
Statistics 212: Lecture 24 (April 30, 2025)

Diffusion Sampling

Instructor: Mark Sellke

Scribe: Emma Finn

1 Recap of Last Class

Theorem 1.1 (Cameron–Martin). Let µ be a deterministic function µ : [0,T ] →R such that
∫ T

0 µ(t )2d t <∞.
Denote by P the Wiener measure on C ([0,T ];R) induced by a standard Brownian motion (Bt )t∈[0,T ], and
let Pµ be the law of the process Bµ

t = Bt +
∫ t

0 µ(s)d s. Then Pµ is the law of Bt +
∫ t

0 µ(s)d s and satisfies
dPµ
dP (B[0,T ]) = exp(

∫ T
0 µs dBs −

∫ T
0 µ(s)2/2d s). This is a local martingale.

Corollary 1.2. If f (t ) = ∫ t
0 µs d s has an L2 derivative then it follows that Law(Bt ) and Law(Bt + ft ) are

mutually absolutely continuous.

The next result is a converse. (Often the “Cameron-Martin theorem” means the conjunction of the
corollary above and the theorem below.)

Theorem 1.3. Conversely, if f ′ ∉ L2 then Law(Bt + ft ) is singular with respect to Law(Bt ), meaning that there
exists a set A ⊆C ([0,T ]) such that Pµ(A) = 0 and P0(A) = 1.

Proof. (Sketch) The idea is to project on to a finite dimensional Fourier series subspace. We will work with
perturbations of a Brownian bridge and assume T = 1 and f (0) = f (1) = 0.

Now consider the Fourier coefficients of a Brownian Bridge B̃t = (Bt − tB1). From a previous homework,
we have

B̃t =
∞∑

k=1
ck sin(kπt ), ck ∼ N

(
0,

2

k2π2

)
independent.

for some appropriate constant a. Likewise expand

f (t ) =
∞∑

k=1
dk sin(kπt ),

so that

f ′(t ) =
∞∑

k=1
kπdk cos(kπt )

and

∥ f ′∥2
L2 =

∫ 1

0
f ′(t )2d t ∝∑

k2d 2
k .
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Thus f has Fourier coefficients d1,d2,d3 . . . while f ′ has Fourier coefficients d1,2d2,3d3, . . . . On the finite-
dimensional projection onto modes 1, . . . ,n, notice that

Law(c1, . . . ,ck ) ∝ exp(−α ∑
k≥1

k2c2
k )

for α=π2/2. This sum defines an inner product

〈⃗c, d⃗〉∗ =∑
k

k2ck dk .

Then, notice that
∑

k2d 2
k =∞ ⇐⇒ ||d⃗ ||2∗ = 〈d⃗ , d⃗〉∗ =∞. The idea is that shifting a centered Gaussian is an

absolutely continuous perturbation exactly when the shift has bounded norm relative to the inner product
defining the Gaussian.

To avoid infinite-dimensional technicalities, we can work in large finite dimension by truncating c⃗ to
(c1, . . . ,cn). Thus define the truncated inner product

〈⃗c, d⃗〉∗,n =
n∑

k=1
k2ck dk .

We will give events An which have high probability under the original Brownian bridge, but low probability
under the shift by d⃗ . A good choice of event An in Fourier space is

An = {⃗x : 〈⃗x, d⃗〉∗,n ≤ ∥d⃗∥2
∗,n/2}.

It is easy to see that An has probability tending to 1 under the Brownian bridge (P0(An) → 1), and tending
to 0 under the shifted measure (Pµ(An) → 0), if ∥d⃗∥2∗,n →∞ (which is equivalent to ∥d⃗∥2∗ =∞). (Just note

that the 1-dimensional projection 〈⃗x, d⃗〉∗,n has distribution N (0,∥d⃗∥2∗,n) under P0 and N (∥d⃗∥2∗,n ,∥d⃗∥2∗,n)
under Pµ.)

To get singularity, we need a single event A instead of a sequence An . For this, let nk be an increasing
sequence of integers such that Ank has probability at least P0(Ank ) ≥ 1−2−k under the Brownian bridge,
and at most Pµ(Ank ) ≤ 2−k under the shift. Then let A be the event that all but finitely many of the events
(Ank )k≥1 occur. Borel-Cantelli shows P0(A) = 1 and Pµ(A) = 0, as desired.

2 Diffusion!

2.1 Sequential Sampling and Polya’s Urn

Suppose my goal is to sample from some probability measure on µ∼ P ([0,1]). We define the law µseq on

infinite sequences (X1, X2, . . . ) by first taking p ∼ µ, and then we have X1, X2, . . . i i d∼ Bern(p), which are in
fact correlated since p is unknown.

Claim: If I can sample form this sequence measure I can also sample from µ, since limT→∞ X1+···+XT
T =

p almost surely. Now we can sample µseq without first choosing p. Steps:

• Sample X1 ∼ Lawµseq (X1) ∼ Bern(Eµ[p])

• Sample X2 ∼ Lawµseq (X2|F1) ∼ Bern(Eµ[p|F1])

• . . .

