
STAT 291 Spring 2024

Problem Set 1

Instructions: many points are available in the problems below. 100 points will count as a perfect
score. Subproblems are equally weighted (e.g. Problem 1(a) is worth 48/4 = 12 points), and you
can earn credit for later subproblems without solving the previous ones. Points will be cumulative
throughout the semester, so you will get credit for earning more than 100 points on this problem
set if you choose to do so. You may also submit solutions to extra problems (which will be listed
in a separate file) at the end of any problem set. Solutions may be handwritten or Latexed
and should be submitted in PDF format via Canvas or email. The due date for this assignment is
February 9th.

Collaboration with your classmates is encouraged. Please identify everyone you worked
with at the beginning of your solution PDF (e.g. Collaborators: Alice, Bob, and GPT4 ). Your
solutions should be written entirely by you, even if you collaborated to solve the problems.

The first person to report each mistake in this problem set (by emailing me and Yufan) will receive
up to 5 extra points, depending on the mistake.

Problem 1. Practice with Free Energies (60 points)

Let µ be a probability measure on an arbitrary measurable space Ω, and let H : Ω → [−C,C] be a
bounded measurable function. The associated partition function, free energy, and Gibbs measure are:

Z(β) = Eω∼µ[eβH(ω)], F (β) = logZ(β), µβ(dω) =
eβH(ω)µ(dω)

Z(β)
. (1)

(Note: the lack of division by β in F (β) is intentional, and is convenient for the first part below.)

(a) Show that F is a convex function of β, and

dF (β)

dβ
= Eω∼µβ [H(ω)].

(Hint: Hölder’s inequality may be helpful to show convexity.)

(b) For γ ∈ R, define the super-level set

Ω(γ+) = {ω ∈ Ω : H(ω) ≥ γ}. (2)

Give an integral formula for F (β) in terms of the volumes V (γ) = µ(Ω(γ+)).

Next, let HN : ΩN → [−CN,CN ] be a (non-random) sequence of Hamiltonians on probability spaces
(ΩN , µN ), for N ≥ Z+ and let FN (β) = 1

N logZN (β). Similarly to above, define the super-level set
volumes

VN (γ) = µN

(
{ω ∈ ΩN : HN (ω) ≥ γN}

)
.

Assume in the parts below that
lim

N→∞
FN (β) = β2/2 (3)

for each β ∈ [0, β0].
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(c) For each β ∈ (0, β0), show that

lim sup
N→∞

1

N
log VN (β) ≤ −β2/2.

(Hint: if VN (β) is too big, FN (β) will be too big for (3) to hold.)

(d) (Added to help in the last part): Similarly, for all α ≥ β0, show that

lim sup
N→∞

1

N
log VN (α) ≤ β2

0

2
− β0α.

(Here we use the convention that log(0) = ∞.)

(e) Show that in fact

lim
N→∞

1

N
log VN (β) = −β2/2, ∀β ∈ (0, β0).

(Hint: suppose that 1
N log VN (β) ≤ −β2/2 − ε is too small. Using the upper bounds from the

previous parts, show that the assumption (3) must fail for some other value β′ near β. It may
be helpful to observe that VN (·) is a monotone function.)

Problem 2. Random Spherical Perceptron for κ = 0 (48 points)

In this problem, you will solve the random spherical perceptron in the case κ = 0. Recall that for
κ ∈ R and α > 0, the N -dimensional spherical perceptron is defined by the M = αN constraints

⟨σ,ga⟩ ≥ κ
√
N, 1 ≤ a ≤ M.

Here the vectors g1, . . . ,gM ∈ RN are IID standard Gaussian (i.e. the NM coordinates are IID
standard Gaussian). We say the point σ ∈ SN ⊆ RN with norm ∥σ∥ =

√
N is a solution if it obeys

all of these constraints.

(a) Consider the M hyperplanes
Ua = g⊥

a ⊆ RN .

Argue that each region in RN formed by these hyperplanes corresponds to a different value of
the vector (

sign(⟨σ,g1⟩), sign(⟨σ,g2⟩), . . . , sign(⟨σ,gM ⟩)
)
∈ {±1}M .

In other words, two vectors σ,σ′ /∈
⋃M

a=1 Ua are connected by a continuous path in the comple-

ment of
⋃M

a=1 Ua if and only if they have the same sign pattern. (Hint: line segments will suffice
as paths.)

