
Statistics 212: Lecture 2 (January 29th, 2025)

Conditional Expectation and Martingales

Instructor: Mark Sellke

Scribes: Hasan Laith and Shirley Xiong

1 January 29: Conditional Expectation and Martingales

1.1 Administration

Poll for SC 705 v.s. Sever 103 at end of class. (Sever won.)

1.2 Finishing Up Radon-Nikodym

Recall the Radon-Nikodym Theorem, where we have finite measures µ and ν. If ν≪µ, (i.e. ν is absolutely
continuous with respect to µ, or that µ(S) = 0 =⇒ ν(S) = 0) then there exists integrable non-negative f s.t.
f = dν

dµ (call this the RN derivative) and (where ω ∈Ω):

ν(S) =
∫

S
f (ω)dµ(ω) =

∫
S

f dµ

We have these three variants:

(a) There exists an integrable, non-negative function f and another finite measureΘ such that:

ν(S) =Θ(S)+
∫

S
f (ω)dµ(ω)

andΘ,µ are disjointly supported, meaning that there exists S ∈F :µ(S) = 0, andΘ(Ω\S) = 0. So, we
are decomposing our ν into the absolutely continuous part (the integral) and the singular part (Θ)
(we can decompose the singular part further .

(b) Let ν,µ be finite measures on (Ω,F ), such that 0 ≤ ν(S) ≤µ(S) for all S ∈F . Then:

∃ f :Ω→ [0,1], and f = dν

dµ

That is for all S ∈F : ∫
S

f (ω)dµ(ω) = ν(S).

(c) Let ν≪µ be probability measures. Then for all S:

∃ f :Ω→R≥0 which we denote f = dν

dµ
,

∫
S

f dµ= ν(S) and
∫
Ω

f dµ= 1 = EM [ f ].
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The steps for (3):
The general idea here is to exhaust from below. Initially define the set:

H =
{

measurable functions f :
∫

S
f dµ≤ ν(S) (∀S ∈F )

}
(where f :Ω→ [0,1]). Then, we want to find f∗ ∈ H , with

∫
Ω f∗dµ= M ≡ sup f ∈H

∫
Ω f dµ.

We want f∗ = dµ
dν and show that it is the maximal element (s.t. we then have the desired equality with ν(S)

for all S) it remains to assume that there exists S ∈F such that
∫

S f∗dµ≤ ν(S) and get a contradiction as if
the increased element is contained by H , then f∗ wouldn’t be maximal.

First, we remove E1 = {ω : f∗(ω) = 1}; for all S′ ⊆ E1 : µ(S′) = ν(S′), since µ ≥ ν by assumption and µ(S′) =∫
S′ f∗dµ≤ ν(S′), f∗ ∈ H .

Now, we can assume that S ⊆ E0 =Ω\E1, and write S̄ ≡ S ∩Fn for notational convenience.

Using
∫

S f∗dµ≤ ν(S), we know that ∃n > 0, where the same holds for Fn = {ω : f∗(ω) ≤ 1−1/n}, as:

F1 ⊆ F2 ⊆ ·· · ⊆ · · ·→ E0 by Monotone Convergence Theorem.

Then: ∫
S̄

f∗dµ< ν(S̄) =⇒ µ(S̄) > ν(S̄) > 0.

So now our attempt is to hope that f∗+ϵχS̄ ∈ H for some small ε> 0, which would increase maximality of
M since we’d be increasing f∗. This might look sufficient since:

• if ε< 1/n, then f∗+ϵχS̄ :Ω→ [0,1].

•
∫

S̄ f∗+εχS̄ dµ< ν(S̄)

However, the condition for H (by construction) needs to hold for all sets in F , and not just S̄ (and those
which are then contained in S̄). So the idea is to prune down S̄ in a way that fixes everything, removing
violators — once we get rid of all the violating sets, then we’ll be happier.

Definition: Allow the deficit to be Defε = ν(A)−∫
A f∗dµ−εµ(A). This is countably additive for disjoint sets

A,B . (Think of this as an error term of sorts.)

We’ve just seen that Defε(S̄) > 0. Let’s suppose that some S1 ⊆ S̄ violates the condition to be in H for f∗+εχS̄ ,
which exactly says that Defε < 0, implying that the deficit increases if we just remove S1 : Defε(S̄\S1) >
Defε(S̄) > 0.

Define disjoint S1,S2, · · · ⊆ S̄, which each optimize the deficit leftover. Recursively, define

ak = inf
Sk≤S̄ disjoint from previousS1,...,Sk−1

Defε(Sk ) ≤ 0.