• Sample Xk ∼ Lawµseq (Xk |Fk−1)

• . . .

Where we define Fk−1 =σ(X1, . . . Xk−1) We haveµal l for the law of (p, X1, X2, . . . ) and we have Lawµal l (X1, X2, . . . |p) i i d∼
Bern(p). Then Lawµal l (X1, . . . ) = museq = ∫

Bern(p)⊗∞dµ(p)
Slogan: To sample I just need to be able to compute conditional means. The idea is to do this for a LOT

of our Xi s in this way and then we have that p ≈ X1+X2+···+XT
T
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2.1.1 Polya’s Urn

Consider an urn that starts with 1 black ball and 1 white ball. At each step, choose 1 ball uniformly, replace
it with a copy. Suppose we have b black balls and w white balls in the urn then P (next ball is black) = b+1

b+w+2
in the next step. This is identical to sequential sampling as above with µ∼ Unif(0,1). In particular, let Xi = 1
if the i th ball is black and 0 if it is white. We begin by sampling X1 ∼ Bern(Eµ[p]) = Bern( 1

2 ). Suppose we pick
a black ball, next. Then X1 = 1, and so E(p|X1) = 2/3. Then, we sample X2 ∼ Bern(Eµ[p|F1]) = Bern(2/3).
We can continue in the way described above. If k of the X1 . . . , Xn are black (ie = 1). Then we have
that Law(p|Fn) ∝ pk (1 − p)n−k , which means it has a Beta distribution. By beta properties we have
E(p|Fn) = k+1

n+2 .

This whole equivalence story means that the sequence (b, w, w,b,b,b, w, . . . ) ∼ µseq for µ ∼ Unif(0,1).
The limiting fraction of b is Unif(0,1).

2.2 Diffusion Sampling from the Perspective of Stochastic Localization

We’d now like to apply this discretized approach to continuous distributions.
Goal Sample X ∼µ ∈ P (Rd ) where µ is compactly supported etc. This might be computationally hard when
d is big (unlike the Polya urn example). Instead of Bernoulli observations, use Gaussian noisy observations
and we’ll take a small step limit.

Consider a small ϵ signal to noise ratio per step. Given the unkown X , observe

w1 ∼ ϵX +Z1

w2 ∼ ϵX +Z2

where Zi
i i d∼ N (0,1). We apply the same sequential sampling procedure. Here µal l = Law(x, w1, w2, . . . )

while µseq = Law(w1, w2, . . . ) Now we can sample µseq without first choosing X . We generate one sample
as follows:

• Sample W1 ∼ ϵµ∗N (0,ϵ)

• Sample W2 ∼ ϵLaw(x|F1)∗N (0,ϵ)

• . . .

• Sample Wk ∼ Law(X |Fk )∗N (0,ϵId )

• . . .

As before X ≈ W1+W2+···+WT
T ϵ

As written, this is tricky to compute because we have to sample each Wk from a convolution. But you
can pass to the continuous time ϵ→ 0 limit and things get nicer. Here for the “known x” process we keep
track of ykϵ =

∑k
j=1 W j ∼ kϵx +N (0,kϵ). Hence Wk | X ∼ N

(
ϵX , ϵ I dd

)
.

After T steps one recovers X̂T = 1
T ϵ

∑T
k=1 Wk → X a.s.

In the limit, ϵ → 0, first notice that conditionally on X , you get yt = wt |X ∼ B M with drift X and
d yt = dBt +X d t .
. . .

First, recall the fact that µpath = Law(Zt )

d Zt = dBt +mt d t

and from the Cameron Martin Theorem, we have mt = Eµal l [X |Yt = Zt ] =
∫

xe〈X ,Zt 〉(−t x2/2)dµ(x)∫
e〈X ,Zt 〉(−t x2/2)dµ(x)
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Q: Why are Yt and Zt equal in distribution?
Consider the process yt relative to its natural filtration Gt , where (X unknown). Then we have that yt −∫ t

0 E(X |Gs ]d s is a Gt martingale. In fact Mt is Brownian Motion with respect to G⊔. To see why, note first that
Dubins-Schwartz tells us Mt is a time change of Brownian motion. We know that the time change must be
trivial, since if there were non-trivial time change, then the quadratic variation "clock" limδ↓0

∑
(X(k+1)δ−

Xkδ)2 would be wrong.

2.3 Standard Diffusion

One can write down the corresponding partial differential equation for the evolving density, or compare to
the usual “score-based” diffusion samplers by re-parameterizing time and variance (see references).

2.4 References

For more on diffusions along the lines of the above approach, see Sampling, Diffusions, and Stochastic
Localization by Andrea Montinari (https://arxiv.org/abs/2305.10690). (Many many many other
good diffusion references as well.)
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