
STAT 291 Spring 2024

Problem Set 3

Instructions: many points are available in the problems below. 100 points will count as a perfect
score. Subproblems are equally weighted unless stated otherwise, and you can earn credit for later
subproblems without solving the previous ones. Points will be cumulative throughout the semester,
so you will get credit for earning more than 100 points on this problem set if you choose to do so. You
may also submit solutions to extra problems (listed in a separate file on the course website) at the end
of any problem set. Solutions may be handwritten or Latexed and should be submitted in PDF
format via Canvas or email. The official due date for this assignment is March 22, though you are
recommended to complete it before Spring break.

Collaboration with your classmates is encouraged. Please identify everyone you worked
with at the beginning of your solution PDF (e.g. Collaborators: Alice, Bob, and GPT4 ). Your
solutions should be written entirely by you, even if you collaborated to solve the problems.

The first person to report each mistake in this problem set (by emailing me and Yufan) will receive
up to 5 extra points, depending on the mistake.

Problem 1. Spiked Random Matrices (120 points)

In this problem, we let GN be a GOE(N) random matrix, and consider the quadratic spin glass
Hamiltonian

HN (x) = ⟨x, GNx⟩+ h⟨g,x⟩
where g ∼ Normal(0, IN ) and h > 0 is a scalar. We also define the spiked random matrix Hamiltonian:

ĤN (x) =

〈
x,

(
GN +

αg⊗2

N

)
x

〉
= ⟨x, GNx⟩+ α

N
⟨g,x⟩2.

We will be interested in their maximum values. In the latter case, this amounts to understanding the

top eigenvector of AN = GN + αg⊗2

N .

1. Show that HN satisfies the topological trivialization criterion from class for all h > 0. Conclude
that it has ground state energy limN→∞ supx∈SN

HN (x)/N =
√
h2 + 4.

2. By varying the value of h, find the limiting maximum value of HN (·)/N on {x ∈ SN : R(x,g) =
q} for each q ∈ [0, 1]. (Hint: this is similar to the later part of Homework 1 Problem 1, but with
ground states instead of free energies.)

3. Using the previous part, show that the asymptotic maximum eigenvalue of AN is:

p-lim
N→∞

λmax(AN ) =

{
α+ 1

α , α > 1,

2, α ∈ [0, 1].

4. Show that for any α, the second eigenvalue of AN is 2±o(1) with high probability. Thus the top
eigenvalue is an outlier when α > 1. (Cauchy’s eigenvalue interlacing theorem may be helpful.)

We will next see how to explicitly construct the outlier eigenvector when α > 1, given access to
GN and g separately. This will give an alternate proof of the lower bound. Below, to break the ±
symmetry we take the top eigenvector of AN to have positive overlap with g, and normalize it to have
length

√
N (i.e. lie on SN ).
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5. For α > 1, find the limiting overlap R∗ between g and the maximizer of HN . (Possibly using
the formulas from the previous parts.)

6. Consider HN (x) restricted to the band

BandR∗(g) ≡
{
x ∈ SN : R(x, g̃) = R∗},

where g̃ =
√
Ng/∥g∥SN is a slightly normalized version of g. This band is another sphere (of

dimension N − 2), and the restriction of HN (·) is still a quadratic function. We recenter this
restriction of HN by defining, for σ = R∗g̃ +

√
1−R2

∗ρ ∈ BandR∗(g):

H̃N (ρ) = HN (σ)−HN (R∗g̃).

Show that conditionally on g, the function H̃N is another spin glass Hamiltonian on BandR∗(g),
and find its effective parameters in the sense of lecture 11. (They should be essentially identical
to HN modulo scaling.)

7. Using the similarity, identify a sub-band Band
(2)
R∗

⊆ BandR∗(g), defined by overlaps with both

g and ∇HN (R∗x), such that the maximizer of HN is within distance o(
√
N) of Band

(2)
R∗

with
high probability.