In each step, we choose Sk to ensure that Defε(Sk ) ≤ ak + 1
k , and let Ŝ = S̄\(S1 ∪S1 · · ·∪ . . . ).

We claim that f∗+εχŜ ∈ H . It follows from the definitions about deficit that Defε(Ŝ) > 0 =⇒ ν(Ŝ) > 0 =⇒
µ(Ŝ) > 0, so we actually get a contradiction since we’ve increase f∗ by a positive amount.

Suppose that ∃S̃ ⊆ Ŝ : Defε(S̃) < −1/k < 0. This causes a contradiction since we should have used Sk ∪ S̃
instead of Sk , i.e. Sk disobeys its definition since it isn’t within 1/k within minimizing the deficit and thus
we haven’t exhausted everything we’ve meant to be exhausting.

Note: sets disjoint from S̄ don’t matter. This is because we already had f∗ ∈ H, so the only potential violations
of the condition to be in H come from sets within S̄. (I.e. for general A ∈F , check separately for A ∩ S̄ and
A\S̄ and add.)
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1.3 Conditional Expectation

Definition: Let (Ω,F ,P) be a probability space, and G ⊆F , X ∈ L1(P,F ). Note:

• X ∈ L1(µ) =⇒ EM |X | <∞
• G ⊆F ⇐⇒ G is a sub σ−algebra/σ-field ⇐⇒ S ∈G =⇒ S ∈F

Then, E(X |G ) is the unique (up to measure 0) G−measurable function such that:

E(X ·χS ) = E[
E[X |G ] ·χS

]∀S ∈G

That is, we should treat the conditional expectation E[X |G ] as a random variable with the above prop-
erty, and in terms of integrals (recalling that multiplying by an indicator translates to integrating over its
support), for all S ∈G : ∫

S
X dP=

∫
S

(E[X |G ])dP

Connecting back to what we might have seen before for conditional expectation, for a random variable Y :

E[X |Y ] := E[X |σ(Y )]

(where σ(Y ) is the smallest σ−algebra such that Y is measurable).

1.3.1 Existence and Uniqueness

Uniqueness:

Suppose that Y and Z both satisfy the condition defining E(X |G ). Let S+ = {Y > Z } and S− = {Y < Z }. We
show both sets must have measure 0; note that they are automatically G−measurable (S+,S− ∈ G ) since
Y , Z are G -measurable by definition.

That is:
E
[
(Y −Z ) ·χS+

]= E[
(X −X ) ·χS+

]
And clearly the right-hand term evaluates to 0. This is only possible if S+ has measure 0. The
same argument shows that S− has measure 0, so we conclude that Y = Z almost surely.

We can also take this in terms of integrals and etc.

The proof for the uniqueness of the RN result is similarly as so:

If f1, f2 both satisfy the conditions defining d x
dµ , then we construct the sets S+ = { f1 > f2},S− =

{ f1 < f2} and show each has measure 0. For example if µ(S+) > 0, then

ν(S+)−ν(S+) =
∫

S+
( f1 − f2)dµ> 0.

(Since S+ is where f1 > f2, the integral must be positive if S+ has positive measure.) We can do
the same for S− with f2 − f1 in the integrand, so we are done.

Existence: We can prove this directly by the RN Theorem.

Assume that X ≥ 0 (in general, decompose X = X+− X− and do the below argument for both). Let ν be
a finite measure on G given by ν(S) = ∫

X dP (where P is the probability measure on the original space).
Then, ν≪P, considering P as a G−measure by restricting the sets plugged into P. This implies that there
exists:

G -measurable function which we write
dν

dP
= E(X |G ).

This matches the definition of an RN derivative since, if S ∈G : ν(S) = ∫
S E(X |G )dP allegedly. By definition,

this is equal to
∫

S X dµ, which is exactly equal to E[E[X |G ] ·χS ], which is also equal to E[XχS ], and then the
allegation follows by transitivity of equalities.
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1.3.2 Practice with the Definition

+ Showing that E[aX1 +bX2|G ] = aE[X1|G ]+bE[X2|G ]:

Given the separate conditional expectations E[X1|G ],E[X2|G ] are G−measurable, then the sum
aE[X1|G ]+bE[X2|G ] is also G−measurable.

We want to show that if S ∈G , then
∫

S aX1 +bX2dP
?= ∫

S aE[X1|G ]+bE[X2|G ]dP
?= E(aX1 +bX2|G ).

By linearity,
∫

S aX1dP= ∫
S aE(X1|G ], and similarly for X2, and then the proof is finished as long as

we’re not confused.

