
Statistics 212: Lecture 19 (April 16, 2025)

Lévy’s Characterization of Brownian Motion,
Dubins-Schwarz Theorem

Instructor: Mark Sellke

Scribe: Baiyun Jing, Knut Vanderbush

Summary. In this lecture, we’re going to use Lindeberg’s exchange method to prove two CLTs. The first
will be a usual CLT for a sequence of independence random variables, and the second will be a martingale
CLT. A consequence of the martingale CLT will be Lévy’s characterization of Brownian Motion, which states
that if X t , X 2

t − t are martingales then X t is BM. A corollary of Lévy’s characterization of Brownian Motion
will be the Dubins-Schwartz Theorem, which states that any continuous martingale is a time-changed BM.

1 Central Limit Theorem with Lindeberg’s Exchange Method

We first state the usual central limit theorem for independent random variables.

Theorem 1.1. Let X1, ..., Xn be a sequence of independent, not necessarily identically distributed, random
variables with E [Xi ] = 0,E [X 2

i ] = 1 and E [|Xi |3] ≤C for some finite C . Then

1p
n

(
X1 +·· ·+Xn

) d−→ N (0,1). (1)

Proof. In this proof, we use Lindeberg’s exchange method. The idea is to replace each Xk with a Gaussian
that has the same first and second moments, and argue that each of the replacements doesn’t change the
distribution of the sum by much. Hence the original sum behaves approximately like the sum of Gaussians
which is N (0,1).

By the Portmanteau Theorem, convergence in distribution is equivalent to

E
[

f
( 1p

n

(
X1 +·· ·+Xn

))]→ E[ f (Z )], Z ∼ N (0,1) (2)

for all uniformly continuous and bounded f : R → R. In addition, recall that smooth and bounded functions
are dense in the space of uniformly continuous and bounded functions, so in fact we only need to show
Equation (2) for all smooth and bounded f : R → R with f ′, f ′′, f ′′′ uniformly bounded.

Let g1, ..., gn be iid N (0,1) random variables, and consider

n−1∑
k=0

∣∣∣∣E[
f

(
1p
n

(X1 +·· ·+Xk + gk+1 +·· ·+ gn)

)
− f

(
1p
n

(X1 +·· ·+Xk +Xk+1 + gk+2 +·· ·+ gn)

)]∣∣∣∣ .
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It suffices to show that the sum goes to 0, and we will proceed by bounding each summand. To do so,
recall the Taylor expansion formula

f (a +b) = f (a)+b f ′(a)+ b2

2
f ′′(a)+O (|b|3),

which suggests that for each k, we can let

bk = gk+1, b̃k = Xk+1, ak = sum of all other terms

and Taylor expand around ak . Notice that E[bk ] = E[b̃k ] = 0 and E[b2
k ] = E[b̃2

k ] = 1 and ak ⊥⊥ (bk , b̃k ). Thus,
the original kth summand is∣∣∣∣E[

f
( ak +bkp

n

)
− f

( ak + b̃kp
n

)]∣∣∣∣≤O
(
E[|bk |3 +|b̃k |3]×n−3/2) ,

since bk and b̃k have the same first and second moments, meaning the first and second order terms in the
Taylor expansion cancel out and only the third order terms are left. The final expression is at most O (n−3/2)
since E|b̃k |3 = E|Xk+1|3 ≤C and E|bk | = E|gk+1|3 which is also bounded.

Hence we conclude that

n−1∑
k=0

∣∣∣∣E[
f

(
1p
n

(X1 +·· ·+Xk + gk+1 +·· ·+ gn)

)
− f

(
1p
n

(X1 +·· ·+Xk +Xk+1 + gk+2 +·· ·+ gn)

)]∣∣∣∣≤O (n−1/2),

which converges to 0 as n →∞. In other proofs, it is not uncommon to use this method of replacing each
summand by a Gaussian and bounding the differences.

Remark. It is also true (but more complicated to show) that properly scaled averages of independent
heavy tailed random variables often converge to a “stable distribution”. In fact for any α ∈ (0,2], there exist
α-stable laws such that:

X1 +·· ·+Xn

n1/α
d= X1.

The CLT impies that the only 2-stable laws are centered Gaussian, but for otherα there are more. The main
tool to study them is characteristic functions. See also: Feller’s Probability textbook, the Wikipedia page on
“Stable distribution”.

Remark. If additional moments match, then Taylor expanding further in the above proof gives a faster

rate of convergence. A common situation is that 3rd moment match whenever Xi
d= −Xi has symmetric

distribution.