8. Fix δ > 0. By repeating the above construction a large constant K = K(α, δ) number of times,
find a point x∗ ∈ SN such that

HN (x∗) ≥ sup
x∈SN

HN (x)− δN (1)

holds with high probability.

9. Adapt this algorithm to find a point x̂∗ which approximately maximizes ĤN in the same sense.

10. Show that for δ > 0 small enough depending on ε > 0, with high probability as N → ∞, the top
eigenvector of AN is within ε

√
N of x̂∗. (Hint: recall Part 4 above.)

11. (Harder, counts as two parts) Give an analogous recursive algorithm for topologically trivial
mixed p-spin models. That is, for ξ′(1) > ξ′′(1) with Hamiltonian HN , using K(δ) gradient
computations of HN , show how to compute a δ-approximate maximizer in the sense of (1).

Problem 2. Langevin Dynamics and Shattering (80 points)

1. Let Mt be an RN -valued continuous time martingale with M0 = 0 taking the form

dMt = atdBt

where the symmetric N ×N matrices at are progressively measurable and have all eigenvalues
in [0, 1] almost surely. Though it is not strictly necessary, you may also assume that
supt∈[0,δ] ∥Mt∥ is almost surely bounded by a constant depending on (N, δ).

(a) Using Ito’s formula or otherwise, show that for any unit vector v, the value eα⟨Mt,v⟩−α2∥v∥2t/2

is a super-martingale.

(b) Show that for fixed δ > 0, one has supt∈[0,δ] ∥Mt∥ ≤ 1000
√
δN with probability 1− e−N .
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2. Given C-bounded HN , prove the following holds for Langevin dynamics started from any x0 ∈
SN . For any β, ε there exists δ > 0 such that for large N ,

P[ sup
0≤t≤δ

∥xt − x0∥ ≤ ε
√
N ] ≥ 1− e−N .

(Hint: it might help to decompose xt − x0 into its martingale and finite-variation parts and
bound them separately. If you assumed ∥Mt∥ is almost surely bounded in the previous part,
make sure to check the condition applies here.)

3. In class, we proved the concentration of HN (xt)/N for any fixed t = O(1), where xt is given by
Langevin dynamics for the spherical spin glass Hamiltonian HN . Assuming the limit

E(t) = p-lim
N→∞

HN (xt)/N

exists for all t ≥ 0, show E(t) is a continuous function.

• For 50% extra credit, show there exists a subsequence N1 < N2 < . . . along which the
random function t 7→ HNi(xt)/Ni converges in distribution within the space C([0, T ];R) for
any T ≥ 0.

4. Suppose HN : SN → R is C-bounded and admits a shattering decomposition at inverse tem-
perature β, with cluster diameter r

√
N ≤

√
N/100 and separation s

√
N ≥ 10r

√
N . Initialize

Langevin dynamics from its stationary measure x0 ∼ µβ(HN ). Prove that for some c > 0, for
N sufficiently large:

P

[
sup

0≤t≤ecN
∥xt − x0∥ ≤ 2r

√
N

]
≥ 1− e−cN .

Conclude that the mixing time of Langevin dynamics is exponentially large in the shattered
phase. (Hint: note that xt ∼ µβ(HN ) holds for any fixed t ≥ 0. Show that if xτ is far from
every cluster at a stopping time τ , this separation is likely to persist on t ∈ [τ, τ + δ].)

Problem 3. Survey (4 points)

Rate both of the problems above that you worked on from 1 to 5 based on:

• Interestingness (1 for boring, 5 for exciting)

• Difficulty (1 for too easy, 5 for too hard)

• Learning (1 for almost nothing, 5 if you learned a lot).

Optionally, you are encouraged to elaborate on your ratings, and to share any other comments you
have regarding this problem set or the recent lectures. Suggestions on potential improvements for
future weeks or years of the course are especially appreciated.
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