Statistics 212: Lecture 2 (January 29th, 2025)

Conditional Expectation and Martingales

Instructor: Mark Sellke

Scribes: Hasan Laith and Shirley Xiong

1 January 29: Conditional Expectation and Martingales

1.1 Administration

Poll for SC 705 v.s. Sever 103 at end of class. (Sever won.)

1.2 Finishing Up Radon-Nikodym

Recall the Radon-Nikodym Theorem, where we have finite measures  and v. If v < 4, (i.e. v is absolutely
continuous with respect to g, or that u(S) =0 = v(S) = 0) then there exists integrable non-negative f s.t.
f= Z—Z (call this the RN derivative) and (where w € Q):

V(S):fsf(w)du(w)zfsfdu

We have these three variants:

(a) There exists an integrable, non-negative function f and another finite measure © such that:
v(S) =0(S) +fsf(a))d,u(a))

and O, i are disjointly supported, meaning that there exists S € & : u(S) =0, and ©(Q\S) = 0. So, we
are decomposing our v into the absolutely continuous part (the integral) and the singular part (®)
(we can decompose the singular part further .

(b) Let v, u be finite measures on (Q, %), such that 0 < v(S) < u(S) for all S € &#. Then:

d
EIf:Q—»[O,l],andfzd—:;

That is forall S € &
fsf(w)du(a)) =v(S).

(c) Let v < ube probability measures. Then for all S:

d
3f:Q—-Ry whichwedenotef:d—;, [fdp:v(S) andf fdu=1=eM[f].
S Q



The steps for (3):
The general idea here is to exhaust from below. Initially define the set:

H= {measurable functions f: f fdu=v(S) (VSe 9)}
S

(where f: Q — [0,1]). Then, we want to find fi € H, with [, fidp=M=supscy Jo fdu.

We want f, = % and show that it is the maximal element (s.t. we then have the desired equality with v(S)
for all S) it remains to assume that there exists S € & such that [ f. dp < v(S) and get a contradiction as if
the increased element is contained by H, then f. wouldn’'t be maximal.

First, we remove E; = {0 : fi (w) = 1}; for all S’ € E; : u(S') = v(S'), since p = v by assumption and u(S’) =
Jo fedu=v(S), f. € H.

Now, we can assume that S € Ey = Q\E}, and write S = Sn F,, for notational convenience.

Using [ fudp < v(S), we know that 3n > 0, where the same holds for F,, = {0 : fi (w) <1-1/n}, as:
FycF,<c: - <+ — Ey by Monotone Convergence Theorem.

Then:
f-f* du<v(§) = u(S) >v(S) >0.
S

So now our attempt is to hope that f, + ey € H for some small £ > 0, which would increase maximality of
M since we'd be increasing f.. This might look sufficient since:

« ife<1/n,then f; +ex5:Q—[0,1].

« [sfi+exgdp<v(S)

However, the condition for H (by construction) needs to hold for all sets in &, and not just S (and those
which are then contained in S). So the idea is to prune down S in a way that fixes everything, removing
violators — once we get rid of all the violating sets, then we’ll be happier.

Definition: Allow the deficit to be Def; = v(A) — [, f«du—eu(A). This is countably additive for disjoint sets
A, B. (Think of this as an error term of sorts.)

We've just seen that Def,(5) > 0. Let’s suppose that some S; < S violates the condition to be in H for f.+eys,
which exactly says that Def, < 0, implying that the deficit increases if we just remove S; : Def.(5\S;) >
Def,(S) > 0.

Define disjoint Sy, S, --- € S, which each optimize the deficit leftover. Recursively, define
ar= inf Def:(S;) <0.
Si<S disjoint from previousSy,...,Sk-1
In each step, we choose S to ensure that Def, (S;) < ax + %, andlet $=8\(S;US;---U...).

We claim that f. + €y € H. It follows from the definitions about deficit that Def, () >0 = v(§) >0 =
() > 0, so we actually get a contradiction since we've increase f, by a positive amount.

