
Statistics 212: Lecture 17 (April 7, 2025)

Ito’s lemma

Instructor: Mark Sellke

Scribe: Georgi Ivanov

1 Ito’s formula

Proposition 17.1 If f ∈C∞
b (R) (i.e. all derivatives of f are uniformly bounded on R), then:

f (Bt ) = f (B0)+
∫ t

0
f ′(Bs )dBs + 1

2

∫ t

0
f ′′(Bs )d s, (1)

or written in the informal differential form:

d f (Bt ) = f ′(Bt )dBt + f ′′(Bt )

2
d t .

(Note: as mentioned below, the proof uses boundedness of f ′′′, but after the fact you can deduce the
result for C 2

b by approximation, i.e. you just need that ( f , f ′, f ′′) are bounded and continuous. And if f is
time-dependent you also need ∂t f to be bounded and continuous.)

1.1 Proof

The idea is to write the Taylor expansion and show that it is valid. First, let us fix a small mesh partition
{t0 = 0 ≤ t1 < t2 < ·· · < tk = t }, with ϵ= maxi |ti+1 − ti |. We can express the difference as a a telescoping sum
of the Brownian increments and apply the second-order Taylor expansion with the Lagrange remainder
θi ∈ [ti , ti+1]:

f (Bt )− f (B0) =
k−1∑
i=0

(
f (Bti+1 )− f (Bti )

)
=

k−1∑
i=0

f ′(Bti )(Bti+1 −Bti ) (T1)

+
k−1∑
i=0

1

2
f ′′(Bti )(Bti+1 −Bti )2 (T2)

+
k−1∑
i=0

1

6
f ′′′(θi )(Bti+1 −Bti )3 (T3)

As we take the limit ϵ→ 0, the first term (T 1) → ∫ t
0 f ′(Bs )dBs , the second term (T 2) → 1

2

∫ t
0 f ′′(Bs )d s, and

the last (T 3) → 0, where all limits are in L2. Let us verify this explicitly:
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Term 1 (T 1)

T 1 =
k−1∑
i=0

f ′(Bt )(Bti+1 −Bti ) =
∫ t

0
f ′(B s̃ )dB s̃ , s̃ = s̃(s) = ti , if s ∈ [ti , ti+1]

The integral term is piecewise constant in time and progressively measurable. We want to show that this is
≈ ∫ t

0 f ′(Bs )dBs . By the Ito isometry we can verify that the L2 error between the two integrants goes to zero:

E

∫ t

0

(
f (Bs )− f (B s̃ )

)2 d s → 0

as ϵ→ 0. The term is is bounded almost surely because f ∈C∞
b is bounded and uniformly continuous, s is

uniformly Lipschitz, and Bt is uniformly continuous.

Term (T 2)

T 2 =∑
i

f ′′(Bti )(Bti+1 −Bti )2 →L2
∫ t

0
f ′′(Bs )d s

We know
∑

f ′′(Bti ))(ti+1 − ti ) → ∫ t
0 f ′′(Bs )d s to the RHS above by the classical Riemann sum form. As such,

we want to show that the two sums are close in the L2 norm. The idea is to use a martingale argument to
show concentration. Let M0, · · ·Mk be defined as:

M j =
j∑

i=0
f ′′(Bti )× (

(Bti+1 −Bti )2 − (ti+1 − ti )
)

,

where M j forms a martingale. We can compute the variance as:

E
[
M 2

k−1

]= k−1∑
i=0

E
[

f ′′(Bti )2 × (
(Bti+1 −Bti )2 − (ti+1 − ti )

)2
]

We are going to use the bound (a −b)2 ≤ 2(a2 +b2), absorbing the 2 in C ( f ), along with the fact that most
of the squared terms are orthogonal. As such, we get:

E
[
M 2

k−1

]≤C ( f )
k−1∑
i=0

E
[
(Bti+1 −Bti )4 + (ti+1 − ti )2]=C ( f )

k−1∑
i=0

E
[
(Bti+1 −Bti )4]+C ( f )

k−1∑
i=0

(ti+1 − ti )2

First, observe that E[(Bti+1 −Bti )4] = 3(ti+1 − ti )2. Now, we just need
∑k−1

i=0 (ti+1 − ti )2 → 0 as ϵ→ 0. One
convinient way to estimate these sums is to use the fact that

max
i

|ti+1 − ti |×
k−1∑
i=0

(ti+1 − ti )

is of order ϵt → 0 as ϵ→ 0.

Term T3 (T 3)

Here, we just need the
∑
E|Bti+1 −Bti |3 → 0 as ϵ→ 0. Since E|Bti+1 −Bti |3 ≤O(|ti+1 − ti |3/2) we similarly get∑
E|Bti+1 −Bti |3 ≤C

∑
i
|ti+1 − ti |3/2 ≤C

p
ϵ
∑

i
|ti+1 − ti | ≤C t

p
ϵ.

