
Statistics 212: Lecture 4 (Feb. 5, 2025)

More on UI, Lp , Maximal Inequalities

Instructor: Mark Sellke

Scribe: Joel Runevic

1 More on Uniform Integrability

We first recall an important result from last class. We have that the following conditions are equivalent for
S ⊆ L1(Ω,F ,P ) to be uniformly integrable (U.I.).

Theorem 1.1. (Equivalent Conditions for U.I.)

(a) For all ε> 0, there exists c > 0 such that supX∈S E[|X | ·1|X |≥c ] ≤ ε.

(b) For all ε> 0, there exists c > 0 such that supX∈S E[(|X |− c)+] ≤ ε.

(c) For all ε> 0, there exists some δ> 0 such that for any A ∈F with P (A) ≤ δ, we have that
supX∈S E[|X | ·1A] ≤ ε.

We can now turn to prove another set of useful equivalent properties that were mentioned in the previous
class but were not proven.

Theorem 1.2. Let X1, . . . , Xn , . . . be a sequence of L1 random variables and Xn
a.s.−−→ X . Then the following

are equivalent.

(a) {Xn : n ≥ 1} is U.I.

(b) X ∈ L1 and Xn
L1

−→ X .

(c) X ∈ L1 and E [|Xn |] −→ E [|X |].
Proof. We first start with showing that (a) implies (b). Recall from last class that if S ⊆ L1(Ω,F ,P ) is U.I. then
S is L1-bounded; namely, supX∈S E[|X |] <∞. By the U.I. assumption of (a), we have that supn E[|Xn |] <∞
thus holds. Fix ε> 0. From here, we can note that by Fatou’s Lemma

E [|X |] ≤ liminf
n→∞ E [|Xn |] <∞

holds. Certainly then X ∈ L1. We now seek to show Xn
L1

−→ X . To do so, for c > 0, define

φc (u) = min(c,max(−c,u))
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respectively. From here, we can let X c
n = φc (Xn) and X c = φc (X ). Note that Xn

a.s.−−→ X by assumption. By

the continuous mapping theorem (CMT), it follows that X c
n

a.s.−−→ X c . Finally, by the dominated convergence
theorem (DCT), it hence follows that

lim
n→∞E [|X c

n −X c |] = 0

holds. From here, by the triangle inequality, we obtain

E [|Xn −X |] ≤ E [|X c
n −X c |]+E [|X −X c |]+E [|Xn −X c

n |]

We will now define ϕc (u) = |u −φc (u)| = (|u|− c)+. Fix ε> 0 arbitrary. Therefore, by the U.I. assumption,
we have

E [|Xn −X c
n |] = E [ϕc (Xn)] ≤ ε

for c ≥ c(ε) and for all n. Further, for c large enough, it follows by DCT that

E [|X −X c |] ≤ ε

holds. By above, for n ≥ n(c,ε) large enough, we have

E [|X c
n −X c |] ≤ ε

To see why the above selection(s) of n and c are compatible, we note that we simply fix ε, choose c large
enough depending on ε and then choose n large depending on n and ε. Combining all the terms above,
we have that for n ≥ n(c,ε)

E [|Xn −X |] ≤ 3ε

holds. So, we have shown X ∈ L1 and Xn
L1

−→ X , thereby showing that (a) implies (b).

We will now prove that (b) implies (c). Note that | · | is 1-Lipschitz. Hence, ||Xn | − |X || ≤ |Xn − X | holds.

By (b), Xn
L1

−→ X . Thus, limn→∞ E [|Xn − X |] = 0, and so limn→∞ E [||Xn |− |X ||] = 0. Finally, by the triangle
inequality,

|E [|Xn |]−E [|X |]| ≤ E [||Xn |− |X ||]
holds, thereby implying that E [|Xn |] → E [|X |], which is what we wanted to show.

Finally, we will show that (c) implies (a). Fix ε > 0. For any c > 0 and any n, we can consider the de-
composition

E [|Xn |] = E [|X c
n |]+E [(|Xn |− c)+]

and
E [|X |] = E [|X c |]+E [(|X |− c)+]

respectively. By the overall assumption Xn
a.s.−−→ X , CMT and DCT, it follows that E [|X c

n |] → E [|X c |] as n →∞.
By assumption of (c), we have E [|Xn |] → E [|X |]. Thus, these two facts and the above decompositions imply
that E [(|Xn |− c)+] → E [(|X |− c)+] holds. Now, we can note that, by DCT, for c ≥ c(ε) sufficiently large, we
have that E [(|X | − c)+] ≤ ε holds. Thus taking n ≥ n(c,ε) sufficiently large, we obtain E [(|Xn | − c)+] ≤ 2ε
since E [(|Xn |− c)+] → E [(|X |− c)+] holds as aforementioned.

We still need to handle the first finitely many Xk , but this is not a problem (for a similar reason that any
finite collection of integrable random variables is UI). Namely for each k < n(c,ε), we can choose ck > 0
such that E [(|Xk |− ck )+] ≤ ε holds. This is possible by DCT. Finally, take c∗ = max(c(ε),c1, . . . ,cn(c,ε)−1). By
comparing with Theorem 1.1, we can see that {Xn : n ≥ 1} is U.I.
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1.1 Returning to Martingales

The above results were for general random variables (with a few additional conditions). We therefore now
return to our treatment of martingales. To do so, we prove another theorem.