2 Martingale Central Limit Theorem

Let {Xn,i ,1 ≤ i ≤ m(n)} be a triangular array for n ∈Z+. In our application m(n) = n. Define:

Sn,k =
k∑

i=1
Xn,i , V 2

n,k =
k∑

i=1
E[X 2

n,i |Fn,i−1]

Theorem 2.1. Assume:

• (Martingale difference) E[Xn,i |Fn,i−1] = 0.

• V 2
n,m(n) = 1.
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• (Lindeberg condition)

∀δ> 0, lim
n→∞

m(n)∑
i=1

E
[

X 2
n,i ·1{|Xn,i |>δ}

]
= 0.

Then, Sn,m(n)
d−→N (0,1).

Note that the Lindeberg condition is intuitively the “weakest” thing that one might require if one hopes
for a central limit theorem. It is saying that the variance contribution from each individual martingale
difference term getting large becomes negligible when higher moments are bounded.

Proof. We often drop the n subscript for simplicity. Let g1, . . . , gm(n) ∼N (0,1) i.i.d., and define:

Yi =σn,i gi , σ2
n,i = E[X 2

n,i |Fn,i−1]

We want to bound:

m(n)∑
k=1

∣∣E[
f
(
X1 +·· ·++Xk−1 +Yk +Yk+1 +·· ·+Ym(n)

)− f
(
X1 +·· ·+Xk−1 +Xk +Yk+1 +·· ·+Ym(n)

)]∣∣ (3)

Since the Lindeberg condition is weaker than 3rd moments, we need to be more careful with Taylor
expansion error. We will use the fact that given a smooth function f ∈C 3

b(R), for any ε> 0, there exist δ,C
such that ∀a,b ∈R:

(a)
|b| ≤ δ⇒| f (a +b)− f (a)−b f ′(a)− 1

2 b2 f ′′(a)| ≤ εb2

(b)
∀b, | f (a +b)− f (a)−b f ′(a)− 1

2 b2 f ′′(a)| ≤C |b|2.

We apply this with
a = X1 +·· ·+Xk ,

bk = Xk+1,

b̃k = Yk+1.

(The rest of the proof will be outlined in class next lecture, due to some confusion on Mark’s end.)
The idea is that the future terms

Rk+1:m ≡ Yk+1 +·· ·+Ym(n)

are “just Gaussian noise”, and in fact the total variance is known at time k. This is because we assumed
V 2

n,m = 1, and our replacements preserve conditional variance. Hence the total conditional variance of
these future terms is:

Wk ≡
m(n)∑

i=k+1
E[Y 2

n,i |Fn,i−1] =
m(n)∑

i=k+1
E[X 2

n,i |Fn,i−1] =V 2
n,m −

k∑
i=1
E[Y 2

n,i |Fn,i−1] = 1−
k∑

i=1
E[Y 2

n,i |Fn,i−1].

Crucially the sum in the last expression is Fn,k−1-measurable, hence so is the “total future variance” Wk .
This implies that conditionally on Fk , the law of Rk+1:m is always N (0,Wk ). Hence we bound each sum in
(3) by averaging over the future, via the function

fk ≡ f ∗N (0,Wk )

which is given explicitly by
fk (x) = Ez∼N (0,Wk )[ f (x + z)].
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For j ∈ {1,2,3} the j -th derivative is similarly given by f ( j )
k (x) = Ez∼N (0,Wk )[ f ( j )(x+z)], and so each fk inherits

the smoothness bounds of f . Replacing Rk+1:m with exogenous Gaussian randomness (see Lemma 2.2
below for a careful justification), the k-th term in (3) is equal to∣∣E[

fk (X1 +·· ·+Yk )− fk (X1 +·· ·+Xk )
]∣∣≤ ∣∣E[

E
[

fk (X1 +·· ·+Yk )− fk (X1 +·· ·+Xk ) |Fk−1
]]∣∣

We now match Taylor expansions around X1 +·· ·+Xk−1, using the 3rd moment bound for Yk , to find that
this is bounded in expectation by

C ( f ) ·E[ϵX 2
k +C (X 2

k ·1|Xk |≥δ)+|Yk |3].

For the first part, we have
E[ϵ

∑
k

X 2
k +Y 2

k ] = 2ϵ

which tends to zero. For the second part, the Lindeberg condition implies

E
∑
k

[X 2
k ·1|Xk |≥δ] → 0.

