneously for all ε ∈ (0, 1/2). (In fact, it is a famous result of Lévy
that ω(ε) ∼

√
2ε log(1/ε)) as ε ↓ 0, almost surely.)

(Hint: extending the expected value estimate from class, it may help to argue that the
maximum of n IID standard Gaussians is typically of order Θ(

√
log n).)

5. (Extra credit) This problem investigates the Fourier expansion of Brownian motion.

(i) Let Yt = Bt− tB1 for t ∈ [0, 1], so that Y0 = Y1 = 0 almost surely. Show that Yt is
a centered Gaussian process with covariance E[YsYt] = s(1− t) for 0 ≤ s ≤ t ≤ 1.
(Yt is called a Brownian bridge.)

(ii) For each n ≥ 0, show that

an =

∫ 1

0

sin(πnt)Ytdt

is a centered Gaussian, and determine the covariance function E[anam]. (Hint:
for the first assertion, it may help to consider Riemann sum approximations.)
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(iii) Show that (an)n≥1 are jointly independent.

(iv) Give two formulas for E[
∫ 1

0
Y 2
t dt], one using Fubini directly and the other using

Fourier series (i.e. Plancherel’s identity). Deduce that
∑

k≥1 1/k
2 = π2/6.
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