Statistics 212: Lecture 11 (March 5, 2025)

Brownian Motion as a Continuous Martingale

Instructor: Mark Sellke

Scribe: Cheaheon (Eon) Lim

1 Midterm Logistics

As announced on Canvas, the midterm will be held during class next Monday. It will have 6 problems
and 1 bonus question. The focus will be understanding and applying the material from class, rather than
technical details (e.g. exam will not require you to use the 7 — A theorem). Content will be everything up to
this lecture’s material on Wald’s Lemma.

2 Wald’s Lemma

Wald’s Lemma provides the continuous time analog for optional stopping with Brownian motion, which
makes sense since we know from previous lectures that Brownian motion is a continuos time martingale.

Lemma 2.1 (Wald). Let B; be standard Brownian motion and T a stopping time with E[T] < co. Then,
(@) E[Br]=0
(b) E[B7]=EIT].

Proof. (a) Let M := supy.,<7|B;|, and suppose E[M] < oo (which we prove below in Lemma 2.2). Define
T, := T A n, which is bounded for all n. Then, we can apply the optional stopping result from last lecture to
conclude E[Br,] = 0. Observe that Br, 5 Bt as n — oo by construction. Since |Br,|,|Br| < M, we can then
apply DCT to conclude that E[Bt] = 0, as desired. O

Lemma 2.2. Let M :=supg<;<t|B:l. If E[T] < oo, then E[M] < co.

Proof. Define M; := maXe(;,;+1] |Br — Bil, such that M, Mo, ... are iid with finite expectation (since we know
that each has a subgaussian tail bound from last lecture). Observe that M < Ziﬂ M;, in which case
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where we know that M; and 1{i < T} are independent by the Strong Markov Property, as M; only depends on
B, for t > i. Since E[M;] < oo and Z‘i";l E[M{i < T} =E[T]+0(1) < oo, we can conclude that E[M] <oco. O



Proving part (b) of Wald’s lemma is a little more tricky. The basic idea is that B? — ¢ is a martingale
(Turns out, this is an important fundamental property of Brownian motion), since for s < ¢, we have that

B? = (By + (B, - By)) = B? +2B,(B; — By) + (B, - By)" @

= E[B?|F,] = E[B%| %] + 2E[By(B; — By)|F] + E(B; — By)*| F] @
= B2 +2B,E[B; — Bs|F;] + Var(B;_y) ®)

=B +t-s. ©)

First, we show that the desired result holds when we have a bounded stopping time T,, = T A n.
Lemma2.3. E[B}, | =E[T}]

Proof. By definition, we see that Tj, + 1 < n+ 1 almost surely. Then,
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where the last inequality follows from subgaussian tail bound we have from the reflection principle. Then,
the conditions for continuous time optional stopping (from last lecture) are satisfied by (B? — =0 and Ty,
and we have that E[B}, — T;] = Bj —0=0 = E[B}, ] =E[T,], as desired. O

Now;, all that remains is to extend this result to general stopping times T with finite expectation. The
main lift will be to show that E[M?] < oo, in which case the dominated convergence argument as in the
proof of part (a) can be applied.

Lemma2.4. Let My :=sup,.y,|B;|. Then, E[]M3] <4E[B3, 1.

Proof. Recall the L” maximal inequality, specialized to the case when p =2 (Lemma 1.4, Lecture 4 Scribe
Notes): IfXj,..., Xk is a L? bounded (discrete) martingale, then ||supj5k|Xj|||2 < 2sup; X112 =2/ Xkll2 .

The statement extends easily to continuous time, were we apply the usual discretization argument
using 2~ "-length time increments by defining M{"™ := sup <. se2-mz |B¢| such that M™ 1 Mj, as m — oo.
Then, applying the discrete version of L?> maximal inequality to each M, ﬁ,m), we have
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for all m, in which case monotone convergence implies that [E[Mfl] < 4[E[B% Anlr @s desired. O

Lemma 2.5. Let M :=supy<;<t|B:l. If E[T] < oo, then E[M?] < co.

Proof. We have the following chain of inequalities:
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E(M,] = 4E[BT,,l = A4E[T A n] <4E[T] <oo. 9)
Lemma 2.4 Lemma 2.3
Since M,, 1 M, taking the limit n — oo and applying dominated convergence implies E[M?] < co. O

The remainder of the proof of statement (b) of Wald’s Lemma then follows by dominated convergence
on the bounded stopping time version of the statement, where

lim E[BF ] = lim E[T),] (Lemma 2.3)
n—oo n n—oo
=E[T] (DCT, T, =<1
lim E[B7, | =E[B7], (DCT, |BZ, |,1B}| < M)
allowing us to conclude that E[T] = [E[B%]. This completes our proof of Wald’s Lemma |

Finally, we consider some applications of Wald’s Lemma.



Proposition 2.6. Let T :=inf;>o{B; = 1}. Then, E[T] = oco.

Proof. Suppose, for a contradiction, that E[T] < co. Wald’s Lemma then implies E[B7] = 0. This must be a
contradiction, since Br = 1 almost surely. O

However, it turns out adding one more “boundary” to define the stopping time results in 7’s tails
decaying exponentially.

Proposition 2.7. Let a,b > 0 and define T :=inf{t = 0: B; = —a or B; = b}. Then, E[T] < co, and for any
kez, P{T =k} < ek forsomec:=c(a,b)>0,

Proof. Let Wti :=Bjy;—B;forieZ, and t € [0, 1]. Observe that the following statement is true:

If{sup Wt"za+b} or{ inf Wtis—a—b}, then T<i+1, (10)
0<t<l1 0=t=1

as either statement implies that our process’ value at time i and i + ¢ differs by at least a + b. If we define S
as the first i that obeys at least one of the above two conditions, it then follows that S+ 1 = T almost surely.
Noting that S is a geometric random variable, we conclude E[T] < E[S] + 1 < co. The tail bound also follows
from the fact that P{T = k} < P{S = k — 1} and using the CDF of a geometric random variable. O

Note that P{B7 = a} = #bb in the above example via a symmetry/reflection argument, as By = 0. Using
the fact that (B; + a) (B; — b) — t is a martingale, one can also deduce from Wald’s Lemma that E[T] = [E[BZT] =
ab.

3 Preview of Donsker’s Theorem

The past few lectures, we have focused on coming up with continuous-time analogs to the tools we have
for discrete time martingales. In a similar spirit, Donsker’s Theorem can be interpreted as the continuous
time/random path analog to the central limit theorem.

Theorem 3.1 (Donsker). Let A1, A, ... be iid, where[E[A;] = 0 and Var(A,) = 1. Consider a random path X[!
Aj+.. 4+ Ak

N and the remainder of X| for t ¢ %Z+ is defined by interpolating. Then,

forn=1 large, where X} =

n

d
(XN ¢=0 = (B)i=0 asn— oo. (11)

Proof Idea. Construct a stopping time T (for Brownian motion) with finite expectation, such that By 4 Ar.
By Wald’s Lemma, E[T] = E[BZ] = E[A?] = Var(A,) = 1. The idea will be to note that A; +...Ax = Br,+..+7,,
in which case applying LLN on the sums of 7; will imply that T} + ... + Ty behaves almost deterministically.
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