
STAT 212 Problem Set 6.
—

Due: Wednesday, April 30th at 11:59PM

Instructions: Collaboration with your classmates is encouraged. Please identify ev-
eryone you worked with at the beginning of your solution PDF (e.g. Collaborators: Alice,
Bob). Your solutions should be written entirely by you, even if you collaborated to solve
the problems. The first person to report each typo in this problem set (by emailing me and
Somak) will receive 1 extra point; more serious mistakes will earn more points.

In all problems below, Bt denotes standard Brownian motion, and Ft the
associated filtration.

1. For the martingale CLT from class, we assumed the total variance V =
∑m(n)

k=1 E[X2
k |Fn,k−1]

equals 1 almost surely. Show the martingale CLT from class continues to hold if V
converges in probability to 1. (Hint given on the last page.)

2. Consider d-dimensional Brownian motion B⃗t for d ≥ 3, started not at the origin.

(a) Prove that

Xt = |B⃗t|2−d

is a local martingale, but not a true martingale. (Hint given on the last page.)

(b) Deduce that B⃗t almost surely never hits the origin.

(c) Show that in fact B⃗t must wander off to infinity and eventually never come back

to any given bounded region (i.e. B⃗t is transient).

3. Here you will construct spherical Brownian motion in Rd, for d ≥ 2. (Another con-
struction in the d = 2 case was also given in the previous homework.) For ∥x∥ > 0, let

P⊥
x be the projection matrix onto x⊥, given explicitly by P⊥

x = Id − xx⊤

∥x∥2 .

You may use below that existence and uniqueness for SDE solutions as in class continues
to hold (with exactly the same proof) in higher dimensions, for equations of the form

dXt = σ(Xt, t)dBt + v(Xt, t)dt

with σ : Rd × R+ → Rd×d and v : Rd × R+ → Rd.

(a) Show that there exists a Lipschitz function σ : Rd → Rd×d such that σ(x) = P⊥
x

for all ∥x∥ ≥ 1.

(b) Consider the natural attempt at spherical Brownian motion given by initializing
X0 = (1, 0, . . . , 0) and setting

dXt = σ(Xt)dBt.

for a standard d-dimensional Brownian motion Bt. Show this SDE has a unique
solution.
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(c) Use Ito’s formula to give an integral expression for ∥Xt∥2 and conclude that
∥Xt∥ > 1 for all t > 0, almost surely. (Thus, this attempt did not work.)

(d) Find a constant b (possibly depending on the dimension) such that

dXt = σ(Xt)dBt − bXtdt

Does stay confined to the unit sphere for all time. (Caution: after finding b such
that d|Xt|2 = 0dt + 0dBt assuming |Xt| = 1, you still need to show that the
actual solution Xt remains on the sphere. For this, you might find an ODE solved
by |Xt|2 and argue uniqueness of solutions.)

4. (Extra Credit) In class, we used the Lindeberg method to obtain central limit the-
orems for independent sums and martingales. Here you will investigate further and
obtain quantitative bounds.

Let φ : R → [0, 1] be a smooth function with φ(x) = 0 for all |x| ≥ 1 and
∫ 1

−1
φ(x)dx =

1. (You may assume such a “bump function” exists, and are encouraged to look them
up if unfamiliar.)

Let φϵ(x) = φ(x/ϵ)/ϵ, so that ∫ ∞

−∞
φϵ(x)dx = 1

for all ϵ. Note that for each j ≥ 0 there is Cj < ∞ such that the j-th derivative of φϵ

is at most
sup
x∈R

|φ(j)
ϵ (x)| ≤ Cjϵ

−1−j.

(a) Consider ϵ = n−a for small a ∈ (0, 1) (you can choose!) and let fϵ,u be the
convolution of φϵ with 1[u,∞), i.e.

fϵ,u(x) =

∫ ∞

u

φϵ(y)dy.

Consider an independent sum Sn = X1 + · · ·+Xn with E[Xi] = 0 and E[X2
i ] = 1

for each i, and E[|Xi|3] ≤ C for all i. Using the Lindeberg method from class,
show a convergence rate

sup
u

|E[fϵ,u(Sn/
√
n)− fϵ,u(z)]| ≤ O(n−b)

for b > 0, where z is a standard Gaussian.

(b) Deduce uniform convergence (i.e. convergence in L∞) of the cumulative distribu-
tion functions, again at a rate n−a for some a > 0. (Hint given on last page.)

(c) Deduce an improved convergence rate for symmetric Xi with uniformly bounded
4-th moment, using matching of the 3-rd moments.
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Hints

• For 1: fix small η and apply the martingale CLT from class to a stopped martin-
gale with slightly rescaled last increment, which has total variance exactly 1− η
whenever V ≥ 1− η holds for the original martingale. Then use the L2 maximal
inequality to show this is a sufficiently good approximation.

• For 2(a): to show it is not a true martingale, write an integral expression for E[Xt]
and show it tends to 0 as t → ∞.

• For 4(c): you may want to use the boundedness of the Gaussian density here.
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