With this, as we take the limit of (T 1)+ (T 2)+ (T 3), we get (1). □
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2 General Ito’s formula

Proposition 17.2 More generally, suppose that d X t =σt dBt + vt d t . We want to know what d f (t , X t ) is (in
stochastic form). We have:

d f (t , X t ) = ∂x f (t , X t )σt dBt + 1

2
σ2

t ∂xx f (t , X t )d t +∂x f (t , X t )vt d t +∂t f (t , X t )d t (2)

The proof is equivalent to our earlier approach by using telescoping sums and bounding the L2 error terms.
The usual assumption is f ∈C 1,2

b (our proof used f ′′′, but given the statement of Ito’s formula for smooth

functions, you get it for C 1,2
b by approximation).

An extension of the formula also works for f (Bt ) = |Bt |. Here, the keywords are "Tanaka’s formula" and
"Brownian local time" (p. 209 in the Mörters and Perez). (The short summary is that

∫ t
0 f ′′(Bs )d s is the

integral of f ′′ against the “occupation measure”µ[0,t ] of Brownian motion, defined byµ[0,t ](A) = ∫ t
0 1Bs∈Ad s.

One can show µ[0,t ] has a continuous density, so one can integrate a Dirac delta (such as the 2nd derivative
of absolute value) against it by a continuity argument.)

For the multidimensional case Rd → R, suppose that f (B 1
t ,B 2

t , · · · ,B d
t ). Then, the Ito correction is,

instead of f ′′, the Laplacian ∆ f =∑d
i=1(∂xi )2 f .

2.1 Examples

(a) f (t , x) = t x
d f (t , x) = ∂x f dBt +∂t f d t = tdBs +xd t

tBt =
∫ t

0
sdBs +

∫ t

0
Bs d s

(b) f (x) = x2

d f (Bt ) = 2Bt dBt +d t

B 2
t = 2

∫ t

0
Bs dBs + t ⇔ B 2

t − t = 2
∫ t

0
Bs dBs

(c) Fix α> 0, consider a solution to the following Bessel process:

d X t = dBt + α

X t
d t , X0 = 1

For the last example, we will stop if we reach 0. The question is whether it does hit 0. The idea is to find γ so
f (X t ) = X γ

t is a martingale. We want an expression for d X γ
t , so we will have to use the general formula (2):

d X γ
t = γX γ−1

t dBt +
(
αγX γ−2

t + γ(γ−1)

2
X γ−2

t

)
d t

We want the d t term to be 0, which occurs when γ = 1− 2α, i.e 1−γ
2 = α. Yt = F (X t ) is a continuous

martingale with Y0 = 1 and Yt ≥ 0,∀t . By OST P[maxt Yt ≥ yϵ] ≤ ϵ. If γ≤ 0, then X t → 0 ⇔ Yt →∞ which
doesn’t happen because of OST, i.e X t never reaches 0. This means we need α> 1

2 .

The conclusion that X t never reaches 0 for α > 1/2 is correct, but actually X γ
t is not necessarily a

martingale! What goes wrong is the first term γX γ−1
t dBt , which can be unbounded (it will be bounded in

time almost surely, but can be arbitrarily large depending on the Brownian path). So the stochastic integral
is not even defined in the L2 sense we considered so far. However it seems intuitively clear that nothing
should go wrong if we never actually reach 0.

3



The resolution is to consider a larger class of integrands which are "locally L2" and progressively measur-
able. An integrand H(t ,ω) is locally L2 if there exists increasing sequence of stopping times 0 ≤ τ1 ≤ τ2 ≤ ·· ·
which tend to infinity limk→∞τk =∞ almost surely, such that:

∀k, H(t ,ω)1t≤τk ∈ L2, i .e E

∫ τk

0
H(t ,ω)2d t <∞.

This means we can integrate up to each stopping time, hence we can integrate all the way to infinity.
Namely, consider for each k the process

t 7→
∫ t

0
H(s,ω)1s≤τk d s.

Since τk →∞, the latter provides us a def. of

t 7→
∫ t

0
H(s,ω)dBs = lim

k→∞

∫ t

0
H(s,ω)1s≤τk dBs a.s.

(The homework will ask us to check that this construction is well-defined.)
In the example we saw of the Bessel process, we can say τk is the hitting time of {1/k} (and then X t and

Yt stop at this time as we set the integrand to 0 afterward). The use of the optional stopping theorem was
acceptable because for each k, we had E[Y k

t ] = Y0 = 1, and so Fatou’s lemma gives E[Yt ] ≤ 1.
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