
Statistics 212: Lecture 1 (January 27, 2025)

Preview of Topics and Radon-Nikodym Theorem

Instructor: Mark Sellke

Scribes: Kevin Liu, Haozhe (Stephen) Yang

1 Lecture 1

Today we’re focusing on a preview of future topics and proof of Radon-Nikodym Theorem. Main topics for
today:

• Advanced martingales

• Brownian motion

• Ito (Stochastic) Calculus

See Instructor Website for more info. Also, sign ups for 5 minute meetings with Mark Sellke 1-2:30 Wed, Jan
29 or Mon Feb 3. Form to be sent out!

1.1 Preview of Brownian Motion and Ito Calculus

Definition 1.1 (Brownian Motion).

(a) Einstein’s definition. Scaling limit of a simple random walk. An example of a simple random walk is

x0 = 0

x1 =±1

x2 = x1 ±1

...

where all the ± are iid uniform. If we “scale out” the graph of the simple random walk, by the
central limit theorem, we have xt ≈N (0, t ) where t is a very large number (say a googol). We have
Bs = xtp

10100
∼N (0, s). Graphing out these B’s, we obtain a graph that is a random fractal.

(b) Wiener’s definition. Brownian motion on t ∈ [0,1] is a random Fourier series. We have

Bt = g0t + ∑
k≥1

gk

p
2

sin(πk)

πk
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(c) Gaussian process. The value at every timestamp is a Gaussian. We have

E [Bs ] = 0

Cov(Bs1 ,Bs2 ) = min(s1, s2).

Explanation for covariance: If s1 < s2, then

E [B 2
s1

] = s1

E [Bs1 (Bs2 −Bs1 )] = 0,

so E [Bs1 Bs2 ] = s1.

Definition 1.2 (Ito Calculus). Can think about Ito Calculus as calculus for Brownian motion or processes
that are similar to Brownian motion.

Examples:

• Stock prices. They are continuous, and we can think of it as a martingale. However, a stock price can
have a time-changing volatility, which is not quite Brownian (Brownian motion has constant volatility
over time, so it looks the same everywhere). Ito Calculus allows us to analyze these quasi-Brownian
objects.

• Zt = B 2
t . The process would clearly never go negative, and it oscillates more when at large values.

Even though this isn’t quite Brownian, we can still use Ito calculus on this process.

• Used for biology, optimal control, PDEs, complex analysis, diffusion sampling, quantum mechanics,
etc.

1.2 Radon-Nikodym Theorem

Definition 1.3 (Absolute continuity of finite measures). ν ≪ µ indicates that: the finite measure ν is
absolutely continuous with respect to µ if for every measurable set S such that ν(S) = 0 implies µ(S) = 0.
Equivalently, we have ν(S) > 0 implies µ(S) > 0. We say that ν is absolutely continuous with respect to µ.

Theorem 1.4 (Radon-Nikodym Theorem). Start off with finite measure µ on (Ω,F ). Essentially, RN tells us
what kind of measures we can produce starting with µ.

(a) If ν≪µ (i.e., ν is absolutely continuous with respect to µ), then there exists a non-negative integrable
f such that

ν(S) =
∫

S
f (ω)dµ(ω) =

∫
S

f dµ

for any measurable set S ∈F . We define f = dν
dµ as the Radon-Nikodym derivative.

(b) (More general) If there exists a non-negative integrable f and finite measureΘ, then we can decompose

ν(S) =Θ(S)+
∫

S
f (ω)dµ(ω),

withΘ,µ are disjointly supported, i.e. there exists an S ∈F such that µ(S) = 0 andΘ(Ω\S) = 0. We call
Θ(S) the “singular part” and the second term the “absolute continuous part” of ν.

(c) Assume ν ≤ µ, i.e. ν(S) ≤ µ(S) for all S ∈ F . Then there exists a measurable f : Ω→ [0,1] with f =
dν/dµ.
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Remark. We can show (b) =⇒ (a) =⇒ (c). Also note that if we’re given (c), then for general finite measures
(ν,µ), we have ν ≤ ν+µ so we can simply apply (c) to the pair (ν,ν+µ). On the first homework, we will
show this recovers (a) and (b). Intuitively, all 3 statements have the same core difficulty, that one has to
“conjure up” the function f out of thin air.