Theorem 1.3. Let (Xn ,Fn) be an L1 bounded martingale with Xn
a.s.−−→ X∞. Then the following are equiva-

lent.

(a) Xn
L1

−→ X∞.

(b) {Xn : n ≥ 1} is U.I.

(c) E [|Xn |] → E [|X∞|].
(d) E [X∞|Fn] = Xn .

Proof. It is not too hard to see how the equivalence of (a), (b), and (c) can follow from Theorem 1.2. Hence,
we will focus on (d).

We will first show that (a) implies (d). We know if m ≥ n, then

E [Xm |Fn] = Xn

holds by the definition of a martingale and the tower property. We know that condition expectation is
L1-contractive. Thus,

E [|E [X∞|Fn]−E [Xm |Fn]|] = E [|E [X∞−Xm |Fn]|] ≤ E [|X∞−Xm |]

holds. By assumption of (a), as m →∞, we have that E [|X∞−Xm |] → 0 holds. So, by above

lim
m→∞E [|E [X∞|Fn]−E [Xm |Fn]|] = 0

However, E [X∞|Fn] is constant with respect to m and so is E [Xm |Fn] = Xn . So, in order for the above to
hold, it must be the case that E [X∞|Fn] = Xn .

We will now show that (d) implies (b). Recall that if X ∈ L1 then {E [X |G ] : G ⊆F } is U.I. Note therefore

{Xn : n ≥ 1} = {E [X∞|Fn] : n ≥ 1} ⊆ {E [X∞|G ] : G ⊆F }

holds and so, if we can show that X∞ ∈ L1, then it follows by above that {Xn : n ≥ 1} is U.I, since it is a subset
of a U.I. set. By Fatou’s Lemma,

E [|X∞|] ≤ liminf
n→∞ E [|Xn |] <∞

holds, where we used the overall assumption that {Xn} is L1 bounded. Hence, X∞ ∈ L1 and we are done.

1.2 Higher Moments

We now turn our attention towards higher moments. Firstly, we state the following Lemma, which we did
not have time to prove in class, but we shall return to the proof in a future class.

Lemma 1.4. (Lp martingale maximal inequality) Fix 1 < p < ∞ and let (Xn)n≥1 be an Lp -bounded mar-
tingale. Denote X ∗ = supn≥1 |Xn |. Then, X ∗ ∈ Lp ; in fact, ∥X ∗∥p ≤ p

p−1 supn ∥Xn∥p .

Theorem 1.5. Suppose {Xn : n ≥ 1} is Lp bounded for 1 < p < ∞; i.e. supn ∥Xn∥p < ∞, where ∥Xn∥p =
(E [|Xn |p ])1/p . Then, this implies the following:
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(a) {Xn : n ≥ 1} is L1 bounded.

(b) {Xn : n ≥ 1} is U.I.

(c) If (Xn)≥1 is a martingale, then there exists a random variable X∞ such that Xn
a.s.−−→ X∞ and

Xn
Lp

−−→ X∞.

Proof. To show (a), we can simply note that this follows from the argument that ∃ f (p) ∈ R such that
|u| ≤ |u|p + f (p) for p > 1, and so the boundedness of the respective integrals follows.

We will now show (b). Fix ε > 0 arbitrary. By the definition of Lp -boundedness, ∃M > 0 such that
∥Xn∥p ≤ M ,∀n. Note that

P (|Xn | ∈ [2k ,2k+1]) ≤ P (|Xn |p ≥ 2kp ) ≤ M p

2kp

holds by Markov’s inequality and the definition of M . From here, we can observe that

E [|Xn | ·1|Xn |≥2 j ] = ∑
k≥ j

E [|Xn | ·1|Xn |∈[2k ,2k+1)]

≤ ∑
k≥ j

2k+1−kp ·M p

≤ M p 2i+ j− j p
∑
i≥0

2i (1−p)

≤C (p) ·2 j (1−p)

< ε
holds, for j large enough and C (p) is a constant depending on p. Hence, we are done with this implication
also.

We now show (c). By the martingale convergence theorem, we have that Xn
a.s.−−→ X∞ for some X∞. Hence,

|Xn − X∞|p a.s.−−→ 0 also. Consider now X ∗ as defined in Lemma 1.4. By the corresponding Lemma and
definition of X ∗, we have that

|Xn −X∞|p ≤ |2X ∗|p

holds. Note that |2X ∗|p ∈ L1 is integrable by the maximal inequality above, and crucially it does not depend

on n. Hence, by DCT, we have that limn→∞ E [|Xn −X∞|p ] = 0, and so Xn
Lp

−−→ X∞.

With the above shown, we still require to prove Lemma 1.4. To do so, it turns out that we in fact need
another Lemma.

Lemma 1.6. Let (Xn)n≥1 be a submartingale. Then, for any λ> 0, we have that

λP(max
j≤n

X j ≥λ) ≤ E [Xn ·1max j≤n X j ≥λ] ≤ E [|Xn |]

holds.

Corollary 1.7. Let (Xn)n≥1 be a non-negative submartingale. Then,

P (max
j≤n

X j ≥λ) ≤ E [Xn]

λ

holds. We shall see in future classes that the above will help to prove Lemma 1.4.
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