
Statistics 212: Lecture 5 (February 10, 2025)

Doob’s Inequality / Lp Maximal Inequality and Reverse
Martingales

Instructor: Mark Sellke

Scribe: Théo Voldoire & Sarah McDonald

1 Doob’s Inequality / Lp Maximal Inequality

In the previous lecture, we discussed the Lp Maximal Inequality. In this lecture, we will use Doob’s Inequal-
ity to prove the Lp Maximal Inequality.

Theorem 1.1 (Doob’s Inequality). If (Xn) is a submartingale and λ> 0, then

λP(max
j≤n

X j ≥λ) ≤ E
[

Xn ·1max j≤n X j ≥λ
]

The proof of Doob’s Inequality uses stopping times:

Proof. Let τ be first time t with X t ≥λ, with τ=+∞ if that never happens. For each 0 ≤ k ≤ n,

E [Xτ ·1τ=k ] ≤ E [Xn ·1τ=k ]

Now, summing over k,

E [Xτ ·1τ≤n] ≤ E [Xn ·1τ≤n]

Note also that

τ≤ n ⇔ max
j≤n

X j ≥λ

Xτ ≥λ a.s. if τ≤+∞

Now, putting it all together, we have

λP(max X j ≥λ) =λP(τ≤ n)

≤ E [Xτ ·1τ≤n] since Xτ ≥λ

≤ E [Xn ·1τ≤n]

= E
[

Xn ·1max j≤n X j ≥λ
]

.
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Now, we will prove the Lp Maximum Inequality from last lecture (Lecture 4 Lemma 1.4) using Doob’s
Maximal Inequality.

Proof. First, let U =Un = max j≤n |X j |,V =Vn = |Xn |. We will show ∥Un∥p ≤ p
p−1∥Vn∥p .

Deducing Lp maximal inequality: first, Un ↑ X ∗ as n → +∞ so ∥Un∥p ↑ ∥X ∗∥p . Then, ∥Vn∥p ↑
supn≥1 ∥Xn∥p because E [|Xn+1|p ] ≥ E [|Xn |p ] as u 7→ |u|p is convex.

Now, for fixed n,

∥U∥p
p = E[U p ]

∗= p
∫ ∞

0
λp−1P(U ≥λ)dλ

≤ p
∫ ∞

0
λp−2E[V ·1U≥λ]dλ Doob’s inequality, as |Xn | is submartingale

†= p

p −1

∫
(V ,U )

(∫ ∞

0
λp−2V ·1U≥λdλ

)
dµ

= p

p −1
E
[
V U p−1]

where µ is the law of (V ,U ). Step ∗ holds because for each fixed u ≥ 0, we have up = p
∫ ∞

0 λp−11u≥λdλ=
p

∫ u
0 λp−1dλ. In other words, we are using Fubini to exchange the integration with respect to λ and the

expectation with respect to U . Step † is proved similarly, in reverse. (Note that the power of λ changed from
p −1 to p −2 from Doob’s inequality, which leads to the factor 1

p−1 rather than 1/p.)

Now introduce q s.t. 1
p + 1

q = 1, i.e. q = p
p−1 , thus leading to

p

p −1
E
[
V U p−1]≤ p

p −1
∥V ∥p∥U p−1∥q Holder’s

= p

p −1
∥V ∥p∥U∥p−1

p .

Canceling ∥U∥p−1
p on both sides of the inequality, we obtain

∥U∥p ≤ p

p −1
∥V ∥p ,

as desired.

Theorem 1.2 ( Lévy’s Upward Theorem). Fix X ∈ L1, consider the filtration (Fn), and let Xn = E[X |Fn].
Then

Xn
a.s.,L1

→ X∞ = E [X |F∞] ,

where F∞ =σ (
⋃

n Fn) is the smallest σ-algebra generated by (Fn).

Proof. X∞ is F∞-measurable as each Xn is F∞-measurable. We want to show that for all S ∈ F∞, the
following property holds:

E[X ·1S ] = E[X∞ ·1S ]. (1)

First, property (1) holds if S ∈Fn ,
E[X ·1S ] = E[Xm ·1S ] ∀m ≥ n,

as Xm = E[X |Fm], S ∈Fn ⊆Fm . So, we find E[X ·1S ] → E[X∞ ·1S ] as m →∞, since Xm
L1

→ X∞.