Proof. Simplest proof that Mark was able to find, by Anton Schep (2003). We prove the RN Theorem in the
form (c). The idea is to find the largest f such that f ≤ dν/dµ and show equality holds. Define

H =
{

f :Ω→ [0,1];∀S ∈F ,
∫

S
f dµ≤ ν(S)

}
. (1)

We want to find the maximum of H . For intuition, one can consider what happens assuming a Radon-
Nikodym derivative f∗ = dν

dµ exists. Then for arbitrary measurable f1, we have f1 ∈ H if and only if f1 ≤ f∗
holds almost everywhere.

Our first claim that H is closed under maximum, i.e. if f1, f2 ∈ H then max( f1, f2) ∈ H . Assuming a
Radon-Nikodym derivative exists, this is just because if f1, f2 ≤ f∗ almost everywhere, then max( f1, f2) ≤ f∗.
However we can prove it just from the given condition. Let A = {ω ∈Ω : f1 ≥ f2} and B = {ω ∈Ω : f1 < f2}
(the complement of A). We have∫

S
max( f1, f2)dµ=

∫
S∩A

f1dµ+
∫

S∩B
f2dµ

≤ ν(S ∩ A)+ν(S ∩B)

= ν(S).

Thus, max( f1, f2) ∈ H as well.

Following this observation, we will aim to demonstrate f∗ ∈ H by taking repeated maximums. We at-
tempt to define f∗(ω) = max f ∈H f (ω). But this is a faulty definition. Suppose that µ({ω}) = 0∀ω ∈Ω, i.e. µ
has no atoms. Then f∗(ω) = 1 for all ω because fω(x) = 1x=ω ∈ H .

Instead, we have to take the max of finitely or countably many functions. For k = 1,2, . . . , define gk :
Ω→ [0,1]. as follows. Let

M = sup
f ∈H

∫
Ω

f dµ.

We require gk ∈ H with
∫
Ω gk dµ≥ M − 1

k . We can repeatedly take maximums as so:

f1 = g1 ∈ H

f2 = max(g1, g2) ∈ H

f3 = max(g1, g2, g3) = max( f2, g3) ∈ H .

...

Note that 0 ≤ f1 ≤ f2 ≤ ·· · ≤ 1. By the monotone convergence theorem, there exists an f∗ = limk→∞ fk . We
want to show that f∗ is the RN-derivative.

We can see f∗ :Ω→ [0,1]. Less obvious but crucial is that∫
Ω

f∗dµ= M . (2)

As ∫
Ω

f∗dµ≥
∫
Ω

gk dµ≥ M − 1

k
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for all k ∈N, we see
∫
Ω f∗dµ ≥ M . By Fatou’s Lemma, we see

∫
Ω f∗dµ ≤ M as fk ∈ H for all k. We also see

that f∗ ∈ H as by Fatou’s Lemma, we have
∫

S f∗dµ≤ liminfk→∞
∫

S fk dµ≤ ν(S).
To show that

∫
S f∗dµ= ν(S) for all S, we can proceed with proof by contradiction. Assume that there

exists some S such that
∫

S f∗dµ< ν(S), so intuitively there is a “deficit” in S that we have not yet exhausted.
We will try to increase f∗ while remaining in H , which contradicts maximality of M (due to (2)).

Define E1 = {ω : f∗(ω) = 1}. We first show that the “deficit” does not come from the part of S in E1. Recall
the initial assumption that ν≥µ. But we also have

µ(S ∩E1) =
∫

S∩E1

f∗dµ≤ ν(S ∩E1)

as f∗ ∈ H . Then

µ(S ∩E1) =
∫

S∩E1

f∗dµ= ν(S ∩E1).

