
Statistics 212: Lecture 21 (April 21, 2025)

Brownian Motion and Complex Analysis

Instructor: Mark Sellke

Scribe: Emma Finn and Joel Runevic

1 Recap Martingale CLT

For full proof see Lecture 20 notes.

Theorem 1.1. Let {Xn,i ,1 ≤ i ≤ m(n)} be a triangular array for n ∈Z+. In our application m(n) = n. Define:

Sn,k =
k∑

i=1
Xn,i , V 2

n,k =
k∑

i=1
E[X 2

n,i |Fn,i−1]

Assume:

• (Martingale difference) E[Xn,i |Fn,i−1] = 0.

• V 2
n,m(n) = 1.

• (Lindeberg condition)

∀δ> 0, lim
n→∞

m(n)∑
i=1

E
[

X 2
n,i ·1{|Xn,i |>δ}

]
= 0.

Then, Sn,m(n)
d−→N (0,1).

Proof Sketch We had a martingale difference sequence X1, . . . , Xn(m) and we define Yi = σi gi for gi ∼
N (0,1) and σ2

i = E[X 2
i |Fi−1]. We want to bound (for smooth f :R→R) the following sum

m(n)∑
k=1

|Ak | =
m(n)∑
k=1

|E[ f (X1 +·· ·+Xk +Yk+1 +·· ·+Ym)− f (X1 +·· ·+Yk +Yk+1 +·· ·+Ym)]|

The trick is that conditionally on Fk−1, (Yk+1 +·· ·+Ym) is gaussian with known variance. The idea of the
proof is to use backward induction. If you’ve determined what σ1 is then you know that the future part
is an independent centered Gaussian. The idea is to start by looking at the last variance term and work
backwards, applying our inductive hypothesis. One way to get started is by recalling that

∑m(n)
j=1 σ2

j = 1 holds

almost surely. Thus,
∑m

j=k+1σ
2
j = 1−∑k

j=1σ
2
j = 1−∑k

j=1E[X 2
j |F j−1] is Fk−1-measurable.

Assuming the above trick, we now move on to define

fk (X ) = E[ f (X + g ·σk+1:m)]
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whereσk+1:m =∑m
j=k+1σ

2
j . We also know that fk is Fk−1 measurable and by properties of convolutions, we

have that
| f ′′

k |∞ ≤ | f ′′|∞
Then, applying the law of iterated expectation and Taylor expanding fk , we have that

|Ak | ≤ |E[E[ f (X1 +·· ·+Xk +Yk+1 +·· ·+Ym)− f (X1 +·· ·+Yk +Yk+1 +·· ·+Ym)|Fk−1]]|
≤C ( f ) ·E[ϵX 2

k +C X 2
k · I|Xk |>δ+|Yk |3]

Where the first term in the expectation is small by total variance and the second is small by Lindeberg. The
|Yk |3 term is a bit more tricky to control, but what was done so by Prof Sellke in Section 2 of the Lecture 20
notes.

2 Complex Analysis and Brownian Motion

2.1 Planar Brownian Motion

Warmup: Planar Brownian Motion is not recurrent but is neighborhood recurrent meaning that supt≥0{t :
|Bt | ≤ ϵ} =∞ almost surely ∀ϵ> 0.
Remark: This may be surprising because a random walk in 2-D is recurrent and planar BM is the scaling
limit of that, but 2 dimensions is actually the borderline case.

Proof. Let X t = log |B⃗t |2 = log((B x
t )2 + (B y

t )2). We claim that X t is a local martingale. Define the function
f (x, y) = log(x2 + y2). Computing the partial derivatives we find

∂x f (x, y) = 2x

x2 + y2

∂xx f (x, y) = 2(y2 −x2)

(x2 + y2)2

∂y f (x, y) = 2y

x2 + y2

∂y y f (x, y) = 2(x2 − y2)

(x2 + y2)2

Then, we find by Ito Lemma that

d X t =
2B x

t dB x
t +2B y

t dB y
t

(B x
t )2 + (B y

t )2
+0d t

holds, where the d t term is 0 since ∂xx f (x, y)+∂y y f (x, y) = 0 holds. This formula shows that X t is a lo-
cal martingale. Then, by the Dubins-Schwartz Lemma from last class, we know that X t is a time-change
of BM. We claim that this means that planar Brownian motion is neighborhood recurrent but not recurrent.

Recall that 1-dimensional Brownian motion never reaches ±∞, yet it returns to any a ∈ R infinitely of-
ten over arbitrarily large times. This is a time-scale invariant property, meaning that no matter how we
re-parametrize the process, this behavior will hold. Specifically, 1-dimensional Brownian motion will cross
the interval between −1 and 1 infinitely many times without ever reaching ∞. Consequently, the process
X t must also cross between circles of radii r1 and r2 infinitely many times. Therefore, X t cannot spend
an infinite amount of time within a finite duration in the original parametrization, ensuring that it avoids
both 0 and ∞.
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2.2 Conformal Invariance of Planar Brownian Motion

Recall that f : C→ C is holomorphic if limz→0
f (u+z)− f (u)

z exists ∀u ∈ C. We also have that f is smooth as
f :R2 →R2.

If we take z → 0 in R and iR, we derive the Cauchy-Riemann Equations. Write f (x + i y) = u(x, y)+ i v(x, y),
so we have that ux = vy and uy = −vx . The usual elementary functions are holomorphic, so you can
continue to do calculus in the way you’d hope.

