
Statistics 212: Lecture 3 (Feb. 3, 2025)

Introduction to Martingales

Instructor: Mark Sellke

Scribe: Diego Luca González Gauss, Enrico Antonio Jose Yao Yao-Bate

1 Odds and ends of conditional probability

We begin by proving a few more useful properties of conditional expectation.

Proposition 1.1. If X ≥ 0 a.s., then E(X |G ) ≥ 0 a.s.

Proof. Define S := {E(X |G ) < 0}. If P (S) > 0, then

0 ≤
∫

S
X dP =

∫
S
E(X |G )dP < 0,

a contradiction.

Corollary 1.2. If X ≥ Y , then E(X |G ) ≥ E(Y |G ) a.s.

Proposition 1.3 (Tower rule). Let F1 ⊆F2 ⊆F3, with X F3-measurable. Then

E[X |F1] = E[E[X |F2]F1]

Proof. For all S ∈F1 ⊆F2, ∫
S

X dP =
∫

S
E(X |F2)dP =

∫
S
E(E(X |F2)|F1)dP,

since E(X |F2) is a F1-measurable set.

To make the F3 seem less mysterious, you can take F3 = F as an example. Then what the above
proposition just says is that for any measurable X , the relation above is true.

1.1 Well, what about conditional probabilities and distributions?

Given that we’ve just rigorously defined conditional expectations, it is natural to then wonder how we can
endow conditional probabilities and distributions with similarly rigorous definitions.

Definition 1.4 (Conditional Probability). P (A|G ) := E[I A |G ), where I A is an indicator r.v.

This suggests that understanding conditional probability will conveniently follow from understanding
conditional expectation.

Definition 1.5 (Conditional Distribution). Suppose X is in a complete separable metric space, like C ([0,1])
from the homework, or just R. Then, for each q ∈ A, where A is the associated countable dense set, we can
consider E[X ≤ q |G ]. This gives us our conditional distribution Law(X |G ).
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2 Martingales

We now proceed to developing martingale theory. First, we give again the definition of a martingale, as well
as some other useful constructions.

Definition 2.1 (Filtration). A filtration Fn is a sequence of nested σ-algebras F0 ⊆F1 ⊆ . . .

We say that (X t )t∈N is adapted to (Ft )t∈N if X t is Ft -measurable for all t . As a notational convention,
we let X0 be deterministic, and F0 = {∅,Ω} the trivial sigma-algebra.

Definition 2.2 (Martingale). A martingale is a sequence (X t )t∈N of r.v.s satisfying for all t ,

(a) E |X t | <∞
(b) X t is adapted to Ft

(c) E(X t+1|Ft ) = X t

Definition 2.3 (Stopping time). τ ∈Z≥0 is a stopping time if for all t , we have {τ≤ t } ∈Ft .

Theorem 2.4. A stopped martingale is a martingale. That is, given X t martingale and τ stopping time, then
X t∩τ is a martingale, where t ∩τ := min{t ,τ}.

Proof. Clearly X t∩τ is Ft -measurable. Fix any S ∈Ft . We want to show that E[X(t+1)∩τ|Ft ] = X t∩τ. To this
end, decompose S = (S ∩ {τ≤ t })∪ (S ∩ {τ> t }), which we’ll call S1 and S2, respectively. Then∫

S1

X t+1∩τ−X t∩τdP =
∫

Xτ−XτdP = 0∫
S2

X t+1∩τ−X t∩τdP =
∫

S2

X t+1 −X t dP = 0,

with the second equality in the second line because of property (c) of martingale X t .

2.1 An optional stopping theorem for arbitrary stopping times

Recall first the martingale convergence theorem and the optional stopping theorem from STAT 210.

Theorem 2.5 (Martingale Convergence Theorem). If X t martingale and supt≥0 E |X t | < ∞, then X∞ :=
limt→∞ X t exists a.s.

Theorem 2.6 (OST). Suppose X t is a martingale w.r.t Ft , and τ is a stopping time. If τ≤ T <∞ is almost
surely bounded, then

E Xτ = E X0. (1)

Note: using a limiting argument, one can establish (1) under alternative conditions such as:

• P (τ<∞) = 1 and |Xn | ≤ c a.s. for all n for some constant c

• E(τ) <∞ and |Xn −Xn+1| ≤ c for all n and some constant c.

In both, the idea is to argue that limn→∞E|Xn −X∞| = 0.
Looking at the above theorems, it is natural to wonder if OST can be applied to Xτ without any of

the annoying conditions. For example, it would be nice if E[X∞] = X0. Unfortunately, the example below
illustrates that this will not always be possible.

Example (Gambler’s ruin). Let X0 = 1 and recursively define X t by

X t+1/X t =
{

2 with probability 1/2

0 with probability 1/2
.

