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Picard’s Little Theorem and Cameron Martin
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1 Main Results

1.1 Picard’s Little Theorem

Recall from last time that f :C→C is an entire, non-constant function, then f (Bt ) is again a planar Brow-
nian motion up to a time–change. Using it, we will outline a proof of the following celebrated complex
analysis result.

Picard’s Little Theorem. An entire function that omits two distinct complex values (without loss of
generality −1 and 1) must be constant. (Omitting a single value can be done in many ways: f (z) = eg (z)

never equals 0 if g is entire.)
For more details, see Picard’s Theorem and Brownian Motion by Burgess Davis.

1.1.1 Proof Outline

The following diagram illustrates a Brownian Motion under f . The new Brownian Motion, f (Bt ) should
get very tangled:

Note: There are no holes in the Brownian Motion on the left, but there can be holes (denoted by X) in
the Brownian Motion on the right.

Observation 1. Recall that planar Brownian motion is neighbourhood recurrent—there are arbitrarily
large times with |Bt −B0| ≤ ε. At each such time, B[0,t ] forms a loop (modulo the tiny distance between the
endpoints) that can be continuously deformed to a single point in C, for example via the deformation:

X (s)
t = sBt , s ∈ [0,1].
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Such a continuous deformation is called a homotopy. Similarly (again up to a tiny distance between
the endpoints), the pushforward under f of this loop can be deformed continuously to a point. Namely
Y (s)

t := f
(
X (s)

t

)
contracts f (B[0,T ]). However the latter deformation also avoids {−1,1}, which is a nontrivial

property.
Topological fact: loops in C \ {−1,1} (up to homotopy) are in bijection with words in the free group

{a,b, a−1,b−1}.

Ex: consider the loop corresponding to the word: a a b b a b−1 b−1 a b−1 a−1 a−1.

Because the group is not commutative, the loop represented by aba−1b−1 is non-trivial (but aa−1, for
example, is trivial).

Observation 2. Consider excursions w1, . . . , wk of f (Bt ) from a small neighborhood of 0 of radius 0.001,
which reach at least 0.1 away from 0. These excursions are approximately IID (e.g. recall the Poisson kernel
formula from last time). Label the k-th excursion by a non-trivial word wk . (Some excursions will come
back quickly and give an empty word, but that’s won’t really matter.) We will argue that after k excursions,
the composite word w1 · · ·wk has length len(w1 · · ·wk ) growing to ∞ with k.

Specifically, assume without loss of generality, that the last letter of the partial word w1 · · ·wk−1 is a.
Then

len(w1 · · ·wk )− len(w1 · · ·wk−1) ≥
len(wk ) if wk does not start with a−1,

− len(wk ) if wk does start with a−1.

Further, the excursion distributions are approximately symmetric, so these cases have respective proba-
bilities approximately 3/4 and 1/4, and |wk | is approximately independent of its first letter. Thus, a law
of large numbers style argument should imply that the total length grows to infinity, and in particular is
never 0 after some finite time. However this contradicts Observation 1: we saw that every time Bt returns
to near 0, the loop f (B[0,t ]) is homotopic to a point, hence corresponds to the trivial word. This proves the
theorem.

A slightly delicate technical point is that the LLN is not actually applicable because len(wk ) will not be
finite. This is because loops can spend a very long time far away from the origin, and make a large number
of windings while they are far away. To get around this, Davis considers a modified definition of length
which only counts adjacent occurences of ab−1, a−1b,ba−1,b−1a. This fixes the issue because the windings
correspond to words like abababab . . . , and a law of large numbers style argument can be applied to the
modified definition of length.

1.2 Cameron–Martin Theorem

1.2.1 Radon–Nikodym Warm-Up

Let Z ∼ N (0,1) under P0. For any µ ∈R define

dPµ
dP0

= exp
(
µZ − µ2

2

)
.
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Under Pµ we have Z ∼ N (µ,1).

Why this warm up? This scalar tilt example is a 1D version of the change of measure idea we’ll use to
prove the Cameron-Martin Theorem. We’ll now apply this idea to the entire Brownian Motion path (as
opposed to a single random variable).

1.2.2 Theorem Statement

For Brownian motion Bt with respect to P0, define

Zµ(t ) = exp
(
µBt − µ2

2 t
)
, 0 ≤ t ≤ T.

• Martingale property: Zµ(t ) is a martingale under P0.

• Change of measure: Introduce a new measure on the path space by

dPµ = Zµ(T )dP0.

• Resulting law: Under Pµ the process
B̃t := Bt −µt

is a standard Brownian motion; equivalently, Bt now has constant drift µ.

Intuition: apply the one–dimensional Radon–Nikodym tilt from the warm-up to every increment Bt+ε−
Bt and let ε→ 0.

Proof idea. By Itô’s formula,

d Zµ(t ) =µZµ(t )dBt +
(
µ2

2 − µ2

2

)
Zµ(t )d t =µZµ(t )dBt ,

so Zµ is indeed a martingale. For any λ ∈R, we computed that

EPµ
[
eλBt

]= EP0

[
eλBt Zµ(t )

]= exp
(
λ2

2 t +λµt
)
,

which is the moment generating function (mgf) of N (µt , t ) and confirms the drift.

Note: moments do not uniquely determine a distribution in general, but if the moments don’t grow too
fast such that the mgf exists in a neighborhood of 0, this does uniquely define a distribution thanks to
uniqueness of analytic continuation.

2 Looking Ahead

Some ideas we’ll cover in more depth in the next lecture (don’t worry too much about this for now):

(a) For a given µs we can tilt by
∫ τ

0
µs dBs to obtain a Brownian motion with drift µs .

(b) In Rd , if Z ∼ N (0, Id ) and we tilt by exp〈µ, Z 〉, we see a mean shift from 0 to µ.

This is the d dimensional version of (a).

(c) Brownian motion can be viewed as a Gaussian vector for the Hilbert space

H 1 =
{

f : [0,τ] →R : f (0) = 0, f ′ ∈ L2
}

, 〈 f , g 〉H 1 =
∫ τ

0
f ′(s)g ′(s)d s.

(d) If f (s) = ∫ s
0 µr dr , then 〈 f ,B〉H 1 = ∫ τ

0 µr dBr .

Thus adding drift corresponds to translating Brownian motion by an element of H 1.
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