Statistics 212: Lecture 16 (April 2, 2025)

Construction of Ito Integral

Instructor: Mark Sellke

Scribe: Aniket Jain

1 Constructing the Itô Integral

Goal: Define

$$\int_0^\infty H(t)\,dB(t),$$

where $H(t) = H(t, \omega)$ is a progressively measurable process. By definition, this means we require that for each T > 0,

$$H\colon [0,T]\times\Omega\to\mathbb{R}$$

is measurable with respect to $\mathscr{B}([0, T]) \otimes F_T$. We also require the square-integrability:

$$\mathbb{E}\left[\int_0^\infty H(t,\omega)^2\,d\,t\right] < \infty.$$

(Note that since integration and expectation are formally equivalent, this just saying $H(t, \omega)$ is in L^2 on the product space it is defined on.)

1.1 Definition on simple processes.

A *simple process* $H(t, \omega)$ has the form

$$H(t,\omega) = \sum_{i=1}^k A_i(\omega) \mathbf{1}_{(t_i,t_{i+1}]}(t),$$

for a partition $0 = t_0 < t_1 < \cdots < t_k = T$, where each $A_i(\omega)$ is F_{t_i} -measurable. Then we define

$$\int_0^\infty H(t,\omega)\,dB_t\,=\,\sum_{i=1}^k A_i(\omega)\,\big[B_{t_{i+1}}-B_{t_i}\big].$$

Key property: Itô \mathscr{L}^2 isometry.

On simple processes, we have

$$\mathbb{E}\left[\left(\int_0^T H(t,\omega) \, dB_t\right)^2\right] = \mathbb{E}\left[\int_0^T H(t,\omega)^2 \, dt\right].$$

1.2 Approximation by Simple Processes

Fact 16.1 Let H be a progressively measurable process such that

$$\mathbb{E}\Big[\int_0^\infty H(t,\omega)^2\,dt\Big]<\infty.$$

Then there exists a sequence of simple processes $(H_n)_{n\geq 1}$ such that

$$\mathbb{E}\Big[\int_0^\infty (H_n(t) - H(t))^2 dt\Big] \longrightarrow 0 \quad \text{as } n \to \infty.$$

Proof (outline):

(a) *Truncating the time domain.* Choose *T* large enough so that

$$\mathbb{E}\Big[\int_T^\infty H(t,\omega)^2\,dt\Big]\leq\varepsilon.$$

Then it suffices to approximate $H(t, \omega) \mathbf{1}_{[0,T]}(t)$, which we denote by $H^{(1)}(t, \omega)$.

(b) *Clipping the range.* Define the *clip* function

$$\operatorname{Clip}_N(x) = \min(N, \max(-N, x)).$$

Choose *N* large enough so that

$$\int_0^T \left[H^{(1)}(t,\omega) - \operatorname{Clip}_N \left(H^{(1)}(t,\omega) \right) \right]^2 dt \le \varepsilon.$$

Set $H^{(2)}(t,\omega) = \operatorname{Clip}_N(H^{(1)}(t,\omega))$. Existence of such *T* and *N* follows from the dominated convergence theorem.

(c) Step-function approximation in time. Partition [0, T] using $t_k = \frac{k}{2^n}$ for $k = 0, 1, 2, ..., 2^n T$. Then define

$$H_n^{(3)}(t,\omega) = 2^n \int_{t_k}^{t_{k+1}} H^{(2)}(s,\omega) \, ds \quad \text{for } t \in [t_{k+1}, \, t_{k+2}).$$

Each $H_n^{(3)}$ is again progressively measurable (adapted and right-continuous) (as long as $H^{(2)}$ is progressively measurable).

By the Lebesgue differentiation theorem, or the following martingale argument, one may show $H_n^{(3)} \to H^{(2)}$ in L^2 , as $n \to \infty$.

Define the filtration

$$\mathscr{G}_n = \sigma\left(\left\{[0,2^{-n}], [2^{-n},2\cdot 2^{-n}],\ldots\right\},\mathscr{F}\right).$$

Then

$$\mathbb{E}\left[\left.H(t,\omega)\,\right|\,\mathcal{G}_n\right]\,=\,2^n\int_{t_k}^{t_{k+1}}H(t,\omega)\,dt\quad\text{for }t\in[t_k,\,t_{k+1}].$$

Define the *Doob martingale* $(M_n)_{n\geq 1}$ by

$$M_n = \mathbb{E}[H | \mathcal{G}_n] \text{ for } H \in \mathcal{L}^2.$$

Then

$$M_n \xrightarrow{\text{a.s.}, \mathscr{L}^2} \mathbb{E}[H | (\mathscr{G}_1, \mathscr{G}_2, \dots)],$$

where the latter is the conditional expectation w.r.t. $\mathscr{B}(\mathbb{R}) \otimes F$

1.3 The Itô integral

- (i) Setup. Let *H* be progressively measurable with $\mathbb{E}\left[\int_0^\infty H(t,\omega)^2 dt\right] < \infty$. Take a sequence of simple processes $(H_n)_{n\geq 1}$ such that $\mathbb{E}\left[\int_0^\infty (H-H_n)^2 dt\right] \to 0$.
- (ii) Definition. Define

$$\int_0^\infty H(t) \, dB_t = \lim_{n \to \infty} \int_0^\infty H_n(t) \, dB_t \quad (\text{limit in } \mathscr{L}^2).$$

- (a) *Existence*. Show that $\{\int_0^\infty H_n dB_t\}_n$ is Cauchy in L^2 .
- (b) *Uniqueness*. The limit cannot depend on the particular approximating sequence $H_n \rightarrow H$.