(b) Let RN (g1, . . . ,gM ) denote the (random) number of N -dimensional regions formed in this way.
Show that if M ≤ N , then almost surely

RN (g1, . . . ,gM ) = 2M .

(Hint: use linear independence and the previous part.)

(c) Note that RN does not change if any subset of vectors ga are negated. Using symmetry, deduce
that for κ = 0, the probability for a solution σ to exist is exactly E[RN (g1, . . . ,gM )]/2M .
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(d) Argue that
RN (g1, . . . ,gM )−RN (g1, . . . ,gM−1)

is equal to the number of regions formed by the (N − 2) dimensional subspaces

U1 ∩ UM , U2 ∩ UM , . . . , UM−1 ∩ UM

within UM . Identify this as RN−1(v1, . . . ,vM−1) for some vectors v1, . . . ,vM−1 ∈ UM ≃ RN−1,
and show the vectors va are again IID standard Gaussian.

(e) Show by induction (e.g. on N +M) that RN (g1, . . . ,gM ) is almost surely constant, and in fact
equals

2
N−1∑
k=0

(
M − 1

k

)
.

(f) Deduce that for κ = 0, a spherical perceptron solution σ ∈ SN exists with high probability (i.e.
tending to 1 as N → ∞) for any fixed α < 2. Conversely for α > 2, show the probability for a
solution to exist tends to 0 as N → ∞.

Problem 3. Concentration and Spin Glass Free Energies (48 points)

This problem concerns p-spin models as in lecture, with Hamiltonian

HN (σ) = N−(p−1)/2
∑

1≤i1,...,ip≤N

gi1,...,ipσi1 . . .σip = N−(p−1)/2⟨G(p)
N ,σ⊗p⟩.

Here G
(p)
N ∈ RNp

has IID standard Gaussian coordinates (gi1,...,ip)1≤i1,...,ip≤N . The Ising and spherical
partition functions are defined by:

ZIs
N (β) = ZIs

N (HN ;β) = 2−N
∑

σ∈{±1}N
eβHN (σ);

Zsp
N (β) =

∫
SN

eβHN (σ)dσ,

where the latter integral is with respect to the uniform distribution on the sphere

SN = {σ ∈ RN : ∥σ∥ =
√
N}.

We set F
Is/sp
N (β) = 1

N logZ
Is/sp
N (β). (Note the extra factor of 1/N compared to (1).)

(a) Show that for the Ising p-spin model, one has almost surely(
1

N
max

σ∈{±1}N
HN (σ)

)
− log 2

β
≤ F Is

N (β)/β ≤ 1

N
max

σ∈{±1}N
HN (σ). (4)

Explain why this can be interpreted as commutation of N → ∞ and β → ∞ limits.
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(b) It follows from Lecture 2 (see added Section 2.1 in notes for day 2, to be discussed at
the start of Lecture 5) that for some C = C(p) > 0 independent of N , we have

max
σ∈SN

∥∇HN (σ)∥ ≤ C
√
N (5)

with probability 1− e−N . In particular, almost surely, this bound holds for all but finitely many
N (by the Borel–Cantelli lemma). Prove that if all but finitely many H1, H2, . . . obey (5), then

lim
β→∞

lim
N→∞

∣∣∣∣∣ 1N max
∥σ∥=

√
N
HN (σ)− F sp

N (β)/β

∣∣∣∣∣ = 0.

This qualitatively matches (4). (Hint: consider a ball of radius δ
√
N around the maximizer

σ ∈ SN , where δ tends to 0 slowly with β.)

(c) Recall from class that both max
∥σ∥=

√
N
HN (σ)/N and F sp

N (β) concentrate sharply around their

expectations. Using this and the previous part, prove that

lim
β→∞

lim
N→∞

E

∣∣∣∣∣ 1N max
∥σ∥=

√
N
HN (σ)− F sp

N (β)/β

∣∣∣∣∣ = 0.

(d) In the famously non-rigorous replica method from physics, one computes free energies using the
observation

1

N
logZN = lim

ε→0

Zε
N − 1

Nε
. (6)

The method first finds an asymptotic formula as N → ∞ for 1
N logE[Zk

N ] for integers k ≥ 1,
and then formally sends k ↓ 0 in this formula. While the latter step seems impossible to justify
directly, another potential issue is the inconsistency of the order of limits. Namely the formula
(6) sends ε → 0 for fixed N instead of sending N → ∞ for fixed ε. Using the concentration of
the free energy, prove that for any constant β,

lim
ε→0

lim
N→∞

∣∣∣∣∣ 1N E logZN (β)− E

[
ZN (β)ε/N − 1

ε

]∣∣∣∣∣ = 0.

