
Statistics 212: Lecture 12 (March 12, 2025)

Convergence to Brownian Motion in Path Space

Instructor: Mark Sellke

Scribes: Kevin Liu, Haozhe (Stephen) Yang

1 Ways to Get Extra Credit

• Tell Mark about typos in HW/notes

• Future extra credit problems

2 Donsker’s Theorem

Theorem 2.1 (Donsker’s Theorem). Let X1, X2, . . . be a simple random walk (i.e., Xi+1 − Xi = ±1 iid) for
n ≥ 1. Consider the random function on [0,1], define on Z/n by

W (n)(k/n) = Xk /
p

n

and interpolated linearly in between. Then W (n) d→ Law(B M) as n →∞. In other words, for any bounded
continuous f : C ([0,1]) →R, we see limn→∞ E [ f (W (n))] = E [ f (B)] where B is Brownian motion.

Remark. In fact, this theorem holds for IID sums of any mean 0 and variance 1 random variable. This
implies the Central Limit Theorem for IID sums under the same assumptions. Namely fix φ :R→R that’s
bounded + continuous. Now consider f (W ) =φ(W (1)) which is bounded and continuous from C ([0,1]) →
R. This implies E [φ(W (n)(1))] → E [φ(B(1)) which is a CLT as φ is arbitrary.

Proof. This theorem can be proven using the Wald identities. The idea is to use an explicit coupling be-
tween Brownian motion and a simple random walk. We first start with a Brownian motion Bt ∼ B M and
construct a simple random walk out of it. Consider a sequence of stopping times τ1 < τ2 < ·· · where
each stopping time corresponds to hitting an integer. More formally, τi+1 is the first time t ≥ τi with
|Bt −Bτi | = 1. (For the more general statement, one represents any mean 0 variance 1 random variable as a
stopped Brownian motion, which is called the Skorokhod embedding.)

We claim that τ1,τ2 −τ1,τ3 −τ2, . . . are iid each with mean 1. By the Strong Markov property, these are
iid. Recall that B 2

t − t is a martingale, so by a Wald identity, we have 1 = E [B 2
τ j

] = E [τ j ]. Thus, by the strong

law of large numbers, we can immediately deduce that limn→∞ τn
n = 1.

We also see that Bτ1 ,Bτ2 , . . . is a simple random walk. Let X j = Bτ j . Define W (n)(k/n) = Xk /
p

n and

B (n)(t/n) = Bt /
p

n. We claim dsup(W (n),B (n))
p→ 0 (which also implies convergence in distribution). To
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prove this, we define a “re-parameterized BM” B̃ where

B̃ (n)(k/n) = B(τk )/
p

n = B (n)(τk /n) =W (n)(k/n)

where the path is linear in between defined points.

We claim dsup(B (n), B̃ (n))
p→ 0. In a bit more detail, we first see that for all ϵ> 0, there exists a random δ

where sup|s−t |≤δ |B (n)(t )−B (n)(s)| ≤ ϵ. We can choose a deterministic δ∗ such that

P ( sup
|s−t |≤δ∗

|B (n)(t )−B (n)(s)| ≤ ϵ] ≥ 1−ϵ.

(Slight side tangent to expound on the above: For each ϵ,δ, let Aϵ,δ ⊆C ([0,1]) consist of functions with
sup|s−t |≤δ |Bt −Bs | ≤ ϵ. Almost surely, we have Brownian motion is continuous, so ∀ϵ, we take the largest δ
so B ∈ Aϵ,δ. This δ is random (B[0,1]-dependent) which is inconvenient, but we can make it deterministic
using countable exhaustion. Namely we see that

∀ϵ,P [
⋃

δ=1/n
Aϵ,δ] = 1

for Brownian Motion, which implies there exists a deterministic δ∗ with

P [
⋃
δ≥δ∗

Aϵ,δ] ≥ 1−ϵ.

For this (ϵ,δ∗), if n is large enough, then P [sup0≤k≤n
|τk−k|

n ≤ δ∗] ≥ 1− ϵ by the law of large numbers.

(Strong LLN implies almost sure convergence of sup0≤k≤n
|τk−k|

n to 0 as n →∞, which also implies conver-
gence in probability.) As a result, we can conclude that

P [dsup(B (n), B̃ (n)) ≤ ϵ+2/
p

n] ≥ 1−2ϵ.

We have two sources of error, which is why we have 1−2ϵ, and 2/
p

n relaxes the bound for the times in

between k/n. Thus, we see dsup(B (n), B̃ (n))
p→ 0.

Furthermore, we can pretty easily see that dsup(B̃ (n),W (n)) ≤ 2/
p

n. Combining these two facts together,
we have

P (dsup(B (n),W (n)) ≥ ϵ] ≤ ϵ

so W (n) p→ B M . Whew!

