
STAT 291 Spring 2024

Problem Set 2

Instructions: many points are available in the problems below. 100 points will count as a perfect
score. Subproblems are equally weighted unless stated otherwise, and you can earn credit for later
subproblems without solving the previous ones. Points will be cumulative throughout the semester,
so you will get credit for earning more than 100 points on this problem set if you choose to do so. You
may also submit solutions to extra problems (listed in a separate file on the course website) at the end
of any problem set. Solutions may be handwritten or Latexed and should be submitted in PDF
format via Canvas or email. The due date for this assignment is February 26th.

Collaboration with your classmates is encouraged. Please identify everyone you worked
with at the beginning of your solution PDF (e.g. Collaborators: Alice, Bob, and GPT4 ). Your
solutions should be written entirely by you, even if you collaborated to solve the problems.

The first person to report each mistake in this problem set (by emailing me and Yufan) will receive
up to 5 extra points, depending on the mistake.

Problem 1. The Kac-Rice Formula (98 points)

1. Define the random polynomial P : R → R by P (x) =
∑N

i=0

√(
N
i

)
gix

i, where gi ∼ Normal(0, 1)

are i.i.d. standard Gaussians. Find the expected number of real zeros for such a polynomial.

2. Give formulas (possibly in terms of integrals or combinatorial sums) for:

(a) The second moment of the number of zeros of P in [−10, 10].

(b) The expected number of zeros x satisfying P ′(x) ≥ 10.

For the rest of this problem, fix p ≥ 3 and consider the tensor PCA Hamiltonian

ĤN,p(x) = HN,p(x) + λN

(
⟨x,σ⟩
N

)p

.

3. Given fixed σ,x ∈ SN , determine the joint law of(
ĤN,p(x),∇radĤN,p(x),∇spĤN,p(x),∇2

tanĤN,p(x)
)

in terms of R = R(x,σ).

4. Show that for fixed x ∈ SN , the spectrum of the tangential Hessian ∇2
tanĤN,p(x) converges in

probability to the semicircle distribution in the bounded-Lipschitz metric, similarly to the case
of the p-spin model. (Hint: Cauchy’s eigenvalue interlacing theorem may be helpful.)

5. The previous parts suggest a variational formula for the expected number of critical points of
ĤN,p with energy and overlap (E,R) ∈ [a1, b1]×[a2, b2] in a given rectangle, to leading exponential
order. Provide such a formula, and discuss what changes from class, if any, are required to prove
the upper bound. In fact the corresponding formula remains true, and you may use
it in the next part.
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6. Assume λ ≥ λ0(p) is a sufficiently large constant. Show the expected number of critical points
y ∈ SN of ĤN,p which satisfy R(y,σ) ≥ 1/2 is eo(N). Note that this is both an upper and lower
bound! (This part requires significantly more calculation than the earlier parts of
this problem.)

7. In the previous part, give a simpler argument (without the Kac–Rice formula) that the expected
number of such critical points is at least 1− o(1). (Hint: consider the global maximum of ĤN,p.)

Problem 2. Contiguity at Exponential Scale (98 points)

Recall that if P,Q are probability measures on a common space, Q ≪ P (“Q is absolutely continuous
with respect to P”) if for any measurable set E, if P (E) = 0 then Q(E) = 0. The classical extension
of this notion to sequences of probability distributions is contiguity. If (QN , PN )N≥1 are probability
measures on a sequence of common spaces ΩN , we write PN ◁ QN (“PN is contiguous with respect to
QN”) if for any sequence of events (EN )N≥1,

lim
N→∞

QN (EN ) = 0 =⇒ lim
N→∞

PN (EN ) = 0.

1. Assume that PN ≪ QN for each N , i.e. the Radon–Nikodym derivative dPN
dQN

is defined.

(a) Show that if
dPN

dQN
≤ C

holds QN -almost surely for an N -independent constant C, then contiguity PN ◁QN follows.1

This problem investigates a flexible notion of contiguity at exponential scale. Say events (EN )N≥1 are
QN -exponentially unlikely if QN (EN ) ≤ Ce−cN holds for N -independent constants C, c > 0; similarly
for PN . We say “PN is contiguous with respect to QN at exponential scale” if any sequence of QN -
exponentially unlikely events is also PN -exponentially unlikely (possibly for different constants C, c).

2. Suppose that for all ε > 0, the sequence of events

dPN

dQN
≥ eεN

are PN -exponentially unlikely, with constants C, c possibly depending on ε. Prove that PN is
contiguous with respect to QN at exponential scale.