Hence:

- (i) $\int_0^\infty H_n dB_t \to \int_0^\infty H dB_t$ in L^2 ,
- (ii) The limit is the same for any other sequence $\widetilde{H}_n \to H$,
- (iii) $\mathbb{E}\left[\left(\int_0^\infty H dB_t\right)^2\right] = \mathbb{E}\left[\int_0^\infty H(t)^2 dt\right].$

(i) Apply L^2 isometry.

We have

$$\mathbb{E}\Big[\Big(\int_0^\infty H_n dB_t - \int_0^\infty H_m dB_t\Big)^2\Big] = \mathbb{E}\Big[\int_0^\infty (H_n - H_m)^2 dt\Big] \xrightarrow{n, m \to \infty} 0.$$

Thus $\{\int_0^\infty H_n dB_t\}$ is Cauchy in \mathcal{L}^2 and hence convergent in \mathcal{L}^2 .

(ii) Uniqueness via interleaving.

If $\{H_n\} \to H$ in L^2 and $\{\tilde{H}_n\} \to H$ in L^2 , then the interleaved sequence $H_1, \tilde{H}_1, H_2, \tilde{H}_2 \cdots$ also converges to H. Their Itô integrals must converge to the same limit, ensuring uniqueness of the definition $\int_0^\infty H dB_t$.

(iii) \mathscr{L}^2 Isometry:

By construction

$$\int_0^\infty H \, dB_t := \lim_{n \to \infty} \int_0^\infty H_n \, dB_t \quad (\text{in } L^2).$$

Hence the L^2 norms converge, establishing the isometry property.

2 Time progressive Itô integral

We set

$$\int_0^t H(s) \, dB_s = \int_0^\infty H(s) \, \mathbf{1}_{[0,t]}(s) \, dB_s,$$

allowing us to discuss the structure of the stochastic process $M(t) = \int_0^t H(s) dB_s$ as t varies.

Key tool: L^2 maximal inequality.

Theorem 16.1 Let *H* be progressively measurable with $\mathbb{E}\left[\int_0^\infty H(s)^2 ds\right] < \infty$

Then there exists an *almost surely continuous modification* of $\{M_t = \int_0^t H(s) dB_s : t \ge 0\}$ which is also a martingale.

Modification: Two stochastic processes X_t and X'_t are said to be *modifications* of each other if for all t, $\mathbb{P}(X_t \neq X'_t) = 0$

Proof:

Case: Simple processes

If $H(s, \omega)$ is simple, say

$$H(s,\omega) = \sum_{i=1}^{k} A_{i}(\omega) \mathbf{1}_{(t_{i},t_{i+1}]}(s),$$

then

$$\int_0^t H(s) \, dB_s = \sum_{i=1}^k A_i \left(B_{t_{i+1} \wedge t} - B_{t_i \wedge t} \right),$$

which is

- a.s. continuous (as BM is a.s. continuous)
- a martingale
- progressively measurable

Case: General *H* Approximate $H_n \xrightarrow{L^2} H$, define

$$M_n(t) = \int_0^t H_n(s) \, dB_s,$$

By Doob's L^2 Maximal Inequality

$$\mathbb{E}\left[\left(\sup_{0\leq t<\infty}\left|M_{n}(t)-M_{n'}(t)\right|\right)^{2}\right] \leq 4\mathbb{E}\left[\left(M_{n}(\infty)-M_{n'}(\infty)\right)^{2}\right] = 4\mathbb{E}\left[\int_{0}^{\infty}\left(H_{n}(s)-H_{n'}(s)\right)^{2}ds\right] \to 0$$

Fix $1 < \alpha < 2$

By Chebyshev,

$$\mathbb{P}\Big(\sup_{t\geq 0}|M_n(t) - M_{n'}(t)| > \alpha^{-k}\Big) \le 4\,\alpha^{2k}\,\mathbb{E}\Big[\int_0^\infty (H_n(s) - H_{n'}(s))^2\,ds\Big] = \left(\frac{\alpha^2}{4}\right)^k \text{ (for } n, n' > n_k \text{ large)}$$

It follows that $\{M_{n_k} : k \ge 0\}$ is a.s. Cauchy in $C([0,\infty), d_{sup})$ for suitable subsequence $n_1 < n_2 < \cdots$

Because we may choose $\{n_k\}$ so that

$$\mathbb{P}\left[\sup_{t\geq 0} |M_{n_{k+1}}(t) - M_{n_k}(t)| \geq \alpha^{-k}\right] \leq \left(\frac{\alpha^2}{4}\right)^k$$

which is summable.

Hence by Borel-Cantelli Lemma, all these events hold past random $\overline{k} = \overline{k}(\omega)$. If $k, k' > \overline{k}$,

$$\sup_{t} |M_{n_{k}}(t) - M_{n_{k'}}(t)| \le \sum_{j \ge \min(k,k')} \alpha^{-j} \to 0$$

as $k, k' \to \infty$

Thus, M_{n_k} converge a.s. to an a.s. continuous limit M'(t), which is a modification of $M(t) = \int_0^t H(s) dB_s$.