Statistics 212: Lecture February 24, 2025

Roughness of Brownian Motion

Instructor: Mark Sellke

Scribes: Alex Meterez, Clara Mohri

1 Lasttime

Last time, we constructed Brownian motion on [0, 1]. For a random continuous function B(f) (formally,
we have a probability measure on C([0,1]) on the Borel o-field), it is a Brownian motion if it satisfies the
following two properties:

(@ B(t)—B(s)~AN(0,t—s)forall0<s<t=<]1.
(b) If ry,..., t is an increasing sequence, then the increments
(B(#1),B(t2) — B(t1),...,B(tx) — B(tx-1))

are independent.

In this lecture, we show the uniqueness of Brownian motion, extend Brownian motion to [0, 00), and show
further properties of Brownian motion.

2 Uniqueness

Theorem 2.1 (Uniqueness of Brownian Motion). There is only one probability measure on C([0,1]) which
obeys the properties (a),(b) of Brownian motion above.

Proof. Suppose there exist g, u’ which both obey the properties (a) and (b) of Brownian motion. Let S =
{Borel A < C([0,1]) : u(A) = u'(A)}. We claim that S contains all “finite-dimensional" cylinders. To show
this, forall k= 1, Ay, ..., Ax <R Borel, we define

<gt1 ..... 1y Alyees Ak:{B:B(tl)EAI)'--yB(tk)EAk}-
Further, we define

€ =16, 100n k=110, 1. €10,11, Ay,..., B(ty) € A <R Borel}.

.....

Then, ¥ is a m-system (check!) and S is a A-system because it is closed under disjoint unions. Hence, due
to the m — A theorem, S contains the o-field generated by €. We showed last time that this is the entire
Borel g-algebra on C([0, 1])! As such, it must be the case that u = ' as measures on C([0, 1]). O



3 Extending Brownian Motion to Infinity

We would like to show that Brownian motion can be extended to [0,00). It suffices to “concatenate" several
independent and identically distributed copies of Brownian motion. Suppose that B (¢) is a Brownian mo-
tion defined on ¢ € [0, 1]. Then, for i = 1, we define B? (¢) to be an independent and identically distributed
copy of B ©(#). Then, we define:

BO(p ifre(0,1]
B =<y !'BP1) ifneN
Bn)+BM(a) ift=n+a,ac(0,1),neN.

B(?) is thus defined on [0, 00) and satisfies the properties of Brownian motion. An alternate characterization
of Brownian motion is that is it a centered Gaussian process with E[B(f) B(s)] = min(Z, s) for all times s, . A
Gaussian process means that each of the finite dimensional marginals (B(#;),..., B(#)) are jointly Gaussian.

3.1 Defining the distance metric

On C([0,1]), we used the distance metric dsup(f,g) = SUP ye(0,1) \f(x) - g(x)|. However, for B, B’ iid, it is
possible that extending this to [0, 00) gives dsup (B, B') = co. Hence, we define a new metric, starting with

d{iy (B, B') = supy< <, | B(t) - B'(1)|. Then

d(B,B)=) 27"

n=1

di (B, B')
1+d4 (B, B")

Note that d(B,B™) - 0 — ds(ﬁi) (B,B") — 0V n as m — oo. Hence, d() generates a Borel o-algebra,
o ({B(H)}tej0,00)- Furthermore, we remark that C([0,00)) is complete and separable with respect to this
metric.

4 Invariance Properties of Brownian motion

In this section, we discuss three invariances of Brownian motion. We check the covariance condition of
Brownian motion to show that each invariance holds.

4.1 Scaleinvariance

Fix a > 0. If B is a Brownian motion on [0,00), then X (f) = B(a®t)/a is a Brownian motion on [0,00). We
check the covariance condition:

EIX()X(s)] = %[E[B(a2 HB(a®s)]

|
=— mm(a2 t, a? s)
a

=min(t,s).

4.2 Shift invariance

Fix s > 0. If B is a Brownian motion on [0,00), then X (¢) = B(¢t+ s) — B(s), t = s is a Brownian motion on
[0,00). We check the covariance condition:

E[X ()X (1] =E[(B(t+ ) —B(8))(B(r +s) — B(s))]
=E[B(t+s)B(r+s)—B(t+s)B(s)—B(r+ s)B(s) + B(s)B(s)]



=min(t+s,r+8) —min(z+s,s) —min(r + s, s) + min(s, s)
= (min(f,r)+s)—s—s+s
=min(t, ).
Note: this further justifies the concatenation of Brownian motion to extend from [0, 1] to [0, c0). By starting

the next Brownian motion interval at the place where the former interval ended, we are shifting the iid
copy of Brownian motion. This shows that this concatenation is also a Brownian motion.