Then X t is a martingale, but E[Xτ] = 0 a.s., and therefore Xτ = 0 a.s., if τ is the first time t that X t = 0.
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Thus, the natural question to ask is under what conditions are we guaranteed E[X∞] = X0. It is easy to

see that a sufficient condition is X t
L1−→ X∞. Indeed, then we would have

lim
n→∞ |E[X∞]−E[X0]| ≤ lim

n→∞ |E[X∞−X0]| = 0.

In fact because we already know Xn → X∞ almost surely, we will see that L1 convergence is equivalent to
uniform integrability. The rest of the class will be devoted to understanding uniform integrability.

Definition 2.7 (Uniformly Integrable Set of Random Variables). S ⊆ L1(Ω,F ,P ) is U.I. if limc→∞ supX∈S E(|X |·
1|X |≥c ) = 0. Equivalently, for all ϵ> 0, we have some c such that supX∈S E[|X | ·1|X |≥c ] < ϵ.

Example. The gambler’s ruin is not U.I.

Proof. Fix c > 0, and choose t s.t. 2t > c. Then E(|X t | · 1|X t |≥c ) = 1.

Theorem 2.8. If X t ∈ L1 for all t ≥ 0 and X t
a.s.−−→ X∞, then the following are equivalent:

(a) {X t : t ≥ 1} is U.I.

(b) X∞ ∈ L1 and X t
L1

−→ X∞

(c) X∞ ∈ L1 and E |X t |→ E |X∞|
The proof is deferred to the next class; however, we will introduce some useful lemmas to this end.

Lemma 2.9. S ⊆ L1(Ω,F ,P ) is U.I. if and only if

(a) S is L1-bounded, i.e. supX∈S E[X ] <∞
(b) For all ϵ> 0, there exists some δ> 0 such that for all X ∈ S and A ∈F with P (A) ≤ δ, we get

E[|X | · Ia] ≤ ϵ

Proof. To see that UI implies a), we can choose (ϵ,c) following the definition of UI. Then for all X ∈ S,

E|X | = E[|X | ·1|X |≤c ]+E[|X | ·1|X |>c ] ≤ c +ϵ<∞.

To see that UI implies b), we can fix some ϵ> 0 and choose c > 0 for UI, and then take δ≤ ϵ/c so that

E[|X | ·1A] = E[|X | ·1A∩{|X |≤c}]+E[|X | ·1A∩{|X |>c}] ≤ cP (A)+ϵ≤ cδ+ϵ≤ 2ϵ.

Lastly we can assume a) and b) and prove that this implies UI. Fixing ϵ> 0, we can invoke b) to take some δ,
and then choose c to ensure UI. Actuating this, (a) lets us fix M := supX∈S E|X | <∞. By Markov’s inequality,

P (|X | ≥ c) ≤ M/c ≤ δ.

Then letting A = {|X | ≥ c}, we get P (A) ≤ δ which implies E[|X | ·1A] ≤ ϵ by (b).

Lemma 2.10. If X ∈ L1(Ω,F ,P ), then S = {E[X |G ],G ⊆ F } is U.I. (for F a σ-algebra; this is motivated by
the case where if X = X∞, then S = {X t : t ≥ 0}).

To prove this lemma, we need to invoke one other recharacterization of U .I ..
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Proposition 2.11. S is U.I. if and only if for all ϵ there exists c such that supX∈S E(|X |− c)+ ≤ ϵ.

Proof. We get the following inequality (this can be motivated graphically for intuition):

(|X |−2c)+ ≤ |X | ·1|X |≥c ≤ 2 · (|X |− c)+, ∀X ∈R.

Now, assuming U.I., we can realize that our middle term will vanish, and so by our inequality the left-
hand side will vanish as well. Then taking c = c ′/2 and considering the left-hand side we get (|X | − c)+
vanishes, so our right-hand side will vanish for c ′; but then we get supX∈S E[2 · (|X |−c)+] = supX∈S 2E(|X |−
c)+ is bounded as chosen, so (|X |− c)+ ≤ ϵ for chosen epsilon too and we have our equivalent definition.

In the other direction, let us assume supX∈S E(|X |− c)+ ≤ ϵ in our equivalent definition, we can realize
the right-hand side of our inequality vanishes, and so the middle term does as well. But the middle term
vanishing is equivalent to U.I. and we’re done.

Now that we have this new definition for U.I., we can easily prove Lemma 2.12.

Proof of 2.12. Apply Jensen’s inequality to φ(X ) = (|X |− c)+ to get

E[φ(E[X |G )] ≤ E[φ(X )] = E[|X |− c]+ ≤ ϵ.

Realize that the leftmost term is equivalent to E[(|Y |−c)+] for Y = E[X |G ]. Thus, in our equivalent definition
of UI, any (ϵ,c) that works for X also works for E[X |G ]. (Note: this doesn’t mean any (ϵ,c) in the original
definition of UI also works for E[X |G ]. But checking through the proof, it means we just need to adjust by
factors of 2.)
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