Statistics 212: Lecture 24 (April 30, 2025)

Diffusion Sampling

Instructor: Mark Sellke

Scribe: Emma Finn

1 Recap of Last Class

Theorem 1.1 (Cameron-Martin). Let u be a deterministic function p: [0, T]1 — R such that fOT ,u(t)zd t <oo.
Denote by PP the Wiener measure on C([0, T1;R) induced by a standard Brownian motion (By) o, 1], and
let P* be the law of the process Bf = B+ foty(s)ds. Then Py, is the law of By + fotp(s)ds and satisfies

% (Bo.7)) = exp(fOT wsdBg — fOT w(s)?/2ds). This is a local martingale.

Corollary 1.2. If f(¢) = fot Usds has an 12 derivative then it follows that Law(B;) and Law(B; + f;) are
mutually absolutely continuous.

The next result is a converse. (Often the “Cameron-Martin theorem” means the conjunction of the
corollary above and the theorem below.)

Theorem 1.3. Conversely, if f' ¢ L? then Law(B; + f) is singular with respect to Law(B;), meaning that there
exists a set A< C([0, T]) such thatP,(A) =0 andPg(A) = 1.

Proof. (Sketch) The idea is to project on to a finite dimensional Fourier series subspace. We will work with
perturbations of a Brownian bridge and assume T =1 and f(0) = f(1) =0.

Now consider the Fourier coefficients of a Brownian Bridge B, = (B;—tB;). From a previous homework,
we have

5N 2 .
B = kgl cisin(knt), cr~ N(O, _anZ) independent.
for some appropriate constant a. Likewise expand
()
f() =) disin(kny),
k=1
so that
()
(=Y kndicos(knt)
k=1
and

1
||f/||§2=f0 Fltdre Y KPd2.



Thus f has Fourier coefficients dy, d», ds ... while f’ has Fourier coefficients di,2d,,3ds,.... On the finite-
dimensional projection onto modes 1,..., n, notice that

Law(c, ..., cx) o< exp(—a Y k*c})
k=1

for @ = 7%/2. This sum defines an inner product

(5, j>* = Z kzckdk.
k

Then, notice that " k*ds = co < ld||2 = (d,d). = co. The idea is that shifting a centered Gaussian is an
absolutely continuous perturbation exactly when the shift has bounded norm relative to the inner product
defining the Gaussian.

To avoid infinite-dimensional technicalities, we can work in large finite dimension by truncating ¢ to
(c1,...,cpn). Thus define the truncated inner product

n
<E» d>*,n = Z kzckdk.
k=1

We will give events A, which have high probability under the original Brownian bridge, but low probability
under the shift by d. A good choice of event A,, in Fourier space is

Ap={Z:(F,d)epn < dI? 12},

It is easy to see that A, has probability tending to 1 under the Brownian bridge (Po(A;) — 1), and tending
to 0 under the shifted measure (P, (A) — 0), if IIJIIi,n — oo (which is equivalent to ||J||i = 00). (Just note
that the 1-dimensional projection (%, d). , has distribution N(0, | JII?W) under Py and N(IIJIIi,n, IIJIIEM)
under P,,.)

To get singularity, we need a single event A instead of a sequence A;,. For this, let n; be an increasing
sequence of integers such that Ay, has probability at least Po(A,,) =1 - 2% under the Brownian bridge,
and at most P, (A, ) < 27K under the shift. Then let A be the event that all but finitely many of the events
(An) k=1 occur. Borel-Cantelli shows Py(A) = 1 and P, (A) = 0, as desired. O

2 Diffusion!

2.1 Sequential Sampling and Polya’s Urn

Suppose my goal is to sample from some probability measure on u ~ P([0,1]). We define the law pseq on
infinite sequences (Xi, X»,...) by first taking p ~ g, and then we have Xj, X»,... ' Bern(p), which are in
fact correlated since p is unknown.