+ For G = {{}, A, Ac ,Ω}, check the conditional expectation.

To say that a function is G -measurable here, it just means ( ⇐⇒ ) that it is constant in A, and
constant in Ac .

Here, we’ll only be taking expectation over A, Ac , which is just the average-taking process we are
used to.

1.3.3 Conditional Expectations Decrease Convex Functions

Theorem (Jensen’s Inequality): let φ :R→R be convex. Then,

φ(E[X |G ]) ≤ E[φ(X )|G ], G −a.e.

It is helpful to think of how to prove it in this case. Here, we want to show that if S ∈G , then:∫
S
φ(E[X |G ])dP≤

∫
S
E[φ(X )|G ]dP.

What is special about convex functions is that φ is convex if and only if for all x ∈R, there exists
φ′(x) ∈R such that φ(Y )−φ(X ) ≥φ′(x) · (y −x) for all y ∈R (visualize as basically saying that if
you draw the tangent line to the graph of φ, it will stay below).

We’re going to use that

φ(X ) ≥φ(E[X |G ])+ (X −E[X |G ]) ·φ′(E[X |G ]),

where we’re just drawing a tangent line at E[X |G ] and using convexity. Note also that∫
S
E[φ(X )|G ]dP=

∫
S
φ(X )dP.

Then, rearranging, it suffices to show that
∫

S (X −E[X |G ]) ·φ′(E[X |G ]) = 0. The difference in the
integrand vanishes when hit with G−measurable stuff, i.e. by definition∫

A
(X −E[X |G ])dP= 0

for any A ∈ G . The standard measure-theoretic argument is again that we approximate
φ′(E[X |G ]) by simple functions which take finitely many values.

This has a couple of nice consequences, as follows.
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1.3.4 Contraction in L1

Corollary:
φ(X ) = |X | =⇒ |E[X |G ]| ≤ E[|X | |G ].

If we integrate the both sides, we’ll see that:

∥E[X |G ]∥L1 ≤ ∥X ∥L1 , since
∫
Ω
E[|X ||G ]dP=

∫
Ω
|X |dP as ω ∈G .

Corollary: If X1, . . . , Xn
L1→ X , (i.e. ∥X −Xn∥L1 → 0), then:∫

E[|X −Xn ||G ] → 0 =⇒ E[Xn |G ]
L1→ E[X |G ].

1.3.5 Projection in L2

If X ∈ L2(F ), then E[X |G ] is closest L2(F ) approximation which is G−measurable.

In fact, if Y ∈ L2(G ), then E[(X − (E[X |G ] + Y ))2] = E[(X − E[X |G ])2] + E[Y 2], so we really just have a
Pythagorean theorem.

Proof : We want cross term to vanish, meaning that E[(X − E[X |G ]) · Y ] = 0. To show this,
write Y = Y+ −Y−,Y ≥ 0 to assume WLOG that Y ≥ 0. Then have a sequence of increasing
approximations Y1 ≤ Y2 ≤ . . . ↑ Y , where each Yn is a simple function. (For example, make
Yn the largest multiple of 2−n which is smaller than Y and at most 2n .) Then, by dominated
convergence on their squares, we get that ∥Yn∥L2 →∥Y ∥L2 , which implies that ∥Y −Yn∥L2 → 0.
To see the last implication, note that if 0 ≤ Y ′ ≤ Y almost surely, then

∥Y −Y ′∥2
L2 = E[(Y −Y ′)2] ≤ E[Y 2]−E[(Y ′)2]

since a2 +b2 ≤ (a +b)2 for any a,b ≥ 0. Then we can say that E[(X −E[X |G ]) · (Y −Yn)] → 0
by Cauchy-Schwarz. Meanwhile by again using the definition of conditional expectation and
breaking Yn into a sum of finitely many indicators, we have E[(X −E[X |G ]) ·Yn] = 0 for all n.
Combining finishes the proof.

1.4 Martingales

Definition: A filtration F is a sequence ofσ−algebras satisfying F0 ⊆F1 ⊆ F2 ⊂ . . . ((weakly) monotonically
increasing).

Definition: A stochastic process (X t )t≥0 is adapted to (Ft ) if X t is Ft−measurable for each t .

Definition: A stochastic process (X t )t≥0 is a martingale if X t ∈ L1 and E[X t+1|Ft ] = X t (both for all t ).
We can also say that (X t )t≥0 is also a martingale relative to the “natural filtration” if we have for all t
Ft =σ(X1, . . . , X t ).
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