Statistics 212: Lecture 2 (January 29th, 2025)

Conditional Expectation and Martingales

Instructor: Mark Sellke

Scribes: Hasan Laith and Shirley Xiong

1 January 29: Conditional Expectation and Martingales

1.1 Administration

Poll for SC 705 v.s. Sever 103 at end of class. (Sever won.)

1.2 Finishing Up Radon-Nikodym

Recall the *Radon-Nikodym Theorem*, where we have finite measures μ and ν . If $\nu \ll \mu$, (i.e. ν is absolutely continuous with respect to μ , or that $\mu(S) = 0 \implies \nu(S) = 0$) then there exists integrable non-negative f s.t. $f = \frac{d\nu}{d\mu}$ (call this the RN derivative) and (where $\omega \in \Omega$):

$$v(S) = \int_{S} f(\omega) d\mu(\omega) = \int_{S} f d\mu$$

We have these three variants:

(a) There exists an integrable, non-negative function f and another finite measure Θ such that:

$$v(S) = \Theta(S) + \int_{S} f(\omega) d\mu(\omega)$$

and Θ , μ are disjointly supported, meaning that there exists $S \in \mathscr{F}$: $\mu(S) = 0$, and $\Theta(\Omega \setminus S) = 0$. So, we are decomposing our v into the absolutely continuous part (the integral) and the singular part (Θ) (we can decompose the singular part further .

(b) Let v, μ be finite measures on (Ω, \mathscr{F}) , such that $0 \le v(S) \le \mu(S)$ for all $S \in \mathscr{F}$. Then:

$$\exists f: \Omega \rightarrow [0, 1], \text{ and } f = \frac{dv}{d\mu}$$

That is for all $S \in \mathcal{F}$:

$$\int_{S} f(\omega) d\mu(\omega) = v(S).$$

(c) Let $v \ll \mu$ be probability measures. Then for all *S*:

$$\exists f: \Omega \to \mathbb{R}_{\geq 0} \text{ which we denote } f = \frac{dv}{d\mu}, \ \int_{S} f d\mu = v(S) \text{ and } \int_{\Omega} f d\mu = 1 = \mathbb{E}^{M}[f].$$

The steps for (3):

The general idea here is to exhaust from below. Initially define the set:

$$H = \left\{ \text{measurable functions } f : \int_{S} f \, d\mu \le v(S) \; (\forall S \in \mathscr{F}) \right\}$$

(where $f : \Omega \to [0,1]$). Then, we want to find $f_* \in H$, with $\int_{\Omega} f_* d\mu = M \equiv \sup_{f \in H} \int_{\Omega} f d\mu$.

We want $f_* = \frac{d\mu}{d\nu}$ and show that it is the maximal element (s.t. we then have the desired equality with v(S) for all *S*) it remains to assume that there exists $S \in \mathscr{F}$ such that $\int_S f_* d\mu \le v(S)$ and get a contradiction as if the increased element is contained by *H*, then f_* wouldn't be maximal.

First, we remove $E_1 = \{\omega : f_*(\omega) = 1\}$; for all $S' \subseteq E_1 : \mu(S') = \nu(S')$, since $\mu \ge \nu$ by assumption and $\mu(S') = \int_{S'} f_* d\mu \le \nu(S'), f_* \in H$.

Now, we can assume that $S \subseteq E_0 = \Omega \setminus E_1$, and write $\overline{S} \equiv S \cap F_n$ for notational convenience.

Using $\int_{S} f_* d\mu \le v(S)$, we know that $\exists n > 0$, where the same holds for $F_n = \{\omega : f_*(\omega) \le 1 - 1/n\}$, as:

 $F_1 \subseteq F_2 \subseteq \cdots \subseteq \cdots \rightarrow E_0$ by Monotone Convergence Theorem.

Then:

$$\int_{\bar{S}} f_* d\mu < v(\bar{S}) \Longrightarrow \mu(\bar{S}) > v(\bar{S}) > 0.$$

So now our attempt is to hope that $f_* + \epsilon \chi_{\bar{S}} \in H$ for some small $\epsilon > 0$, which would increase maximality of M since we'd be increasing f_* . This might look sufficient since:

- if $\varepsilon < 1/n$, then $f_* + \epsilon \chi_{\bar{S}} : \Omega \to [0, 1]$.
- $\int_{\bar{S}} f_* + \varepsilon \chi_{\bar{S}} d\mu < v(\bar{S})$

However, the condition for *H* (by construction) needs to hold for all sets in \mathscr{F} , and not just \overline{S} (and those which are then contained in \overline{S}). So the idea is to prune down \overline{S} in a way that fixes everything, removing violators — once we get rid of all the violating sets, then we'll be happier.

