Statistics 212: Lecture 9 (Feb, 2025)

Continuous Time Stochastic Processes

Instructor: Mark Sellke

Scribe: Gianfranco Randazzo and Mohammad Khan

So far we have defined BM as a random function in C([0,1]) or $C([0,\infty))$. Today we will look at BM as a Markov Chain in continuous time. Now a question is how to justify optional stopping in continuous time?

1 Continuous Time Markov Chains

Definition 1.1. $\{X_n, n \ge 1\}$ is Markov Chain if:

 $X_n \perp (X_1, \dots, X_{n-2} \mid X_{n-1}) \iff \mathbb{P}(X_n \in A \mid X_1, \dots, X_{n-1}) = \mathbb{P}(X_n \in A \mid X_{n-1})$

Definition 1.2. A continuous time filtration is a family of σ -algebras, $\{\mathscr{F}_t, t \in \mathbb{R}_{\geq 0}\}, \mathscr{F}_s \subset \mathscr{F}_t$ if $s \leq t$. An example is $\mathscr{F}_t = \sigma(\{B_s : 0 \leq s \leq t\}) = \sigma(B_{[0,t]})$.

Claim. BM satisfies Markov Chain in continuous time.

Note that for any $s \ge 0$, $X_t = B_{t+s} - B_s$ is BM independent of past points.

- Idea 1. Construct $B_{(0,\infty)}$ as a continuation of $B_{[0,s]}$ and $X_{(s,\infty)}$, see that you get BM
- Idea 2. Check finite dimensional distributions, more $\pi \lambda$.

Definition 1.3. Call $X \in C([0,\infty))$ adapted to filtration \mathscr{F} if X_t is \mathscr{F}_t -measurable $\forall t$.

This implies that $X_{(0,t]} \in C([0, t])$ is \mathscr{F}_t -measurable since finite dimensional projections are \mathscr{F}_t -measurable.

Definition 1.4. We say \mathscr{F}^+ is right continuous if $\mathscr{F}_t^+ = \bigcap_{s>t} \mathscr{F}_s, \forall t$.

This is generally benign. If \mathscr{F} is a filtration, then we have $\mathscr{F}_t^+ = \bigcap_{s>t} \mathscr{F}_s$ gives a right continuous filtration.

Theorem 1.5 (Blumenthal 0-1 Law). For BM if $A \in \mathscr{F}_t^+$, then $\mathbb{P}(A | \mathscr{F}_t) \in \{0, 1\}$ -valued \mathscr{F}_t -measurable function. Equivalently, changing from $\mathscr{F}_t \to \mathscr{F}_t^+$ only adding measure $\{0, 1\}$ sets.

Explicit deduction from Kolmogorov 0-1:

$$B_{[t+1/2,t+1]} \leftarrow X_s^{(1)} = B_{t+1/2+s} - B_{t+1/2}, \quad s \in [0, 1/2]$$

$$B_{[t+1/4,t+1/2]} \leftarrow X_s^{(2)} = B_{t+1/4+s} - B_{t+1/4}, \quad s \in [0, 1/4]$$

$$B_{[t+1/8,t+1/4]} \leftarrow X_s^{(3)} = B_{t+1/8+s} - B_{t+1/8}, \quad s \in [0, 1/8]$$

:

Note that $A \in \sigma(B_{[0,t]}, X_s^{(1)}, X_s^{(2)}, ...)$. Then we have that A is independent of the first $k X_s^{*(i)}, \forall k$.