3. For a p-spin model as in class, suppose β is such that limN→∞ EFN (β) = β2/2. Show that∣∣∣FN (β)− β2

2

∣∣∣ ≥ ε is exponentially unlikely.

We now use contiguity at exponential scale to connect the p-spin model with tensor PCA in the
replica-symmetric phase. It may help to use/recall the first part of Homework 1, problem 4 below.
Consider the following two methods to sample a p-spin Hamiltonian together with a point σ ∈ SN :

• Generate a p-spin Hamiltonian HN,p(x) as usual, and then sample σ ∼ µβ from its Gibbs
measure. Output (HN,p,σ).

1See Le Cam’s first lemma for a much more precise description of contiguity.
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• Sample σ ∈ SN uniformly at random, generate a p-spin Hamiltonian HN,p(x) as usual, and let

ĤN,p(x) = HN,p(x) + βNR(σ,x)p.

Output (ĤN,p,σ).

We let PN be the law of the former, and QN the law of the latter.2

4. Show that dQN
dPN

= ZN (β)

EPN [ZN (β)]
, where ZN (β) is the partition function of the first argument. (Hint:

both methods are “trying” to sample from the density exp
(
−∥G(p)

N ∥22/2 + βN−(p−1)/2⟨G(p)
N ,σ⊗p⟩

)
.

But one of them is doing so incorrectly.)

5. For β such that limN→∞ EFN (β) = β2/2, conclude that PN is contiguous with respect to QN at
exponential scale.

6. For β as in the previous part, prove the free energy of the tensor PCA Hamiltonian ĤN,p also
converges in probability and in expectation to β2/2 as N → ∞. (Hint: similarly to HN,p, you

can show the free energy of ĤN,p also sharply concentrates. It might help to use the rotational
symmetry in distribution of the p-spin model to argue the location of σ is irrelevant, before
adding in the Gaussian noise.)

7. For β as in the previous parts, let σ, σ̃ ∼ µ
HN,p

β be IID samples from the p-spin Gibbs measure.
Show that if p is odd, then for any ε > 0, the event

P[R(σ, σ̃) ≤ −ε]

is exponentially unlikely. (Hint: compare (HN,p,σ) with (ĤN,p,σ) sampled from the second
method above. By using the tensor PCA formulation and reflection symmetry in the direction
σ, show that the free energy at positive overlap R ≥ ε with σ is strictly larger than the free
energy at overlap −R with σ.)

Problem 3. Extreme Critical Points of Spherical p-spin Models (60 points)

1. (10 points) Recall from class that supx∈SN
∥∇HN,p(x)∥ ≤ C

√
N with probability at least

1− e−N . Show that for other constants C ′ = C ′(p) and C ′′(p) = C ′′(p),

sup
x∈SN

∥∇2HN,p(x)∥op ≤ C ′,

sup
x∈SN

∥∇3HN,p(x)∥op ≤ C ′/
√
N

(1)

hold with the same probability.

2. (25 points) Recall from class that E0 = E0(p) is the energy threshold above which the expected
number of critical points drops to e−Ω(N). Show there exists ε = ε(p) such that with probability
1 − e−c(ε,p)N , all critical points x ∈ SN with HN,p(x)/N ≥ E0 − ε are local maxima, with all
eigenvalues of ∇2

spHN,p(x) less than −ε. (Hint: use the technique from Lecture 7.)

2Note that these Hamiltonians can be identified with their disorder tensors (modulo symmetrization of indices).
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3. (25 points) Show that for small δ ≤ δ0(p), with probability 1 − e−c(δ,p)N , the following holds
for all points x ∈ SN with HN,p(x)/N ≥ E0− δ. There exists y ∈ SN which is a local maximum
of HN,p and satisfies ∥x− y∥ ≤ O(δ

√
N).

(Hint: consider gradient flow (xt)t≥0 on SN starting from x0 = x, and let y be an accumulation
point of {xn}n∈Z+ . Show that y is a critical point with larger energy, and use the previous parts
to show that x could not have started far from y. It may be helpful to Taylor expand HN,p near
y to second order and bound the error via (1).)

Problem 3. Survey (4 points)

Rate each of the three problems above that you worked on from 1 to 5 based on:

• Interestingness (1 for boring, 5 for exciting)

• Difficulty (1 for too easy, 5 for too hard)

• Learning (1 for almost nothing, 5 if you learned a lot).

Optionally, you are encouraged to elaborate on your ratings, and to share any other comments you
have regarding this problem set or the recent lectures. Suggestions on potential improvements for
future weeks or years of the course are especially appreciated.
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