
Statistics 212: Lecture 16 (April 2, 2025)

Construction of Ito Integral

Instructor: Mark Sellke

Scribe: Aniket Jain

1 Constructing the Itô Integral

Goal: Define ∫ ∞

0
H(t )dB(t ),

where H(t ) = H(t ,ω) is a progressively measurable process. By definition, this means we require that for
each T > 0,

H : [0,T ]×Ω → R

is measurable with respect to B([0,T ])⊗FT . We also require the square-integrability:

E

[∫ ∞

0
H(t ,ω)2 d t

]
<∞.

(Note that since integration and expectation are formally equivalent, this just saying H(t ,ω) is in L2 on the
product space it is defined on.)

1.1 Definition on simple processes.

A simple process H(t ,ω) has the form

H(t ,ω) =
k∑

i=1
Ai (ω)1(ti , ti+1](t ),

for a partition 0 = t0 < t1 < ·· · < tk = T, where each Ai (ω) is Fti -measurable. Then we define∫ ∞

0
H(t ,ω)dBt =

k∑
i=1

Ai (ω)
[
Bti+1 −Bti

]
.

Key property: Itô L 2 isometry.
On simple processes, we have

E

[(∫ T

0
H(t ,ω)dBt

)2
]
= E

[∫ T

0
H(t ,ω)2 d t

]
.
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1.2 Approximation by Simple Processes

Fact 16.1 Let H be a progressively measurable process such that

E
[∫ ∞

0
H(t ,ω)2 d t

]
<∞.

Then there exists a sequence of simple processes (Hn)n≥1 such that

E
[∫ ∞

0

(
Hn(t )−H(t )

)2 d t
]
−→ 0 as n →∞.

Proof (outline):

(a) Truncating the time domain.
Choose T large enough so that

E
[∫ ∞

T
H(t ,ω)2 d t

]
≤ ε.

Then it suffices to approximate H(t ,ω)1[0,T ](t ), which we denote by H (1)(t ,ω).

(b) Clipping the range.
Define the clip function

ClipN (x) = min
(
N , max(−N , x)

)
.

Choose N large enough so that∫ T

0

[
H (1)(t ,ω) − ClipN

(
H (1)(t ,ω)

)]2 d t ≤ ε.

Set H (2)(t ,ω) = ClipN

(
H (1)(t ,ω)

)
. Existence of such T and N follows from the dominated convergence

theorem.

(c) Step-function approximation in time.
Partition [0,T ] using tk = k

2n for k = 0,1,2, . . . ,2nT . Then define

H (3)
n (t ,ω) = 2n

∫ tk+1

tk

H (2)(s,ω)d s for t ∈ [tk+1, tk+2).

Each H (3)
n is again progressively measurable (adapted and right-continuous) (as long as H (2) is pro-

gressively measurable).

By the Lebesgue differentiation theorem, or the following martingale argument, one may show
H (3)

n → H (2) in L2, as n →∞.

Define the filtration
Gn = σ

({
[0,2−n], [2−n , 2 ·2−n], . . .

}
, F

)
.

Then

E
[

H(t ,ω)
∣∣ Gn

] = 2n
∫ tk+1

tk

H(t ,ω)d t for t ∈ [tk , tk+1].

Define the Doob martingale (Mn)n≥1 by

Mn = E
[

H
∣∣ Gn

]
for H ∈L 2.

Then

Mn
a.s.,L 2

−−−−−→ E
[
H

∣∣ (G1,G2, . . . )
]
,

where the latter is the conditional expectation w.r.t. B(R)⊗F
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1.3 The Itô integral

(i) Setup. Let H be progressively measurable with E
[∫ ∞

0 H(t ,ω)2 d t
]
< ∞. Take a sequence of simple

processes (Hn)n≥1 such that E
[∫ ∞

0 (H −Hn)2 d t
]
→ 0.

(ii) Definition. Define ∫ ∞

0
H(t )dBt = lim

n→∞

∫ ∞

0
Hn(t )dBt (limit in L 2).

(a) Existence. Show that
{∫ ∞

0 Hn dBt
}

n is Cauchy in L2.