1.0.1 Applications w.p. 1

- (a) $\{\forall \epsilon > 0, \max_{0 \le s \le \epsilon} B_s > 0\} \in \mathscr{F}_0^+$, and occurs w.p. 1
- (b) $\{\forall \epsilon > 0, \exists \delta \in (0, \epsilon) \text{ such that } B_s = 0\} \in \mathscr{F}_0^+$, and occurs w.p. 1
- (c) BM has a local max in $(0, \epsilon] \implies$ BM has a dense set of local max, and occurs w.p. 1

Proof. Letting $\mathscr{F}_0 = \{\varnothing, \Omega\}$. For 1, assume that BM is not constant on any interval $[0, \epsilon]$ (we saw non-differentiable). Then either:

$$D_{\epsilon} = \left\{ \max_{0 \le s \le \epsilon} B_s > 0 \right\} \text{ or } E_{\epsilon} = \left\{ \max_{0 \le s \le \epsilon} -B_s > 0 \right\}$$

holds $\forall \epsilon$. If $\delta < \epsilon$, then E_{ϵ} false $\implies E_{\delta}$ false. Similarly, for D_{δ}, D_{ϵ} . This if $E_{\epsilon}, D_{\epsilon_2}$ both false, then $\delta = \min(\epsilon_1, \epsilon_2)$, then E_{δ}, D_{δ} both false implies that BM continuous on $[0, \delta]$. Thus w.p. 1 either $\{E_{\epsilon}, \forall \epsilon\}$ or $\{D_{\epsilon}, \forall \epsilon\}$.

For 2, let $A_{\epsilon} = \{\exists \delta \in (0, \epsilon) : B_{\delta} = 0\}$. Now we will let $A = \bigcap_{\epsilon > 0} A_{\epsilon} \in \mathscr{F}_{0}^{+}$. We note this probability is not a function of ϵ because we can rescale our path, i.e. $\mathbb{P}(A_{\epsilon}) = p$ which doesn't depend on ϵ . Then we have that $\mathbb{P}(A) = \lim_{\epsilon \downarrow 0} \mathbb{P}(A_{\epsilon}) = p = \{0, 1\}$, complements from MCT. Now we want to justify that $p \neq 0$. We note that $\mathbb{P}(A_{\epsilon}) > 0$ as $\{B_{\epsilon_{2}} > 0, B_{\epsilon} < 0\}$, has positive probability, IVT implies existence of a 0.

1.1 Stopping Time

Definition 1.6. A non-negative random variable *T* (on the same probability space as BM) is a stopping time for (B_t, \mathscr{F}_t^+) if $\{T \le t\} \in \mathscr{F}_t, \forall t$.

Claim. If \mathscr{F}_t^+ right-continuous, then equivalently to require $\{T < t\} \in \mathscr{F}_t^+$

Proof. Assume $\{T < t\} \in \mathscr{F}_t^+ \implies \{T \le t\} = \bigcap_{n \ge 1/\epsilon} \{T < t + 1/n\} \in \bigcap_{s > t} \mathscr{F}_s^+ = \mathscr{F}_{t+\epsilon}^+, \forall \epsilon$. Check the other direction.

Theorem 1.7 (Strong Markov Property). It says, informally, the future after stopping time is a fresh BM. Thus, let *T* be a stopping time for BM. Then $W_t = B_{T+t} - B_T$ is a BM, also independent of $\mathscr{F}_T^+ = \{A \in \sigma(\{B_s, s \ge 0\}) : A \cap \{T \le t\} \in \mathscr{F}_t^+, \forall t\}$. Note that *T* is random.

Also, given *T* a stopping time, then $T_t = \min(T, t)$ is also a stopping time for any fixed *t*, and $\{\mathscr{F}_{T_t} : t \ge 0\}$ is called the "stopped filtration".

Proof. First step is to assume $T \in \{t_1 \le t_2 \le t_3 \le ...\}$ a.s. takes values in a countable set. Then we can consider each t_j separately. Then we have that $\mathbb{P}(T = t_j) = p_j > 0$. We want: conditionally on $\{T = t_j\}$, future is a BM. This follows from the ordinary Markov Property at time t_j . Discreteness $\implies \{T = t_j\} \in \mathscr{F}_{t_j}^+$. This says that $W_s^{(i)} = B_{t_j+s} - B_{t_j} \perp \mathscr{F}_{t_j}$ also $W_s^{(i)} \perp \mathscr{F}_{t_j}$. Full proof next time will be to approximate any stopping time by a discrete one like this, and use continuity to take the limit.