The Yk terms are also not difficult to handle. Withσk =σn,k as above, recalling that
∑

k σ
2
k = 1 almost surely,

we have ∑
k
|Yk |3 =

∑
k
σ3

i ≤ max
k

(σk )

(
E
∑
k
σ2

k

)
= max

k
σk .

Hence to control the |Yk |3 terms, it suffices to show that maxk σk → 0 in probability (we want this in
expectation, but it is at most 1 almost surely). Indeed fixing say c ∈ (0,0.1), let τ be the first time with
σk ≥ c > 0. Then for δ≪ c, we have∑

i
E
[

X 2
n,i ·1{|Xn,i |>δ}

]
≥ E[

1τ<∞ ·E[
X 2

n,τ ·1{|Xn,τ|>δ}
]≥ E[

1τ<∞ ·E[
X 2

n,τ

]]−δ2 ≥ c ·P[τ<∞]−δ2.

As this expression tends to 0 for any δ as n →∞, it is eventually smaller than say δ2, so we conclude that
P[τ <∞] ≤ 2δ2/c, which is arbitrarily small for δ≪ c. Since limn→∞P[τ <∞] = 0 for any arbitrary c, we
conclude that maxi σi → 0 in probability, completing the proof.

Lemma 2.2. Let (σ1, . . . ,σm) be a predictable process of non-negative reals such that
∑m

i=1σ
2
i = 1 almost

surely. Let g1, . . . , gm be IID Gaussians also adapted to the same filtration, and suppose that gi is distributed
as N (0,1) conditionally on Fi−1. Then

S ≡
m∑

i=1
σi gi ∼ N (0,1).

Proof. We induct on m in the backward direction. Namely, the result is clear for m = 1, and so by inductive

hypothesis we know that conditionally on F1, the conditional law of S is σ1g1 +
√

1−σ2
1g ′ for an IID

standard Gaussian g ′. Since σ1 is F0-measurable, conditionally on F0, both coefficients (σ1,
√

1−σ2
1) are

determined by (g1, g ′) are conditionally IID Gaussian, completing the proof.

3 Lévy’s Characterization of BM, Dubins–Schwarz Theorem

For now, take the Martingale central limit theorem to be true. A consequence is Lévy’s Characterization of
Brownian Motion.

I.e. σi is Fi−1-measurable.
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Theorem 3.1. (Lévy’s Characterization of Brownian Motion.) If (X t )t≥0 is a continuous martingale and
(X 2

t − t )t≥0 is also a continuous martingale, then X t is Brownian motion.

The proof strategy of this result is to apply the Martingale CLT to a discretization of the martingale
X t

n
, X 2t

n
, . . . , X nt

n
to show that X t ∼ N (0, t ) and then repeat, conditioning on the past. The Lindeberg condi-

tion in this setting follows from continuity. Note that

E[X 2
t ] = t

and so by dominated convergence,

E

[
X 2

t ·1{
max1≤i≤n

∣∣X i t
n
−X (i−1)t

n

∣∣>δ}]
→ 0 a.s., n →∞, ∀δ> 0.

The latter estimate is slightly stronger than what the Lindeberg condition requires: it shows that the con-
tribution when any one increment exceeds δ tends to zero as n →∞, while in the Lindeberg condition we
only keep the large increments “à la carte”. Remember here E [X 2

t ] =∑
k E [(∆Btk )2] because increments are

independent.

A corollary of Lévy’s Characterization of Brownian Motion is the following Dubins–Schwarz Theorem.

Theorem 3.2. Any continuous martingale X t is a time-changed Brownian motion.

We next sketch a proof for a continuous martingale that has the form of X t =
∫ t

0 σs dBs . In this case, its
quadratic variation is given by At =

∫ t
0 σ

2
s d s, and X 2

t − At is a martingale. We let

Ys := Xτs , where τs = inf{t : At = s}.

Since τs is a stopping time, by the optional stopping theorem, we know that Ys and Y 2
s − s are martingales

with respect to the stopped filtration (Fτs ). To see this, the optional stopping theorem tells us that for t > s,
we have E[Xτt |Fτs ] = Xτs and thus E[Yt |Fτs ] = Ys .

By Lévy’s characterization, we conclude that Ys is standard Brownian motion.

Remark. To fully prove this result for any continuous martingale X t , one has to argue that X t , At satis-
fies some technical properties such that there cannot be times where At varies but X t doesn’t. This is
straightforward to see for the form of martingales we have described above.
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