
Statistics 212: Lecture 6 (Feb. 11, 2025)

Concentration of Martingales

Instructor: Mark Sellke

Scribe: Nicholas Barnfield and Zimeng Li

1 Naive Concentration

Setup:

• Let (Xk ) be a martingale with X0 deterministic.

• An assumption that will be frequently used in this lecture:

|Xk −Xk−1| ≤ ck , for all k = 1, . . . ,n (∗)

• Informal takeaway: |Xn −EXn | ≤O(
√∑

c2
k ) with high probability. (∗∗)

We then first take a look at the order of Var(Xn) under this setting. We claim that if (Xk ) is a martingale that
satisfy (∗), then

Var(Xn) ≤
n∑

k=1
c2

k

Proof of this claim:
For martingale (Xk ), we have that

Var(Xn) = E[X 2
n]−X 2

0 =
n∑

k=1
E[X 2

k −X 2
k−1] (1)

Var(Xk |Fk−1) = E[X 2
k |Fk−1]− [E[Xk |Fk−1]]2 = E[X 2

k |Fk−1]−X 2
k−1 (2)

Notice that 2 leads to
E[Var(Xk |Fk−1)] = EX 2

k −EX 2
k−1 (3)

Combining 1 and 3, we can derive that

Var(Xn) =
n∑

k=1
E[Var(Xk |Fk−1)] (4)

Assuming (∗), we have
Var(Xk |Fk−1) = E[(Xk −Xk−1)2|Fk−1] ≤ c2

k

which leads to the claimed result.
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1.1 Examples

Example (Family of functions that satisfy the setup). Let F :Rn →R be a bounded function and Y1, . . . ,Yn

be independent random variables. Suppose

|F (y1, . . . , yn)−F (y1, . . . , yk−1, y ′
k , yk+1, . . . , yn)| ≤ 1. (+)

for all k and define the martingale (Xk ) by

Xk = E[F (Y1, . . . ,Yn)|Y1, . . . ,Yk ].

Example (A more specific one under this family). Consider a random graph G of vertices v1, . . . , vn , where
edges ei j appear independently with probability pi j . Define the chromatic number as

χ(G) = min # of colors needed to color vertices such that neighbors are different colors.

and set F (G) =χ(G).

Figure 1: Example of G with n = 5 vertices and χ(G) = 3

We are interested in giving an upper bound for |χ(G)−E[χ(G)]| using takeaway information. To achieve
this, we make the following attempts by using different sets of {yi }:

Try 1: Set y1. . . . , y(n
2

) ∈ {0,1} based on presence of each edge in G . Then (+) holds since if we add 1 edge,

we can always create a new color for either vertex. Hence,

|χ(G)−E[χ(G)]| ≤O(n) w.h.p.

Try 2: Reveal one vertex at a time. Add v1, . . . , vn and reveal edges e1,k , . . . ,ek−1,k when vk is revealed.
Let y1 =∅, y2 = {e1,2}, y3 = {e1,3,e2,3}, . . . , i.e. yi is the set of edges revealed with the i -th revealed vertex.
Again, y1, . . . , yn are independent and (+) holds, (this is because each vk can get a new special color and
won’t affect all the previous edges) and so we have

|χ(G)−E[χ(G)]| ≤O(
p

n) w.h.p.

2 Two Improvements

In this part, we hope to improve on the concentration rate of Var(Xn) and we consider two ways:

(a) Efron-Stein variance bound.

(b) Subgaussian concentration (Azuma-Hoeffding inequality).
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2.1 Efron-Stein Inequality

Theorem 2.1 (Efron-Stein Inequality). Let Y1, . . . ,Yn be independent random variables and F :Rn →R be a
function, then

Var(F (y1, . . . , yn)) ≤
n∑

k=1
E[Var(F (y1, . . . , yn)|y−k )]

where y−k = (y1, . . . , yk−1, yk+1, . . . , yn).

Proof. Denote F = F (y1, . . . , yn) for notational simplicity. And let Xk = E[F (Y1, . . . ,Yn)|Y1, . . . ,Yk ]. Then

Var(F ) = Var(E(F |Fn))+E[Var(F |Fn] ≤ Var(E(F |Fn)) = Var(Xn)

We’ve proved that Var(Xn) =∑n
k=1E[Var(Xk |Fk−1)] holds for any martingale, thus if we can show that

E[Var(Xk |y1, . . . , yk−1)]
?≤ E[Var(F |y−k )],∀k ∈ [n] (5)

then the proof is finished.
Notice that for any random variable A, E[A|G ] = argmin

B is G -measurable
E[A−B ]2 and the minimal value is E[Var A|G ].