Claim: If I can sample form this sequence measure I can also sample from g, since limr_.o, M =
p almost surely. Now we can sample yseq without first choosing p. Steps:

« Sample X; ~ Lawy, (X1) ~ Bern(E*[p])

+ Sample X, ~ Lawy,, (X21%1) ~ Bern(E* [p|F1])

+ Sample Xy ~ Lawy,, (Xi|Fk-1)

Where we define &_; = 0(X1,... X_1) We have p,; for thelaw of (p, X1, X,...) and we have Law,, ,, (X1, X2, ...|p)

Bern(p). Then Lawy, , (X1,...) = Museq = [Bern(p)®*®du(p)
Slogan: To sample I just need to be able to compute conditional means. The idea is to do this for a LOT
of our X;s in this way and then we have that p = L;J'XT

iid



2.1.1 Polya’s Urn

Consider an urn that starts with 1 black ball and 1 white ball. At each step, choose 1 ball uniformly, replace
itwith a copy. Suppose we have b black balls and w white balls in the urn then P (next ball is black) = f;’/iz
in the next step. This is identical to sequential sampling as above with p ~ Unif(0, 1). In particular, let X; =1
if the ith ball is black and 0 if it is white. We begin by sampling X; ~ Bern(E*[p]) = Bern(%). Suppose we pick
a black ball, next. Then X; = 1, and so E(p|X;) = 2/3. Then, we sample X, ~ Bern(E*[p|Z1]) = Bern(2/3).
We can continue in the way described above. If k of the X;...,X,, are black (ie = 1). Then we have
that Law(pllcgn) o p*(1 - p)" ¥, which means it has a Beta distribution. By beta properties we have
E(plFn) = 455

n+2°

This whole equivalence story means that the sequence (b, w, w,b,b,b, w,...) ~ pseq for u ~ Unif(0, 1).
The limiting fraction of b is Unif(0, 1).

2.2 Diffusion Sampling from the Perspective of Stochastic Localization

We'd now like to apply this discretized approach to continuous distributions.

Goal Sample X ~ p € P(R?) where y is compactly supported etc. This might be computationally hard when
d is big (unlike the Polya urn example). Instead of Bernoulli observations, use Gaussian noisy observations
and we’'ll take a small step limit.

Consider a small € signal to noise ratio per step. Given the unkown X, observe
w) ~eX+ 7

wy ~eX+ 2
where Z; id N (0,1). We apply the same sequential sampling procedure. Here 4, = Law(x, wy, wo,...)
while pseq = Law(wy, wa,...) Now we can sample piseq without first choosing X. We generate one sample
as follows:

+ Sample W) ~eu * N(0,¢€)

» Sample W, ~eLaw(x|%1) * N(0,¢)

» Sample Wi ~ Law(X|%) * N(0,ely)

~ Wi+Wo+--+Wr

As before X ~ ——%——+
As written, this is tricky to compute because we have to sample each Wy from a convolution. But you
can pass to the continuous time € — 0 limit and things get nicer. Here for the “known x” process we keep

track of yj. = Zle W ~ kex+ N(0, ke). Hence Wi | X ~ A (eX, €1dg).

After T steps one recovers )A(T = % Z,le Wi — X a.s.
In the limit, € — 0, first notice that conditionally on X, you get y; = w;|X ~ BM with drift X and
dy[ = dBt + Xdt.

First, recall the fact that py,4., = Law(Zy)
dZt = dBt + mtdt

3 fxe<x,z,>(-tx2/2) du(x)

i — [FHall = =
and from the Cameron Martin Theorem, we have m; = EFal [ X|Y; = Z;] I gy




Q: Why are Y; and Z; equal in distribution?
Consider the process y; relative to its natural filtration %;, where (X unknown). Then we have that y; —
fot E(X|Y;lds is a4, martingale. In fact M, is Brownian Motion with respect to 4,,. To see why, note first that
Dubins-Schwartz tells us M; is a time change of Brownian motion. We know that the time change must be
trivial, since if there were non-trivial time change, then the quadratic variation "clock" limg o X (Xk+1)s —
Xy5)? would be wrong.

2.3 Standard Diffusion

One can write down the corresponding partial differential equation for the evolving density, or compare to
the usual “score-based” diffusion samplers by re-parameterizing time and variance (see references).

2.4 References

For more on diffusions along the lines of the above approach, see Sampling, Diffusions, and Stochastic
Localization by Andrea Montinari (https://arxiv.org/abs/2305.10690). (Many many many other
good diffusion references as well.)


https://arxiv.org/abs/2305.10690
https://arxiv.org/abs/2305.10690
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