Therefore we can replace S by S\E1 = S ∩E0, where E0 =Ω\E1 is the complement of E1.
Next we want a positive amount of space to increase f∗, so we “exhaust” E0. For each n ≥ 1, define

Fn = {ω : f∗(ω) ≤ 1− 1

n
}.

These Fn exhaust E0 in that F1 ⊆ F2 ⊆ ·· · , and

∞⋃
n=1

Fn = E0.

Then
∫

S∩E0
f∗dµ< ν(S ∩E0), which implies

∫
S∩Fn

f∗dµ< ν(S ∩Fn) for large n. Define S̄ = S ∩Fn . For ϵ> 0
sufficiently small, we have ∫

S̄
( f∗+ϵχS̄ )dµ< ν(S̄). (3)

We want to show f∗+ϵχS̄ ∈ H to contradict the maximality of f∗. Although (3) appears like the condition
to be within H , it is only for a specific set S̄, while H is a condition on all measurable sets. So a bit more is
still needed.

To finish the proof, we need one more exhaustion argument. First, the condition for f∗ + ϵχS̄ to be
in H holds on any set disjoint from S̄, since the extra ϵχS̄ term doesn’t matter. So it remains to handle
subsets S̃ ⊆ S̄ (since in general we can decompose S̃ into S̃ ∩ S̄ and S̃\S̄). It will be convenient to define the
“ϵ-deficit”

Defϵ(A) = ν(A)−
∫

A
f∗dµ−ϵµ(A).

Note that this function is additive. The idea is that if S1 ⊆ S̄ violates the H-condition, i.e.∫
S1

( f∗+ϵχS̄ )dµ=
∫

S1

( f∗+ϵχS1 )dµ=> ν(S1),

this means Defϵ(S1) < 0 is negative. Then we can simply remove S1 and use additivity of this functional to
find that

Defϵ(S̄\S1) = Defϵ(S̄)−Defϵ(S1) < Defϵ(S̄) < 0. (4)

Thus intuitively, removing a violating set S1 only widens the deficit. So by removing “all possible violating
sets”, there will be no more room for violations. To be precise, we construct a sequence of disjoint sets
S1,S2, · · · ⊆ S̄, each of which attains an “almost maximal deficit”. Namely define

ak = inf
Sk

Defϵ(Sk ) < 0

4



with the infumum being over Sk ⊆ S̄ disjoint with S1,S2, . . . ,Sk−1, and choose Sk so that

Defϵ(Sk ) ≤ ak +
1

k
. (5)

Then we can define
Ŝ = S̄ \ (

⋃
k≥1

Sk )

to be “S̄ with all the deficit removed”. Now let’s verify that f̂ = f + ϵχŜ ∈ H , and that this contradicts
maximality of M to finish the proof:

• First, similarly to (4), it follows that∫
Ŝ

f̂ dµ−ν(Ŝ) =
∫

S̄
( f∗+ϵχS̄ )dµ−ν(S̄) < 0.

In particular, this means that ν(S̄) > 0 so S̄ is non-empty. Additionally, ν(S̄) ≤µ(S). Therefor if we can
verify that f̂ ∈ H then we will contradict maximality of M .

• As argued before, the condition (1) holds for f +ϵχŜ automatically on sets disjoint from Ŝ, since f ∈ H .
By additivity, it suffices to check (1) for any remaining subset S0 ⊆ Ŝ. (I.e. for a general set E , we can
check for both E ∩ Ŝ and E\Ŝ and add as before.)

• So, suppose for contradiction that S0 ⊆ Ŝ violates (1), i.e.∫
S0

f̂ dµ> ν(S0)+δ

for some positive δ, or equivalently Defϵ(S0) < −δ. Then for k > 1/δ, we see that Sk was chosen
wrong: we could have used Sk ∪S0 instead, and since they are disjoint we have

Defϵ(Sk ∪S0) = Defϵ(Sk )+Defϵ(S0) ≤ Defϵ(Sk )−δ≤ Defϵ(Sk )−1/k.

This shows that Sk does not obey the approximate-optimality condition (5). This gives the desired
contradiction and concludes the proof.
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