(b) Uniqueness. The limit cannot depend on the particular approximating sequence Hn → H .

Hence:

(i)
∫ ∞

0 Hn dBt →
∫ ∞

0 H dBt in L2,

(ii) The limit is the same for any other sequence H̃n → H ,

(iii) E
[(∫ ∞

0 H dBt
)2]= E[∫ ∞

0 H(t )2 d t
]
.

(i) Apply L2 isometry.
We have

E
[(∫ ∞

0
HndBt −

∫ ∞

0
HmdBt

)2] = E
[∫ ∞

0
(Hn −Hm)2 d t

]
n,m→∞−−−−−−→ 0.

Thus {
∫ ∞

0 Hn dBt } is Cauchy in L 2 and hence convergent in L 2.

(ii) Uniqueness via interleaving.
If {Hn} → H in L2 and {H̃n} → H in L2, then the interleaved sequence H1, H̃1, H2, H̃2 · · · also converges to H .
Their Itô integrals must converge to the same limit, ensuring uniqueness of the definition

∫ ∞
0 H dBt .

(iii) L 2 Isometry:
By construction ∫ ∞

0
H dBt := lim

n→∞

∫ ∞

0
Hn dBt (in L2).

Hence the L2 norms converge, establishing the isometry property.

2 Time progressive Itô integral

We set ∫ t

0
H(s)dBs =

∫ ∞

0
H(s)1[0,t ](s)dBs ,

allowing us to discuss the structure of the stochastic process M(t ) = ∫ t
0 H(s)dBs as t varies.

Key tool: L2 maximal inequality.

Theorem 16.1 Let H be progressively measurable with E
[∫ ∞

0 H(s)2 d s
]
<∞

Then there exists an almost surely continuous modification of
{

Mt =
∫ t

0 H(s)dBs : t ≥ 0
}

which is also a
martingale.
Modification: Two stochastic processes X t and X ′

t are said to be modifications of each other if for all t ,
P

(
X t ̸= X ′

t

)= 0
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Proof:

Case: Simple processes
If H(s,ω) is simple, say

H(s,ω) =
k∑

i=1
Ai (ω)1(ti ,ti+1](s),

then ∫ t

0
H(s)dBs =

k∑
i=1

Ai

(
Bti+1∧t − Bti∧t

)
,

which is

• a.s. continuous ( as BM is a.s. continuous)

• a martingale

• progressively measurable

Case: General H

Approximate Hn
L2

−→ H , define

Mn(t ) =
∫ t

0
Hn(s)dBs ,

By Doob’s L2 Maximal Inequality

E

[(
sup

0≤t<∞

∣∣Mn(t )−Mn′ (t )
∣∣)2]

≤ 4E
[

(Mn(∞)−Mn′ (∞))2
]
= 4E

[∫ ∞

0
(Hn(s)−Hn′ (s))2 d s

]
→ 0

Fix 1 <α< 2

By Chebyshev,

P
(
sup
t≥0

|Mn(t )−Mn′ (t )| >α−k
)
≤ 4α2k E

[∫ ∞

0
(Hn(s)−Hn′ (s))2 d s

]
=

(
α2

4

)k

(for n,n′ > nk large).

It follows that {Mnk : k ≥ 0}is a.s. Cauchy in C
(
[0,∞),dsup

)
for suitable subsequence n1 < n2 < ·· ·

Because we may choose {nk } so that

P

[
sup
t≥0

|Mnk+1 (t )−Mnk (t )| ≥α−k
]
≤

(
α2

4

)k

which is summable.

Hence by Borel-Cantelli Lemma, all these events hold past random k = k(ω). If k,k ′ > k,

sup
t

|Mnk (t )−Mnk′ (t )| ≤ ∑
j≥min(k,k ′)

α− j → 0

as k,k ′ →∞
Thus, Mnk converge a.s. to an a.s. continuous limit M ′(t ), which is a modification of M(t ) = ∫ t

0 H(s)dBs .
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