Suppose that 35 = §: Def.(S) < —1/k < 0. This causes a contradiction since we should have used Srus
instead of S, i.e. S disobeys its definition since it isn’t within 1/k within minimizing the deficit and thus
we haven't exhausted everything we've meant to be exhausting.

Note: sets disjoint from S don’t matter. This is because we already had f. € H, so the only potential violations
of the condition to be in H come from sets within S. (Le. for general A€ &, check separately for An S and
A\S and add.)



1.3 Conditional Expectation

Definition: Let (Q,.%, P) be a probability space, and ¢ < &, X € L' (P,.%). Note:
« XeLl'(y) = EM|X|<o0
« YcF < Gisasubo—algebra/o-field <= Se€¥Y — Se&F
Then, E(X|%¥4) is the unique (up to measure 0) ¢ —-measurable function such that:
E(X-xs) =E[E[X|¥]-xs]VSe¥

That is, we should treat the conditional expectation E[X|¥] as a random variable with the above prop-
erty, and in terms of integrals (recalling that multiplying by an indicator translates to integrating over its
support), for all S € ¢4:

f Xdp = f (E[X|¥9)) dP

S S

Connecting back to what we might have seen before for conditional expectation, for a random variable Y :
EIX|Y]:=E[X|o(Y)]

(where o (Y) is the smallest c—algebra such that Y is measurable).

1.3.1 Existence and Uniqueness

Uniqueness:

Suppose that Y and Z both satisfy the condition defining E(X|¥). Let S ={Y > Z} and S_ ={Y < Z}. We
show both sets must have measure 0; note that they are automatically ¢—measurable (S, S- € ¥) since
Y, Z are ¢9-measurable by definition.

That is:
E[(Y=2) x5, ] =E[(X=X)-¥s. ]
And clearly the right-hand term evaluates to 0. This is only possible if S, has measure 0. The
same argument shows that S_ has measure 0, so we conclude that Y = Z almost surely.
We can also take this in terms of integrals and etc.

The proof for the uniqueness of the RN result is similarly as so:

If f1, f> both satisfy the conditions defining Z—z, then we construct the sets S, = {f] > f2},S- =
{f1 < f>} and show each has measure 0. For example if u(S;) > 0, then

v(S+)—v(S+)=fs (fi - f)dp> 0.

(Since S is where f; > f>, the integral must be positive if S, has positive measure.) We can do
the same for S_ with f, — fj in the integrand, so we are done.

Existence: We can prove this directly by the RN Theorem.
Assume that X = 0 (in general, decompose X = X, — X_ and do the below argument for both). Let v be
a finite measure on ¢ given by v(S) = [ XdP (where P is the probability measure on the original space).
Then, v < P, considering [P as a ¢ —measure by restricting the sets plugged into P. This implies that there
exists: d

¢%-measurable function which we write d—[; =E(X|9).

This matches the definition of an RN derivative since, if S€ ¢ : v(S) = [(E(X|9)dP allegedly. By definition,
this is equal to [ Xdp, which is exactly equal to E[E[X|¥] - xs], which is also equal to E[X y 5], and then the
allegation follows by transitivity of equalities.



1.3.2 Practice with the Definition

+ Showing that E[aX; + bX>|¥9] = aE[X|¥] + DE[X»|¥9]:

Given the separate conditional expectations E[X;[|¥],E[X»|¥] are ¥—measurable, then the sum
aE[X1|¥4] + bE[X,|¥4] is also ¥ —measurable.

We want to show that if S € ¢4, then fs aXi + bX,dP i fs aE[X;|¥4] + bE[X,|¥4]dP = E(aX; +bX5|¥9).
By linearity, [ aX,dP = [gaE(X;|9], and similarly for X5, and then the proofis finished as long as

we’re not confused.

+For ¥ = {{}, A, A%, Q}, check the conditional expectation.