Definition: Allow the *deficit* to be $Def_{\varepsilon} = v(A) - \int_A f_* d\mu - \varepsilon \mu(A)$. This is countably additive for disjoint sets *A*, *B*. (Think of this as an error term of sorts.)

We've just seen that $\text{Def}_{\varepsilon}(\bar{S}) > 0$. Let's suppose that some $S_1 \subseteq \bar{S}$ violates the condition to be in H for $f_* + \varepsilon \chi_{\bar{S}}$, which exactly says that $\text{Def}_{\varepsilon} < 0$, implying that the deficit increases if we just remove $S_1 : \text{Def}_{\varepsilon}(\bar{S} \setminus S_1) > \text{Def}_{\varepsilon}(\bar{S}) > 0$.

Define disjoint $S_1, S_2, \dots \subseteq \overline{S}$, which each optimize the deficit leftover. Recursively, define

$$a_k = \inf_{S_k \le \bar{S} \text{ disjoint from previous } S_1, \dots, S_{k-1}} \operatorname{Def}_{\varepsilon}(S_k) \le 0.$$

In each step, we choose S_k to ensure that $\text{Def}_{\varepsilon}(S_k) \le a_k + \frac{1}{k}$, and let $\hat{S} = \bar{S} \setminus (S_1 \cup S_1 \cdots \cup \ldots)$.

We claim that $f_* + \varepsilon \chi_{\hat{S}} \in H$. It follows from the definitions about deficit that $\text{Def}_{\varepsilon}(\hat{S}) > 0 \implies v(\hat{S}) > 0 \implies \mu(\hat{S}) > 0$, so we actually get a contradiction since we've increase f_* by a positive amount.

Suppose that $\exists \tilde{S} \subseteq \hat{S}$: $\text{Def}_{\varepsilon}(\tilde{S}) < -1/k < 0$. This causes a contradiction since we should have used $S_k \cup \tilde{S}$ instead of S_k , i.e. S_k disobeys its definition since it isn't within 1/k within minimizing the deficit and thus we haven't exhausted everything we've meant to be exhausting.

Note: sets disjoint from \overline{S} don't matter. This is because we already had $f_* \in H$, so the only potential violations of the condition to be in H come from sets within \overline{S} . (I.e. for general $A \in \mathscr{F}$, check separately for $A \cap \overline{S}$ and $A \setminus \overline{S}$ and add.)

1.3 Conditional Expectation

Definition: Let $(\Omega, \mathscr{F}, \mathbb{P})$ be a probability space, and $\mathscr{G} \subseteq \mathscr{F}, X \in L^1(\mathbb{P}, \mathscr{F})$. Note:

- $X \in L^1(\mu) \Longrightarrow \mathbb{E}^M |X| < \infty$
- $\mathscr{G} \subseteq \mathscr{F} \iff G$ is a sub σ -algebra/ σ -field $\iff S \in \mathscr{G} \implies S \in \mathscr{F}$

Then, $\mathbb{E}(X|\mathcal{G})$ is the unique (up to measure 0) \mathcal{G} -measurable function such that:

$$\mathbb{E}(X \cdot \chi_S) = \mathbb{E}\left[\mathbb{E}[X|\mathscr{G}] \cdot \chi_S\right] \forall S \in \mathscr{G}$$

That is, we should treat the *conditional expectation* $\mathbb{E}[X|\mathcal{G}]$ as a random variable with the above property, and in terms of integrals (recalling that multiplying by an indicator translates to integrating over its support), for all $S \in \mathcal{G}$:

$$\int_{S} X d\mathbb{P} = \int_{S} \left(\mathbb{E}[X|\mathcal{G}] \right) d\mathbb{P}$$

Connecting back to what we might have seen before for conditional expectation, for a random variable Y:

$$\mathbb{E}[X|Y] := \mathbb{E}[X|\sigma(Y)]$$

(where $\sigma(Y)$ is the smallest σ -algebra such that *Y* is measurable).

1.3.1 Existence and Uniqueness

Uniqueness:

Suppose that *Y* and *Z* both satisfy the condition defining $\mathbb{E}(X|\mathcal{G})$. Let $S_+ = \{Y > Z\}$ and $S_- = \{Y < Z\}$. We show both sets must have measure 0; note that they are automatically \mathcal{G} -measurable ($S_+, S_- \in \mathcal{G}$) since *Y*, *Z* are \mathcal{G} -measurable by definition.

That is:

$$\mathbb{E}\left[(Y-Z)\cdot\chi_{S_{+}}\right] = \mathbb{E}\left[(X-X)\cdot\chi_{S_{+}}\right]$$

And clearly the right-hand term evaluates to 0. This is only possible if S_+ has measure 0. The same argument shows that S_- has measure 0, so we conclude that Y = Z almost surely.

