
Statistics 212: Lecture 11 (March 5, 2025)

Brownian Motion as a Continuous Martingale

Instructor: Mark Sellke

Scribe: Cheaheon (Eon) Lim

1 Midterm Logistics

As announced on Canvas, the midterm will be held during class next Monday. It will have 6 problems
and 1 bonus question. The focus will be understanding and applying the material from class, rather than
technical details (e.g. exam will not require you to use the π−λ theorem). Content will be everything up to
this lecture’s material on Wald’s Lemma.

2 Wald’s Lemma

Wald’s Lemma provides the continuous time analog for optional stopping with Brownian motion, which
makes sense since we know from previous lectures that Brownian motion is a continuos time martingale.

Lemma 2.1 (Wald). Let Bt be standard Brownian motion and T a stopping time with E[T ] <∞. Then,

(a) E[BT ] = 0

(b) E[B 2
T ] = E[T ].

Proof. (a) Let M := sup0≤t≤T |Bt |, and suppose E[M ] <∞ (which we prove below in Lemma 2.2). Define
Tn := T ∧n, which is bounded for all n. Then, we can apply the optional stopping result from last lecture to

conclude E[BTn ] = 0. Observe that BTn

a.s.→ BT as n →∞ by construction. Since |BTn |, |BT | ≤ M , we can then
apply DCT to conclude that E[BT ] = 0, as desired.

Lemma 2.2. Let M := sup0≤t≤T |Bt |. If E[T ] <∞, then E[M ] <∞.

Proof. Define Mi := maxt∈[i ,i+1] |Bt −Bi |, such that M1, M2, ... are iid with finite expectation (since we know
that each has a subgaussian tail bound from last lecture). Observe that M ≤∑⌈T ⌉

i=1 Mi , in which case

E[M ] ≤ E
[⌈T ⌉∑

i=1
Mi

]
(1)

= E
[ ∞∑

i=1
Mi 1{i ≤ T }

]
(2)

= E[M1]
∞∑

i=1
E [1{i ≤ T }] , (Mi ⊥ 1{i ≤ T })

where we know that Mi and 1{i ≤ T } are independent by the Strong Markov Property, as Mi only depends on
Bt for t > i . Since E[M1] <∞ and

∑∞
i=1E [1{i ≤ T }] ≈ E[T ]±O (1) <∞, we can conclude that E[M ] <∞.
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Proving part (b) of Wald’s lemma is a little more tricky. The basic idea is that B 2
t − t is a martingale

(Turns out, this is an important fundamental property of Brownian motion), since for s < t , we have that

B 2
t = (Bs + (Bt −Bs ))2 = B 2

s +2Bs (Bt −Bs )+ (Bt −Bs )2 (3)

=⇒ E[B 2
t |Fs ] = E[B 2

s |Fs ]+2E[Bs (Bt −Bs )|Fs ]+E[(Bt −Bs )2|Fs ] (4)

= B 2
s +2BsE[Bt −Bs |Fs ]+Var(Bt−s ) (5)

= B 2
s + t − s. (6)

First, we show that the desired result holds when we have a bounded stopping time Tn ≡ T ∧n.

Lemma 2.3. E[B 2
Tn

] = E[Tn]

Proof. By definition, we see that Tn +1 ≤ n +1 almost surely. Then,

E

[
sup

t≤Tn+1
B 2

t

]
≤ E

[
sup

t≤n+1
B 2

t

]
≤∞, (7)

where the last inequality follows from subgaussian tail bound we have from the reflection principle. Then,
the conditions for continuous time optional stopping (from last lecture) are satisfied by (B 2

t − t )t≥0 and Tn ,
and we have that E[B 2

Tn
−Tn] = B 2

0 −0 = 0 =⇒ E[B 2
Tn

] = E[Tn], as desired.

Now, all that remains is to extend this result to general stopping times T with finite expectation. The
main lift will be to show that E[M 2] <∞, in which case the dominated convergence argument as in the
proof of part (a) can be applied.

Lemma 2.4. Let Mn := supt≤T∧n |Bt |. Then, E[M 2
n] ≤ 4E[B 2

T∧n].

Proof. Recall the Lp maximal inequality, specialized to the case when p = 2 (Lemma 1.4, Lecture 4 Scribe
Notes): If X1, ..., Xk is a L2 bounded (discrete) martingale, then ||sup j≤k |X j |||2 ≤ 2sup j ||X j ||2 = 2||Xk ||2 .