4.3 Time inversion

If B is a Brownian motion on [0,00), then

0, ift=0
X(1) = .
tB(1/t) ift>0

is a Brownian motion on [0,00). We check the covariance condition:

E[X()X(s)] =E[tB1/t)-sB(1/s)]
=ts-E[B(1/t)B(1/s)]
=ts-min(1/¢,1/s)

_ ts
B max(t, s)
=min(t, s).

The above holds because min(1/¢,1/s) =1/t <= t > s. This implies that X and B have the same law as
continuous functions f : (0,00) — R. Since continuity at 0 is a measurable event for such functions (e.g. it
is equivalent to maxge(o,1/m)ng | f(g)| — 0 as n — 0o), we also retain continuity at zero.

5 Roughness of Brownian Motion

Theorem 5.1 (Paley-Wiener-Zygmund, 1933). Almost surely, there does not exist t € [0,00) where B'(t) exists.
In fact, define

hlo h

fle+h) - f)

Df (1) :lll}lllbnf W

Then, almost surely, for all t, DB(t) = +oo or DB(t) = —oo or both.

Proof. We give a proof by contradiction. Suppose there exists ¢ such that )EB(t)‘ , | QB(t)| < M < oo for
some constant M. Then,

M= sup

O=sn=<l1

@

B(t+h)—-B(?) ‘
T <(X).

This holds for small / because the term is less than 2M, and for large & because we are locally bounded. In
fact, we will show that (1) has probability zero to hold for any finite M simultaneously in ¢. More precisely,
letting A(M) be the event that (1) holds for at least 1 value of ¢ € [0,1], we'll show that P[A(M)] = 0. This
implies the desired result by countable exhaustion over a sequence M — oo, and the same argument for
te[l,2], t€[2,3], etc.

Note that by bundling all ¢ into the single event A(M), we avoid having to union-bound over uncountably many values of ¢ in the
latter exhaustion arguments.



For the main proof, fix n, and consider the 27" scale discretization of the real line. Then, we consider

the nearby times %, 2%, %, sz,z where f € [%, %] Define the increments:
k k-1 k+1 k k+2 k+1
L1 =B|—|—-B ) IL=B -B|—|, Is=B -B .
2n 2n 2n 2n 2n 2n

Note that I, I, I3 ~ A (0,2~™) are IID. Given the constant ‘M, we have via Triangle Inequality:

k+2 k+1 k+2 k+1
|I3] = B( )—B( ) <|B )—B(t) + B(—)—B(t)
2n 2n 2n 2n
_(‘k+2 ‘ 'k+1 U
=M —t|+ -t
2n 2n
<10M27".

Using similar reasoning, we have that I, I, are also bounded above by 10M2~". Next, fixing k, n (denote
that the defintions of Iy, I, Is depend on k, n):

Pr(|l;| <10M2™"] < 100M2 "2,
as I ~ . (0,27") has standard deviation 2772, Hence, by independence:

Pril1, ||, 1 I5] < 10M2™"] < 1060 27372,

We define I, , =B (2%) -B (kz_nl ) Then, by a union bound over k:

Pr(E,(M)] =Pr[3 ks.t. |Ign|, | Tes1,n|s | Tesa,n| < 10M27")
<105M°27 "2,
Now, we have seen that if the event A(M) defined above holds, then E, (M) holds for all n. However, for

all M < oo, we have lim, .., PrlE, (M)] = 0. Hence, A(M) has probability zero for any fixed ‘M, which
completes the proof. O

Note that by considering more than 3 consecutive intervals, the same proof implies stronger “uniform
local roughness” properties of Brownian motion.

6 Additional facts

At the end of class, we also mentioned some more difficult facts about the exact roughness of Brownian
motion. There has been a lot of work on this (e.g. computing fractal dimensions of the sets of special points
including the ones below).

(a) Ata typical point, WLOG ¢ = 0, the roughness is described by the law of the iterated logarithm:

B B(t
limsup __IBEl =1 < limsup __IB@I (by inversion).

elo y/2¢loglogl/e r—oo y/2tloglogt

See [[MNB14, KCG16, HRMS21] for some interesting applications of the second statement in statis-
tics and machine learning.

k-1 k
2}1 ’ 2n
considering derivatives from the right with 7 > 0, so we actually need ¢ < % Note that requiring & > 0 just makes the divergence of

In lecture, it was stated that ¢ € is contained in the first interval. However in the definition of D, D we were only

max(D, D) we showed slightly stronger.



(b) There exist fast points: there exists ¢ € [0, 1] such that

limsup B =BOL 6 o).

hlo v/ hlog(1/h)

However no points are faster, i.e. the LHS is never infinity (see closely related extra credit problem
on homework).

(c) There exist slow points: there exists ¢ € [0, 1] such that

limsu Bz + 1) - B € (0,00)
_— ,00).
h10 P vVh

However no points are slower, i.e. the LHS is never zero.
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