Proposition 2.1. Brownian motion is preserved by holomorphic functions up to a time change.

Proof.
d f (B x

t + i B y
t ) = du(B x

t ,B y
t )+ i d v(B x

t ,B y
t )

We need to understand each term separately.

du(B x
t ,B y

t ) = ux dB x
t +uy dB y

t + (uxx +uy y )

2
d t

d v(B x
t ,B y

t ) = vx dB x
t + vy dB y

t + (vxx + vy y )

2
d t

Now, let’s apply the Cauchy Riemann Equations!
The d t terms cancel out since uxx +uy y = vx y −vx y = 0 and similarly, vxx +vy y =−ux y +ux y we can ignore
the drift part!

du(Bt ,B y
t ) = ux dB x

t +uy dB y
t

d v(Bt ,B y
t ) = vx dB x

t + vy dB y
t

This shows us that we have a local martingale. To show that these are a time change of Brownian Motion,
we need to be able to say that Corr(du,d v) = 0; i.e. we want to show that ux vx +uy vy = 0 holds. By Cauchy
Riemann, we have ux vx +uy vy = ux vx − vx ux = 0. We also want to have the same amount of fluctuation;
i.e. u2

x +u2
y = v2

x + v2
y , which again follows by CR equations.

Thus, by a 2D version of Dubins-Schwartz, we have that(
u(t )2 u(t )v(t )

u(t )v(t ) v(t )2

)
− At I2

is a local martingale for

At =
∫ t

0
ux (s)2 +uy (s)2d s =

∫ t

0
vx (s)2 + vy (s)2d s

This means our quadratic variation component is just a scalar multiple of the identity. You can make this
precise by using Ito’s Lemma on u(v)v(t ) and see that u(t )v(t ) is a local martingale. Then, as before (when
proving Dubins-Schwartz) we can define the stopping time τs such that Aτs = s. Then we see that

s 7→ (u(τs ), v(τs ))

is planar Brownian Motion by a 2-D version of Levy’s characterization!

Aside from being very cool, this also has neat consequences!

Application 1 Hitting Distribution for Planar Brownian Motion exit a disk or half-plane (this becomes
considerably stronger when combined with the Riemann mapping theorem).
Clearly if B0 = 0 the first exit location from the unit disk is uniform. Suppose B⃗0 = a ∈ R, for a ∈ [0,1).
Consider f (B⃗t ) for the function f (z) = z−a

az−1 , which is holomorphic on the unit disk.

3



Notice that f (a) = 0. This mapping also sends the boundary ∂D of the unit disk D to itself. To see this, we
can note that |z| = 1 implies that | f (z)| = 1 and |z| = 1 ⇐⇒ z̄ = 1/2.

Now, consider f (Bt ) which is Brownian Motion up to time change. Let τ be our exit time on the disk. Thus
we have that f (Bτ) ∼ Unif(∂D).

Law(Bτ) = f −1(Unif(∂D))

which tells us exactly that

Pa(θ) = 1

2π

(
1−a2

1−2a cos(θ)+a2

)
with θ denoting the angle. For those interested, Pa(θ) is a scaled Poisson kernel. What about starting a Brow-
nian motion B⃗0 = i and asking for the law of the first real number we hit (i.e., the exit time from the upper
half plane). Again, we can map between the disk and the upper half plane with a Mobius transformation.
Consider

h(z) = i

(
1+ z

1− z

)
so h(0) = i and if |z| = 1 then h(z) ∈ R. In this case, the Law is given by h(Unif(∂D)) with corresponding
density that is 1

π(1+x2)
, which is the Cauchy density.

Interestingly, note that by starting from B⃗0 = 2i and tracking the first time that the imaginary part hits 1
and then 0, this shows that the sum of two Cauchy random variables is another Cauchy random variable
(with different scaling).
Formally, Brownian motion is also conformal in higher dimensions, but you don’t have as many nice
conformal maps.

Application 2 Another proof of ζ(2) = π2

6 . Consider the function φ(z) = log( 1+z
1−z ) which maps the unit disk

D to a strip of length π. We know that the expected exit time of the strip is π2/4 which we’ve seen before,
from a 1-dimensional perspective. This tells us that

E[|φ(Bτ)|2] = π2

2

We can write out a Taylor expansion of this function

φ(z) = 2

(
z + z3

3
+ z5

5
+ . . .

)
Then, for U ∼ Uniform(∂D) uniform on the complex unit circle, applying the two facts above, we have that

E[|φ(Bτ)|2] = E[|φ(U )|2] = 4

(
1+ 1

32 + 1

52 + . . .

)
= π2

2
.

This is because the Taylor expansion terms are orthonormal, i.e. E[〈zi , z j 〉] = 1i= j for i , j ≥ 0 where the
inner product is taken in R2.

Dividing leads to

1+ 1

32 + 1

52 +·· · = π2
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Then, we notice that

ζ(2) =
(
1+ 1

32 + 1

52 + . . .

)(
1+ 1

4
+ 1

16
+ . . .

)
which follows from the fact that ζ(2) = ∑∞

k=1
1

k2 and every positive integer m can be written uniquely as

m = 2k · some odd number. Then, applying the sum of a geometric series identity to the RHS, we find
1+ 1

4 + 1
16 +·· · = 4

3
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Thus, we recover

ζ(2) =
(
1+ 1

32 + 1

52 + . . .

)(
1+ 1

4
+ 1

16
+ . . .

)
= π2

2
· 4

3
= π2

6

which is precisely what we wanted to show.
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