We can also take this in terms of integrals and etc.

The proof for the uniqueness of the RN result is similarly as so:

If f_1, f_2 both satisfy the conditions defining $\frac{dx}{d\mu}$, then we construct the sets $S_+ = \{f_1 > f_2\}, S_- = \{f_1 < f_2\}$ and show each has measure 0. For example if $\mu(S_+) > 0$, then

$$v(S_+) - v(S_+) = \int_{S_+} (f_1 - f_2) d\mu > 0.$$

(Since S_+ is where $f_1 > f_2$, the integral must be positive if S_+ has positive measure.) We can do the same for S_- with $f_2 - f_1$ in the integrand, so we are done.

Existence: We can prove this directly by the RN Theorem.

Assume that $X \ge 0$ (in general, decompose $X = X_+ - X_-$ and do the below argument for both). Let v be a finite measure on \mathscr{G} given by $v(S) = \int X d\mathbb{P}$ (where \mathbb{P} is the probability measure on the original space). Then, $v \ll \mathbb{P}$, considering \mathbb{P} as a \mathscr{G} -measure by restricting the sets plugged into \mathbb{P} . This implies that there exists:

 \mathscr{G} -measurable function which we write $\frac{dv}{d\mathbb{P}} = \mathbb{E}(X|\mathscr{G}).$

This matches the definition of an RN derivative since, if $S \in \mathcal{G} : v(S) = \int_S \mathbb{E}(X|\mathcal{G}) d\mathbb{P}$ allegedly. By definition, this is equal to $\int_S X d\mu$, which is exactly equal to $\mathbb{E}[\mathbb{E}[X|\mathcal{G}] \cdot \chi_S]$, which is also equal to $\mathbb{E}[X\chi_S]$, and then the allegation follows by transitivity of equalities.

1.3.2 Practice with the Definition

+ Showing that $\mathbb{E}[aX_1 + bX_2|\mathcal{G}] = a\mathbb{E}[X_1|\mathcal{G}] + b\mathbb{E}[X_2|\mathcal{G}]$:

Given the separate conditional expectations $\mathbb{E}[X_1|\mathcal{G}], \mathbb{E}[X_2|\mathcal{G}]$ are \mathcal{G} -measurable, then the sum $a\mathbb{E}[X_1|\mathcal{G}] + b\mathbb{E}[X_2|\mathcal{G}]$ is also \mathcal{G} -measurable.

We want to show that if $S \in \mathcal{G}$, then $\int_S aX_1 + bX_2 d\mathbb{P} \stackrel{?}{=} \int_S a\mathbb{E}[X_1|\mathcal{G}] + b\mathbb{E}[X_2|\mathcal{G}]d\mathbb{P} \stackrel{?}{=} \mathbb{E}(aX_1 + bX_2|\mathcal{G})$. By linearity, $\int_S aX_1 d\mathbb{P} = \int_S a\mathbb{E}(X_1|\mathcal{G}]$, and similarly for X_2 , and then the proof is finished as long as we're not confused.

+ For $\mathcal{G} = \{\{\}, A, A^c, \Omega\}$, check the conditional expectation.

To say that a function is \mathscr{G} -measurable here, it just means (\iff) that it is constant in A, and constant in A^c .

Here, we'll only be taking expectation over A, A^c , which is just the average-taking process we are used to.

1.3.3 Conditional Expectations Decrease Convex Functions

Theorem (Jensen's Inequality): let $\phi : \mathbb{R} \to \mathbb{R}$ be convex. Then,

$$\phi(\mathbb{E}[X|\mathcal{G}]) \le \mathbb{E}[\phi(X)|\mathcal{G}], \quad \mathcal{G}-a.e.$$

It is helpful to think of how to prove it in this case. Here, we want to show that if $S \in \mathcal{G}$, then:

$$\int_{S} \phi(\mathbb{E}[X|\mathcal{G}]) d\mathbb{P} \leq \int_{S} \mathbb{E}[\phi(X)|\mathcal{G}] d\mathbb{P}.$$

What is special about convex functions is that ϕ is convex if and only if for all $x \in \mathbb{R}$, there exists $\phi'(x) \in \mathbb{R}$ such that $\phi(Y) - \phi(X) \ge \phi'(x) \cdot (y - x)$ for all $y \in \mathbb{R}$ (visualize as basically saying that if you draw the tangent line to the graph of ϕ , it will stay below).