We need to use the π−λ-theorem. Let G = {S ∈ F∞ : (1) holds for S}. G is a λ−system (closed under
complement, countable disjoint union). Then, by what preceeds,

⋃
n Fn ⊆G , which is a π-system. So by

π−λ-Theorem, we find σ(∪nFn) ⊆G .
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A consequence of this result is the Kolmogorov 0-1 law.

Theorem 1.3 (Kolmogorov’s 0-1 Law). Let (Xn) be a sequence of iid random variables, A ∈⋂
n σ(Xn , Xn+1, . . . ).

Then P(A) ∈ {0,1}.

Proof. Define Y = 1A , Yn =P(A|σ(X1, . . . , Xn)). A is σ(X1, . . . , Xn , . . . )-measurable, so

Yn −→P(A|σ(X1, . . . , Xn , . . . )) = 1A

Thus, Yn =P(A) for all n, as A ∈σ(Xn+1, Xn+2, . . . ) is independent of σ(X1, . . . , Xn).

Hence, P(A)
L1

→ 1A .

In the context of Brownian motion, we get the Blumenthal 0-1 law, so this construction is useful to
understand hitting times, e.g. to show that hitting times are stopping times.

2 Reverse martingales

Definition 2.1 (Reverse Martingale). A reverse filtration is a sequence F−1 ⊇F−2 ⊇ . . . of decreasing filtra-
tions. A reverse martingale is then a sequence of random variables X−1, X−2, . . . such that

(a) X−i ∈ L1

(b) X−i is F−i measurable

(c) E[X−i |F−i−1] = X−i−1

Observation 2.2. Any reverse martingale is uniformly integrable (UI), as

X−i = E[X−i−1|F−i ].

Namely, recall that {E[X |G ] : G ⊆ F } is UI if X ∈ L1. In this case, the time-reversal means every random
variable in the sequence is a conditional expectation of X−1.

Theorem 2.3 (Lévy’s Downward Theorem). Let (X−i ,F−i ) be a reverse martingale. Then

X−n −→ X−∞ = E [X−1|F−∞] , a.s. and in L1

with F−∞ =⋂
n F−n .

Proof. Almost sure convergence has the same proof as forward direction, using up-crossing inequalities.
We then obtain L1 convergence using UI.

Now, let’s show that X−∞ = E[X−1|F−∞].
Observe X−∞ is F−n-measurable ∀n as X−n , X−n−1, . . . are F−n-measurable, thus X−∞ is F−∞.
Next, we want that if S ∈F−∞, then E [X−∞ ·1S ] = E[X−1 ·1S ]
We see that

E[X−1 ·1S ] = E [Xn ·1S ]∀n,

as S ∈F−n and X−n = E[X−1|F−n].
Finally, we find E [X−n ·1S ] → E[X−1 ·1S ] by L1 convergence.

We can prove the SLLN using reverse martingales.
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Theorem 2.4 (Strong Law of Large Numbers). Let X1, X2, . . . iid sequence of L1 random variables. Then

X̄n = Sn

n
= X1 +·· ·+Xn

n
a.s., L1

−→ E[X1].

Proof Sketch. Note that X̄n = E[X1|Sn ,Sn+1, . . . ]. (This is a good exercise to check; idea is thatE[X1|Sn ,Sn+1, . . . ] =
E[Xi |Sn ,Sn+1, . . . ] for each i ≤ n by symmetry.) Then (X̄n) is a reverse martingale (without the negative in-
dexing), and so

X̄n
a.s., L1

−→ X̄∞ = E
[

X1

∣∣∣∣ ⋂
n≥1

σ(Sn ,Sn+1, . . . )

]
?= E[X1].

To show the last equality, use the Hewitt-Savage 0-1 Law (see Durrett) or Homework 2, Question 1.

4


	Doob's Inequality / Lp Maximal Inequality
	Reverse martingales