Thus for 5,
LHS = min

Gk :Gk is σ(y1, . . . , yk−1) measurable
E[(Xk −Gk )2]

RHS = min
G :G is σ(y−1) measurable

E[(F −G)2]

i.e. both the left and right sides of 5 are minimal values of two functions, denoted as f and g respectively,
then if we can show for any y , we can always find some x s.t. f (x) ≤ g (y), then 5 is proved.
Thus it remains to show that for any given G that is σ(y−k ) measurable, we can find Gk σ(y1, . . . , yk−1)
measurable s.t. E[(Xk −Gk )2] ≤ E[(F −G)2]. (∗∗∗)
Let

Gk = E[G|y1, . . . , yk−1] = E [G|y1, . . . , yk ]

where the second equality comes from that G is σ(y−k ) measurable and thus G is independent of yk .
So we have Xk −Gk = E[F −G|y1, . . . , yk ], then by Jensen’s inequality, we have

E[(Xk −Gk )2] ≤ E[(F −G)2]

i.e. we’ve find Gk that satisfy (∗∗∗), which finishes the proof.

Example (Jack-Knife). We can (over)-estimate Var(F ) by sampling iid copies y ′
i of each yi . One computes

1

2

n∑
k=1

[F (y1, . . . , yn)−F (y1, . . . , y ′
k , . . . , yn)]2 (Recall: Var(X ) = E[(X −X ′)2]/2 X , X ′ iid copies ).

Example (ES can be way off). Set yi ∼ Unif{−1,+1} and F (y1, . . . , yn) = y1 · · · yn . Then, Var(F ) = 1 but∑n
k=1 Var(F |y−k ) = n.

Example (ES improvement). (First-passage percolation)
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Figure 2: Example of grid

Assign each edge {1,2} iid uniform. Set F = min weight path from (0,0) → (n,n) and take each yi to be
a single edge. Then, (+) holds and so one gets the naive bound

|F −E[F ]| ≤O(n) w.h.p. =⇒ Var(F ) ≤O(n2).

But, using ES one obtains Var(F ) ≤ O(n). The reasoning is that Var(F |y−k ) ≲ P(ek is in all shortest paths),
because switching the weight of ek only changes F (and if so, by at most 1) if ek is in all shortest paths in at
least one of the examples. Then:∑

edges
P(ek is in all shortest paths) ≤ E[length of path] ≤O(n).

The moral is that although each edge might participate in the shortest path, only a few do on average, and
Efron–Stein can take advantage.

2.2 Azuma-Hoeffding Inequality

Theorem 2.2 (Azuma-Hoeffding Inequality). Assume (∗). Then, ∀t ≥ 0,

P(|Xn −X0| ≥ t ) ≤ 2exp

(
−t 2

2
∑

c2
k

)
.

Lemma 2.3. If u ∈ [−1,1] has mean 0, then E[eλu] ≤ eλ
2/2.

Proof. Note the fact that

eλu ≤ 1

2
(eλ+e−λ)+ u

2
(eλ+e−λ).

From this, we get

E[eλu] ≤ 1

2
(eλ+e−λ) ≤ eλ

2/2

where the first inequality is due to Eu = 0 and the second can be seen from a Taylor expansion. i.e. by
Taylor expansion,

eλ
2/2 = 1+ λ2

2
+·· ·+ λ2k

2k (k !)
+·· ·

1

2
(eλ+e−λ) = 1+ λ2

2
+·· ·+ λ2k

(2k)!
+·· ·

and we have (2k)!
2k k !

= 1×3×5×·· ·× (2k −1) ≥ 1.
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Proof. (Azuma-Hoeffding) By induction, we will show that E[eλXm ] ≤ e
1
2λ

2 ∑m
k=1 c2

k . Observe that

E[eλ(Xm−Xm−1)eλXm−1 |Fm−1] = eλXm−1 E[eλ(Xm−Xm−1)Fm−1] (by martingale property)

≤ eλXm−1 eλ
2c2

m /2

which completes the induction. (Here we apply the lemma to λ(Xm −Xm−1) ∈ [−λcm ,λcm].) Now, setting
λ= t/

∑n
k=1 c2

k , Markov’s inequality yields

P(Xn ≥ t ) ≤ E[eλXn ]e−λt ≤ e t 2/(2
∑

k c2
k )e−t 2/

∑
k c2

k = e−t 2/(2
∑

k c2
k ).

By symmetry, we obtain the same bound for P(Xn ≤ t ) which completes the proof.
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