The statement extends easily to continuous time, were we apply the usual discretization argument
using 2−m-length time increments by defining M (m)

n := supt≤T∧n, t∈2−mZ |Bt | such that M (m)
n ↑ Mn as m →∞.

Then, applying the discrete version of L2 maximal inequality to each M (m)
n , we have

||M (m)
n ||22︸ ︷︷ ︸

=E[(M (m)
n )2]

≤ 4 ||BT∧n ||22︸ ︷︷ ︸
=E[B 2

T∧n ]

(8)

for all m, in which case monotone convergence implies that E[M 2
n] ≤ 4E[B 2

T∧n], as desired.

Lemma 2.5. Let M := sup0≤t≤T |Bt |. If E[T ] <∞, then E[M 2] <∞.

Proof. We have the following chain of inequalities:

E[M 2
n] ≤︸︷︷︸
Lemma 2.4

4E[B 2
T∧n] =︸︷︷︸

Lemma 2.3

4E[T ∧n] ≤ 4E[T ] <∞. (9)

Since Mn ↑ M , taking the limit n →∞ and applying dominated convergence implies E[M 2] <∞.

The remainder of the proof of statement (b) of Wald’s Lemma then follows by dominated convergence
on the bounded stopping time version of the statement, where

lim
n→∞E[B 2

Tn
] = lim

n→∞E[Tn] (Lemma 2.3)

= E[T ] (DCT, Tn ≤ T )

lim
n→∞E[B 2

Tn
] = E[B 2

T ], (DCT, |B 2
Tn
|, |B 2

T | ≤ M)

allowing us to conclude that E[T ] = E[B 2
T ]. This completes our proof of Wald’s Lemma ■

Finally, we consider some applications of Wald’s Lemma.
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Proposition 2.6. Let T := inft≥0{Bt = 1}. Then, E[T ] =∞.

Proof. Suppose, for a contradiction, that E[T ] <∞. Wald’s Lemma then implies E[BT ] = 0. This must be a
contradiction, since BT = 1 almost surely.

However, it turns out adding one more “boundary" to define the stopping time results in T ’s tails
decaying exponentially.

Proposition 2.7. Let a,b > 0 and define T := inf{t ≥ 0 : Bt = −a or Bt = b}. Then, E[T ] <∞, and for any
k ∈Z+ P{T ≥ k} ≤ e−ck for some c := c(a,b) > 0,

Proof. Let W i
t := Bi+t −Bi for i ∈Z+ and t ∈ [0,1]. Observe that the following statement is true:

If

{
sup

0≤t≤1
W i

t ≥ a +b

}
or

{
inf

0≤t≤1
W i

t ≤−a −b

}
, then T ≤ i +1, (10)

as either statement implies that our process’ value at time i and i + t differs by at least a +b. If we define S
as the first i that obeys at least one of the above two conditions, it then follows that S +1 ≥ T almost surely.
Noting that S is a geometric random variable, we conclude E[T ] ≤ E[S]+1 <∞. The tail bound also follows
from the fact that P{T ≥ k} ≤P{S ≥ k −1} and using the CDF of a geometric random variable.

Note that P{BT = a} = b
a+b in the above example via a symmetry/reflection argument, as B0 = 0. Using

the fact that (Bt +a)(Bt −b)−t is a martingale, one can also deduce from Wald’s Lemma that E[T ] = E[B 2
T ] =

ab.

3 Preview of Donsker’s Theorem

The past few lectures, we have focused on coming up with continuous-time analogs to the tools we have
for discrete time martingales. In a similar spirit, Donsker’s Theorem can be interpreted as the continuous
time/random path analog to the central limit theorem.

Theorem 3.1 (Donsker). Let A1, A2, ... be iid, where E[A1] = 0 and Var(A1) = 1. Consider a random path X n
t

for n ≥ 1 large, where X n
k
n

= A1+...+Akp
n

, and the remainder of X n
t for t ̸∈ 1

nZ+ is defined by interpolating. Then,

(X n
t )t≥0

d→ (Bt )t≥0 as n →∞. (11)

Proof Idea. Construct a stopping time T (for Brownian motion) with finite expectation, such that BT
d= A1.

By Wald’s Lemma, E[T ] = E[B 2
T ] = E[A2

1] = Var(A1) = 1. The idea will be to note that A1 + ...Ak = BT1+...+Tk ,
in which case applying LLN on the sums of Ti will imply that T1 + ...+Tk behaves almost deterministically.
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