Statistics 212: Lecture 6 (Feb. 11, 2025)

Concentration of Martingales

Instructor: Mark Sellke

Scribe: Nicholas Barnfield and Zimeng Li

1 Naive Concentration
Setup:
 Let (Xj) be a martingale with X, deterministic.
+ An assumption that will be frequently used in this lecture:

| X — X1l < cp,forallk=1,...,n (%)

+ Informal takeaway: | X, —EX,| < O/X ci) with high probability. (%)

We then first take a look at the order of Var(X,,) under this setting. We claim that if (Xj) is a martingale that
satisfy (*), then
n
Var(X,,) < Z Ci
k=1

Proof of this claim:
For martingale (Xj), we have that

n
Var(X,) =E[X;] - X5 = Y EIX; - X7 ] o)
k=1
Var(Xg|F—_1) = E[X3| Fp-1] - [ELXk| Fr11? = ELX2|Fpg] - X2, ®)
Notice that 2 leads to
E[Var(Xg|Fr-1)] =EX; —EX} 3)

Combining 1 and 3, we can derive that

Var(X,) = Y E[Var(Xg| Fr_1)] )
k=1

Assuming (*), we have
Var(Xel Fe-1) = El(Xk — Xg-1)*1Fp-1) < &

which leads to the claimed result.



1.1 Examples

Example (Family of functions that satisfy the setup). Let F:R" — R be a bounded function and Y3,..., Y,
be independent random variables. Suppose

|F(y1y---yyn)_F(J’l;---;J/k—l»y;c,J/k+1»---;J/n)|51- (+)
for all k and define the martingale (Xj) by
Xk:[E[F(YIr)Yn)lYI))Yk]

Example (A more specific one under this family). Consider a random graph G of vertices v,..., v,;, where
edges e; j appear independently with probability p; ;. Define the chromatic number as

x(G) = min # of colors needed to color vertices such that neighbors are different colors.

and set F(G) = x(G).

Figure 1: Example of G with n = 5 vertices and x(G) =3

We are interested in giving an upper bound for |y (G) —E[x(G)]| using takeaway information. To achieve
this, we make the following attempts by using different sets of {y;}:

Try1:Set y;...., Y € {0,1} based on presence of each edge in G. Then (+) holds since if we add 1 edge,
we can always create a new color for either vertex. Hence,
[¥(G) -E[x(@)]l = O(n) w.h.p.

Try 2: Reveal one vertex at a time. Add v,..., v, and reveal edges e ..., er—1,x Wwhen vy is revealed.
Let y1 = &,y2 = {e12}, y3 = {e13,e23},..., i.e. y; is the set of edges revealed with the i-th revealed vertex.
Again, y1,..., ¥, are independent and (+) holds, (this is because each vy can get a new special color and
won't affect all the previous edges) and so we have

x(G)-Ex(@]I<0(/n)  wh.p.

2 Two Improvements

In this part, we hope to improve on the concentration rate of Var(X,,) and we consider two ways:
(a) Efron-Stein variance bound.

(b) Subgaussian concentration (Azuma-Hoeffding inequality).



2.1 Efron-Stein Inequality

Theorem 2.1 (Efron-Stein Inequality). Let Y1,..., Y, be independent random variables and F :R" — R be a
function, then

n
Var(F(y1,...,yn)) < ) EVar(F(y1,..., ya)ly-i)l
k=1

Wherey—k: (J/1,---»J’k—lv}’k+1,---r}’n)-
Proof. Denote F = F(yy,..., yn) for notational simplicity. And let X = E[F(Y7,..., Y,)|Y1,..., Yi]. Then

Var(F) = Var(E(F|%,)) + E[Var(F|%,] < Var(E(F|%,)) = Var(X,,)

We've proved that Var(X,) = X.7'_ E[Var(X;|%-1)] holds for any martingale, thus if we can show that

E[Var(Xgly1,...) Yi-1)] < E[Var(Fly-i)], Vi € [n] ®)

then the proofis finished.