It is intuitive that this convergence in probability implies convergence in distribution. Let’s work
through it. Fix a f : C ([0,1]) → R which is continuous and bounded. From the definition of continuity,
there exists δ such that | f (B (n))− f (W (n))| ≤ ϵ if dsup(B (n),W (n)) ≤ δ. Apriori δ is random and depends on
W (n) in addition to ϵ. Similarly to before, given f and any ϵ> 0, we can choose a deterministic δ∗ so

P [ sup
W ;dsup(W,B (n))≤δ∗

| f (B (n))− f (W )| ≤ ϵ] ≥ 1−ϵ.

So for large n with probability 1− ϵ, we have dsup(B (n),W (n)) ≤ δ∗. Therefore with probability 1−2ϵ, we
have both

dsup(B (n),W (n)) ≤ δ∗,

sup
W ;dsup(W,B (n))≤δ∗

| f (B (n))− f (W )| ≤ ϵ.
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(The first is just convergence in probability as n →∞ with (ϵ,δ∗) fixed while the latter we just obtained.)
Combining shows that

P[| f (B (n))− f (W (n))| ≤ ϵ] ≥ 1−2ϵ.

We thus see that f (W (n)) → f (B (n)) in probability, which implies E [ f (B (n))] → E [ f (W (n))] since f is
bounded.

(Note: one virtue of the upcoming Portmanteau theorem is that it lets us avoid working through the
avoid arguments by hand every time. It is left as an exercise to show using this theorem that convergence
in probability implies convergence in distribution.)

This theorem introduces more questions:

• How do we think about convergence in distribution? Might not always be able to do this coupling

• Can we prove Donsker’s directly from a (multidimensional) CLT, without needing this clever stopping
time argument?

We’ll say something about these today and next class (after spring break).

Definition 2.2. Let (S,d) be a complete separable metric space. µn →µ if
∫

f dµn → ∫
f dµ for all bounded

and continuous functions f : S →R.

(Added after lecture:) given a probability measure µ on S and a measurable function g : S → S′, the
pushforward g#µ is the probability measure on S′ given by

(g#µ)(A) =µ(g−1(A))

for all measurable subsets A ⊆ S′. In other words, if X ∼µ, then g (X ) ∼ g#µ.

Theorem 2.3 (Continuous Mapping Theorem). If µn → µ in distribution and g : S → S′ continuous, then
also g#µn → g#µ in distribution. This directly follows from the fact that if φ : S′ →R is bounded continuous,
then φ◦ g : S →R is as well.

Theorem 2.4 (Portmanteau Theorem). The following are equivalent:

(a) µn →µ

(b)
∫

f dµn → ∫
f dµ for bounded Lipschitz f .

(c) ∀C ⊆ S closed, limsupn→∞µn(C ) ≤µ(C ).

(d) ∀U ⊆ S open, limsupn→∞µn(U ) ≥µ(U ).

(e) µn(A) →µ(A) if A is a measurable set with µ(∂A) = 0.

Proof. Some easy implicatures are (a) → (b) and (c) ↔ (d). Another one is (c), (d) → (e). Let the clo-
sure be Ā and interior be A◦. We see µ(Ā) = µ(A◦) and µn(Ā) ≥ µn(A◦) as Ā ⊇ A ⊇ A◦. Then we see
limsupµn(Ā) ≤µ(Ā) =µ(A◦) ≤ liminfµn(A◦), so we easily concluce that everything is equal.

For (b) → (c), the idea is to approximate the indicator IC from above by continuous functions (think
about a hump with round corners). An explicit construction in a general metric space is

gϵ(x) = d(x, (C ϵ)c

d(x, (C ϵ)c )+d(x,C )

where C ϵ = {x,d(x,C ) ≤ ϵ} and (·)c denotes complement. This is Lipschitz because both distances are
Lipschitz in x and the denominator is always ≥ ϵ. By definition, we have

∫
gϵdµn → ∫

gϵdµ for all ϵ with
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1 ≪ 1/ϵ≪ n. For ϵ small, we have
∫

gϵdµ→ ∫
g dµ by dominated convergence with

∫
gϵdµn ≥ ∫

IC dµn .

For (e) → (a), assume f : S → [0,1] is continuous. Then∫
f dµ=

∫ 1

0
µ({x ∈ S : f (x) ≥ y})d y

and ∫
f dµn =

∫ 1

0
µn({x ∈ S : f (x) ≥ y})d y.

Letting Ay = {x ∈ S : f (x) ≥ y}, it is not hard to show that ∂Ay ⊆ f −1(y). This means µ(Ay ) = 0 except for
countably many y . So by dominated convergence, the bottom integral converges to the top one (since the
integrands are [0,1]-valued and countable sets have Lebesgue measure 0).
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