In other words, the interchange of limits is justified if ε is rescaled by a factor of N . You may
use either the Ising or spherical model here; the proof should not strongly depend on this choice.
(Hint: the main surprise is the upper bound on E[ZN (β)ε/N ]. Here you will really need the
sub-Gaussian tail bound for FN (β), not just concentration with exponentially good probability.)

Problem 4: Posterior of Tensor PCA (96 points)

Recall from class that in tensor PCA, one generates x ∈ SN uniformly at random, and observes the
signal

TN = G
(p)
N + λN−(p−1)/2x⊗p.

Here G
(p)
N ∈ RNp

is as in the previous problem, and λ > 0 is a “signal strength” not depending on N .
Hence TN ∈ RNp

has entries

(TN )i1,...,ip = gi1,...,ip + λN−(p−1)/2xi1xi2 . . . xip .
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(a) Given TN , define1

H̃N (σ) = N−(p−1)/2⟨TN ,σ⊗p⟩ = N−(p−1)/2⟨G(p)
N ,σ⊗p⟩+ λN

(
⟨x,σ⟩
N

)p

= HN (σ) + λN

(
⟨x,σ⟩
N

)p

.

Show that the posterior distribution of x given TN is the Gibbs measure µλ for Hamiltonian
H̃N : SN → R at inverse temperature λ.

(b) Let
Bandx(q) = {σ ∈ SN : ⟨σ,x⟩/N = q}

and note that Bandx(q) has (N−2)-dimensional volume proportional to (1−q2)N/2 (up to lower
order factors). Let µx,q denote the uniform distribution on this band. Explain why, assuming
that the limit

Fλ(q) = lim
N→∞

1

N
EG

(p)
N log

∫
eλHN (σ)dµx,q(σ) (7)

exists for each q ∈ (−1, 1) and λ ≥ 0, it is natural to expect the limiting free energy for tensor
PCA is

lim
N→∞

1

N
E log

∫
SN

eλH̃N (σ)dσ = max
q∈(−1,1)

Fλ(q) + λ2qp +
log(1− q2)

2
. (8)

(c) Using continuity and concentration properties of HN , prove that (8) indeed follows rigorously
from the assumption that the limit Fλ(q) exists. (Hint: approximate SN by a large constant
number of bands, and use the bound in (5) on supx∈SN

∥∇HN (x)∥ to justify this approximation.)

In the next problems, we will find the optimal mean-squared error in tensor PCA. You may
assume below that the limit (7) defining Fλ(q) exists for all (λ, q), that p is odd, and that the
maximum in (8) is attained uniquely at q = q∗(λ).

(d) Let σ be a sample from the posterior distribution of x given TN . Show that ⟨σ,x⟩/N converges
in probability to q∗ as N → ∞.

(e) Let σ(1),σ(2) be independent samples from the posterior distribution of x given TN . Show

that averaged over all the randomness (including uniform x ∈ SN and Gaussian G
(p)
N ), the pair

(σ(1),σ(2)) ∈ S2
N has the same distribution as (σ(1),x). (Hint: this is a very general property

of posterior sampling.)

(f) Let y = E[x | TN ] denote the posterior mean of x given TN . Show that

lim
N→∞

1

N
E
[
∥y∥2

]
= q∗; lim

N→∞

1

N
E
[
∥x− y∥2

]
= 1− q∗.

The left-hand side defines the asymptotically optimal mean-squared error in tensor PCA.
(Hint: let ŷ be the average ofK IID posterior samples σ(1), . . . ,σ(K), forK large but independent
of N . Argue that E[∥ŷ − y∥2]/N tends to 0 with K, and use the previous parts to study ∥ŷ∥2.)

1Here the inner product is the usual one in RNp

, defined by summing over p-tuples (i1, . . . , ip) ∈ {1, 2, . . . , N}p.
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Problem 5. Survey (4 points)

Rate each of the four problems above that you worked on from 1 to 5 based on:

• Interestingness (1 for boring, 5 for exciting)

• Difficulty (1 for too easy, 5 for too hard)

• Learning (1 for almost nothing, 5 if you learned a lot).

Optionally, you are encouraged to elaborate on your ratings, and to share any other comments you
have regarding this problem set or the recent lectures. Suggestions on potential improvements for
future weeks or years of the course are especially appreciated.
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