
Statistics 212: Lecture 19 (April 14, 2025)

Stochastic Differential Equations II

Instructor: Mark Sellke

Scribe: Kevin Liu

1 Uniqueness of SDE Solutions

Typical set-up: we have a stochastic differential equation

d X t =σ(X t )dBt + vt d t

whereσ, v are Lipschitz fromR toR. Last time, we showed the existence of a stochastic process that satisfies
this SDE using Picard iteration. To demonstrate uniqueness, we can suppose that X t and Yt are solutions
to this SDE. Consider Zt = X t −Yt . We have

Zt = X t −Yt =
∫ t

0
[σ(Xs )−σ(Ys )]dBs +

∫ t

0
[v(Xs )− v(Ys )]d s,

and note that |v(Xs )−v(Ys )| ≤ L|Zt | from some Lipschitz bounding. Applying Ito’s formula to Z 2
t , we also

get
d(Z 2

t ) = 2Zt (σ(X t )−σ(Yt ))dBt + (σ(X t )−σ(Yt ))2d t +2Zt (v(Xs )− v(Ys ))d t ,

implying that

E [Z 2
t ] ≤ L

∫ t

0
E [Z 2

s ]d s.

If we let f (t ) = ∫ t
0 E [Z 2

s ]d s, this implies f ′(t ) ≤C L f (t ) by some Lipschitz bounding, which further implies
f (t )e−C Lt is decreasing with f (0) = 0. Thus, f (t ) = 0 for all t . At any given time, we see X t = Yt almost surely.

Definition 1.1 (Locally Lipschitz). We call σ locally Lipschitz if |σ(x)−σ(y)| ≤ L(R)|x − y | if |x|, |y | ≤ R.

Question 1.2. We assumed that σ, v are globally Lipschitz. What if they are locally Lipschitz, e.g., d X t =
X 2

t dBt +X 3
t d t?

Existence and uniqueness will hold until an “explosion time.” For motivation behind this, let’s take an
ODE d X t = X 2

t d t . A solution to this is X t = 1
1−t , and this process will blow up when approaching t = 1. For

any R > 0, we can modify coefficients outside BR (0), the ball centered at 0 with radius R. We can construct
the following functions:

σR (x) =
{
σ(x), |x| ≤ R

σ(Rx/|x|), |x| ≥ R
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vR (x) =
{

v(x), |x| ≤ R

v(Rx/|x|), |x| ≥ R.

Note that σr , v r are globally Lipschitz, and define τR to be the first time |X t | = R. Then limR→∞τR = τ,
which is the “explosion time.”

2 Another characterization of BM

Definition 2.1. X t is a “strong solution” to a SDE if it is adapted to the filtration by the driving Brownian
motion Bt , i.e., F X

t ⊆F B
t . X t is a “weak solution” if it is adapted wrt Ft ⊇F B

t and Bt is BM with respect to
Ft .

Example. d X t = sign(X )dBt where sign(x) = 1 for x ≥ 0 and −1 otherwise.

This is an example of a SDE that has a weak solution but not a strong solution. By inspection, X t should
be a Brownian motion of some kind. So let X t be BM, and Bt =

∫ t
0 sign(Xs )d Xs (we’ll show that this integral

is a Brownian motion later). Since sign(Xs )2 = 1, we see that this yields a solution. Define F X
t =σ(Xs : s ≤ t )

and F B
t =σ(Bs : s ≤ t ). It turns out

F
|X |
t =F B

t ⊊F X
t .

Some intuition behind this: if we look at X̃ t = −X t for all t , this yields the same Bt . The existence of X̃ t

means we don’t have uniqueness of solutions, and our solution isn’t even measurable with respect to the
filtration generated by our Brownian motion. We see

∫ t
0 sign(Xs )dBs is defined for any nice filtration F

such that Bt is a Brownian motion with respect to F . For this example, we have to enlargen our state space
to find a solution, so we have Ft ⊋F B

t .

Theorem 2.2 (Levy’s Characterization of BM). BM is the unique continuous martingale such that B 2
t − t is

also a martingale. In other words, any such process that satifies the above characteristics has the law of BM
on C ([0,1]).

Question 2.3. Is Bt =
∫ t

0 sign(Xs )d Xs BM?

Question 2.4. Can we show any weak solution X t is BM?

Yes! Both questions can be shown with the above theorem.

Proof. We cover two proofs to Levy’s characterization of BM.

1. You can define Ito integration with respect to any continuous martingale X t . You need a continuous
increasing process At such that X 2

t − At is a martingale. (Non-trivial fact that you can always con-
struct an At given that X t is a martingale). For example, if X t =

∫ t
0 σs dBs , then At =

∫ t
0 σ

2
s d s.

Generalized Ito’s lemma:

f (X t ) =
∫ t

0
f ′(Xs )d Xs + 1

2

∫ t

0
f ′′(Xs )d As .

Working with characteristic functions, let Yt = f (X t ) = exp(iωX t ). If X t and X 2
t − t are martingales,

then Ito results in

Yt −Y0 =
∫ t

0
iωYs d Xs − ω2

2

∫ t

0
Ys d s.

We have

E [Yt ] = 1− ω2

2

∫ t

0
E [Ys ]d s =⇒ E [Yt ] = exp(−ω2t/2),

meaning that X t ∼N (0, t ).

2



2. Proving martingale CLT in discrete time. The idea is start with X t and discretize time into buckets,
resulting in a discrete-time martingale. Somehow using CLT to get a Gaussian from this martingale
given our understanding of the variance of each bucket.

Theorem 2.5 (Levy). Suppose that we have a triangular array {ξn,i }i≤m(n) with E [ξn,i |Fn,i−1] = 0
and ξn,i adapted to {Fn,i }i≤m(n). Define Sn,k =∑k

i=1 ξn,i and V 2
n,k =∑k

i=1 E [ξ2
n,i |Fn,i−1] (defining the

variance as σ2
i . Assume V 2

n,m(n) = 1. Recall the Lindeberg condition which states for all δ, we have

limn→∞
∑m(n)

i=1 E [ξ2
n,i 1|ξn,i |>δ] = 0.

Then Sn,m(n)
d→N (0,1).

For our use case here, we can let ξn,i = Xi /n −X(i−1)/n and m(n) = n. So Sn,n = X1. By continuity, the
Lindeberg condition follows (choosing n large enough for every δ). Thus, X1 ∼N (0,1).

Next time, we’ll go through a proof of this martingale CLT using the Lindeberg replacement method!
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