Notice that for any random variable A, E[A|¥4] = argmin E[A—B]? and the minimal value is E[Var A|¥].
B is ¢-measurable

Thus for 5,
LHS = min E[(X; — Gr)?]
Gr:Grisa(y,..., Yk-1) measurable
RHS = min E[(F - G)?]

G:Gis o(y-1) measurable

i.e. both the left and right sides of 5 are minimal values of two functions, denoted as f and g respectively,
then if we can show for any y, we can always find some x s.t. f(x) < g(y), then 5 is proved.
Thus it remains to show that for any given G that is o(y_;) measurable, we can find G o(yy,..., Yk-1)
measurable s.t. E[(Xx — G)?] SE[(F - G)?]. (% %)
Let

Gr =E[Gly1,..., Vk-11 = EIGly1,..., Yl

where the second equality comes from that G is o(y_) measurable and thus G is independent of yy.
So we have Xy — Gy =E[F - Glyj,..., k], then by Jensen’s inequality, we have

El(Xx - G)*] <E[(F - G)*]

i.e. we've find Gy that satisfy (* * *), which finishes the proof.
O

Example (Jack-Knife). We can (over)-estimate Var(F) by sampling iid copies y; of each y;. One computes

N =

n
Y IFD, oY) = FQ1,ees Voo yw))* (Recall: Var(X) =E[(X - X)*1/2 X, Xiid copies).
k=1

Example (ES can be way off). Set y; ~ Unif{—1,+1} and F(y1,...,¥n) = 1+ Yn- Then, Var(F) = 1 but
ZZIVar(FIy_k) =n.

Example (ES improvement). (First-passage percolation)



wm,m

t9.0)

Figure 2: Example of grid

Assign each edge {1,2} iid uniform. Set F = min weight path from (0,0) — (n, n) and take each y; to be
a single edge. Then, (+) holds and so one gets the naive bound

|F-E[F]l<O(m)  whp. = Var(F) < O(n?).

But, using ES one obtains Var(F) < O(n). The reasoning is that Var(F|y_;) < P(e is in all shortest paths),
because switching the weight of e only changes F (and if so, by at most 1) if ey is in all shortest paths in at
least one of the examples. Then:

Z (e is in all shortest paths) < E[length of path] < O(n).
edges

The moral is that although each edge might participate in the shortest path, only a few do on average, and
Efron-Stein can take advantage.

2.2 Azuma-Hoeffding Inequality
Theorem 2.2 (Azuma-Hoeffding Inequality). Assume (*). Then, YVt =0,

—$2
P(X,—Xol=t) <2exp| —=|.

Lemma2.3. Ifue[-1,1] has mean 0, then [E[e’l"] < 8/12/2.

Proof. Note the fact that

Au

1
e S—(e’1
2

u
+ ef’l) + E(e}L + 67/1).

From this, we get

_ 2
E[e*] < ~(e* + e 1) < e}/?

o=

where the first inequality is due to Eu = 0 and the second can be seen from a Taylor expansion. i.e. by
Taylor expansion,

/lZ /12]6
3’12/2:]+_+...+_+...
2 2k (k)
1 2 Azk
—erre =14 — e
2 2 2k)!
and we have 28! =1 x3x5x...x (2k—-1) = 1. O

2k k1



Proof. (Azuma-Hoeffding) By induction, we will show that E[e}*m] < 2V TiL1 % Observe that

E[e?Xm=Xm-1) pAXm-1 |F -1l = eMm-1 [E[e’”X'"_X'"*l)gm,l] (by martingale property)

< Mm1 e/lzc,zn/z

which completes the induction. (Here we apply the lemma to A(X};, — X;—1) € [-Acm, Acm].) Now, setting
A=tlyl ci, Markov’s inequality yields

P(X, > ) < E[eMr]e M < o2 1@Ek ) p= Ik cy _ p 1?2k C})

By symmetry, we obtain the same bound for P(X,, < f) which completes the proof. O
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