To say that a function is ¢-measurable here, it just means ( <= ) that it is constant in A, and
constant in A°.

Here, we'll only be taking expectation over A, A¢, which is just the average-taking process we are
used to.

1.3.3 Conditional Expectations Decrease Convex Functions
Theorem (Jensen’s Inequality): let ¢p : R — R be convex. Then,

PEIXIY) <E[p(X)IY], Y -a.e.
It is helpful to think of how to prove it in this case. Here, we want to show that if S € ¢4, then:
fs SEXIF))dP < fs El¢(X)IF)dP.
What is special about convex functions is that ¢ is convex if and only if for all x € R, there exists

¢'(x) € R such that ¢(Y) — p(X) = ¢’ (x) - (y — x) for all y € R (visualize as basically saying that if
you draw the tangent line to the graph of ¢, it will stay below).

We're going to use that
$(X) = EIXIG]) + (X —E[X|9]) - ¢ E[X|9]),

where we're just drawing a tangent line at E[X|¥] and using convexity. Note also that

L[E[(/)(X)K?]d[P’:fS(p(X)dIP.

Then, rearranging, it suffices to show that [ s(X—E[X|¥9]) -¢' (E[X|¥4]) = 0. The difference in the
integrand vanishes when hit with ¢¢—measurable stuff, i.e. by definition

f (X -E[X|¢9NdP=0
A

for any A € 4. The standard measure-theoretic argument is again that we approximate
¢'(E[X|¥]) by simple functions which take finitely many values.

This has a couple of nice consequences, as follows.



1.3.4 Contractionin L!

Corollary:
$(X) = 1X| = [EXI9] =E[X]|9].

If we integrate the both sides, we’ll see that:

IE[X|4]II1 < I X1, since f[E[IXII%]dIsz | X|dP asw e 4.
Q Q

Corollary:1f X3,..., X, b X, (.e. | X —Xyl;1 — 0), then:

f[E[IX—XnII‘g] — 0 = E[X;|¥] 4 E[X]¥4].

1.3.5 Projection in L2

If X € [2(%), then E[X|¥] is closest L2 (%) approximation which is ¢ —-measurable.
In fact, if Y € L?(%), then E[(X — (E[X|¥4] + Y))?] = E[(X — E[X|¥])?] + E[Y?], so we really just have a
Pythagorean theorem.

Proof: We want cross term to vanish, meaning that E[(X — E[X|¥]) - Y] = 0. To show this,
write Y = Y, — Y_,Y = 0 to assume WLOG that Y = 0. Then have a sequence of increasing
approximations Y7 = Y» <... 1 Y, where each Y}, is a simple function. (For example, make
Y, the largest multiple of 27" which is smaller than Y and at most 2”.) Then, by dominated
convergence on their squares, we get that || Y, ;2 — Y|l ;2, which implies that | Y — Yy |l;2 — 0.
To see the last implication, note that if 0 < Y’ < Y almost surely, then

1Y =Y'I2, =EI(Y - Y)*] <E[Y?] - E[(Y)?]

since a? + b? < (a+ b)? for any a,b = 0. Then we can say that E[(X — E[X|¥])- (Y — Y;,)] — 0
by Cauchy-Schwarz. Meanwhile by again using the definition of conditional expectation and
breaking Y}, into a sum of finitely many indicators, we have E[(X — E[X|¥]) - Y;,] = 0 for all n.
Combining finishes the proof.

1.4 Martingales

Definition: A filtration & is a sequence of o —algebras satisfying %, € &; € F, c ... ((weakly) monotonically
increasing).
Definition: A stochastic process (X;);>¢ is adapted to (F;) if X; is #;—measurable for each .

Definition: A stochastic process (X;);»¢ is a martingale if X; € L' and E[X;411F;] = X, (both for all 7).
We can also say that (X;);>¢ is also a martingale relative to the “natural filtration” if we have for all ¢

gtza(Xl,...,X[).
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