We're going to use that

$$\phi(X) \ge \phi(\mathbb{E}[X|\mathcal{G}]) + (X - \mathbb{E}[X|\mathcal{G}]) \cdot \phi'(\mathbb{E}[X|\mathcal{G}]),$$

where we're just drawing a tangent line at $\mathbb{E}[X|\mathcal{G}]$ and using convexity. Note also that

$$\int_{S} \mathbb{E}[\phi(X)|\mathcal{G}] d\mathbb{P} = \int_{S} \phi(X) d\mathbb{P}.$$

Then, rearranging, it suffices to show that $\int_{S} (X - \mathbb{E}[X|\mathcal{G}]) \cdot \phi'(\mathbb{E}[X|\mathcal{G}]) = 0$. The difference in the integrand vanishes when hit with \mathcal{G} -measurable stuff, i.e. by definition

$$\int_{A} (X - \mathbb{E}[X|\mathcal{G}]) d\mathbb{P} = 0$$

for any $A \in \mathcal{G}$. The standard measure-theoretic argument is again that we approximate $\phi'(\mathbb{E}[X|\mathcal{G}])$ by simple functions which take finitely many values.

This has a couple of nice consequences, as follows.

1.3.4 Contraction in L^1

Corollary:

$$\phi(X) = |X| \implies |\mathbb{E}[X|\mathcal{G}]| \le \mathbb{E}[|X| \mid \mathcal{G}].$$

If we integrate the both sides, we'll see that:

$$\|\mathbb{E}[X|\mathcal{G}]\|_{L^{1}} \leq \|X\|_{L^{1}}, \text{ since } \int_{\Omega} \mathbb{E}[|X||\mathcal{G}]d\mathbb{P} = \int_{\Omega} |X|d\mathbb{P} \text{ as } \omega \in \mathcal{G}.$$

Corollary: If $X_1, \ldots, X_n \xrightarrow{L_1} X$, (i.e. $||X - X_n||_{L^1} \to 0$), then:

$$\int \mathbb{E}[|X - X_n||\mathcal{G}] \to 0 \implies \mathbb{E}[X_n|\mathcal{G}] \xrightarrow{L_1} \mathbb{E}[X|\mathcal{G}].$$

1.3.5 Projection in L^2

If $X \in L^2(\mathscr{F})$, then $\mathbb{E}[X|\mathscr{G}]$ is closest $L^2(\mathscr{F})$ approximation which is \mathscr{G} -measurable. In fact, if $Y \in L^2(\mathscr{G})$, then $\mathbb{E}[(X - (\mathbb{E}[X|\mathscr{G}] + Y))^2] = \mathbb{E}[(X - \mathbb{E}[X|\mathscr{G}])^2] + \mathbb{E}[Y^2]$, so we really just have a Pythagorean theorem.

Proof: We want cross term to vanish, meaning that $\mathbb{E}[(X - \mathbb{E}[X|\mathscr{G}]) \cdot Y] = 0$. To show this, write $Y = Y_+ - Y_-$, $Y \ge 0$ to assume WLOG that $Y \ge 0$. Then have a sequence of increasing approximations $Y_1 \le Y_2 \le ... \uparrow Y$, where each Y_n is a simple function. (For example, make Y_n the largest multiple of 2^{-n} which is smaller than Y and at most 2^n .) Then, by dominated convergence on their squares, we get that $||Y_n||_{L^2} \to ||Y||_{L^2}$, which implies that $||Y - Y_n||_{L^2} \to 0$. To see the last implication, note that if $0 \le Y' \le Y$ almost surely, then

$$||Y - Y'||_{I^2}^2 = \mathbb{E}[(Y - Y')^2] \le \mathbb{E}[Y^2] - \mathbb{E}[(Y')^2]$$

since $a^2 + b^2 \le (a + b)^2$ for any $a, b \ge 0$. Then we can say that $\mathbb{E}[(X - \mathbb{E}[X|\mathcal{G}]) \cdot (Y - Y_n)] \to 0$ by Cauchy-Schwarz. Meanwhile by again using the definition of conditional expectation and breaking Y_n into a sum of finitely many indicators, we have $\mathbb{E}[(X - \mathbb{E}[X|\mathcal{G}]) \cdot Y_n] = 0$ for all n. Combining finishes the proof.

1.4 Martingales

Definition: A *filtration* \mathscr{F} is a sequence of σ -algebras satisfying $\mathscr{F}_0 \subseteq \mathscr{F}_1 \subseteq F_2 \subset ...$ ((weakly) monotonically increasing).

Definition: A stochastic process $(X_t)_{t\geq 0}$ is *adapted* to (\mathscr{F}_t) if X_t is \mathscr{F}_t -measurable for each t.

Definition: A stochastic process $(X_t)_{t\geq 0}$ is a *martingale* if $X_t \in L^1$ and $\mathbb{E}[X_{t+1}|\mathscr{F}_t] = X_t$ (both for all t). We can also say that $(X_t)_{t\geq 0}$ is also a martingale relative to the "natural filtration" if we have for all t $\mathscr{F}_t = \sigma(X_1, ..., X_t)$.