
STAT 291 Spring 2024

Extra Credit Problems

Instructions: The problems on this sheet are for extra credit. You must earn at least
60% of the points from a problem below to receive credit. Solutions should be included
at the end of your solutions to an official problem set for the course. (If the last due
date has already passed, you can just email solutions to us separately.)

Collaboration with your classmates is encouraged. However you should identify
everyone you worked with at the beginning of your solution PDF (e.g. Collab-
orators: Alice, Bob, and Eve). Your solutions should be written entirely by you, even if
you collaborated to solve the problems.

The first person to report each substantial mistake in this problem set (by emailing
me and Yufan) will receive up to 3 points of extra credit, depending on the mistake.

Problem 1. Moment Bounds for random k-SAT (36 points)

Recall that in the random k-SAT problem, one is given N variables aims to simultane-
ously satisfy M = αN clauses of the form

(Li,1 · xi,1) ∨ (Li,2 · xi,2) ∨ · · · ∨ (Li,k · xi,k).

Here the indices (xi,1, . . . , xi,k) ∈ {1, 2, . . . , N}k are a uniformly random sequence of dis-
tinct values, while the uniformly random “literals” Li,j ∈ {±1} correspond to negations
when equal to −1 and do nothing otherwise (and ∨ means “or”).1 The expected number
of solutions is directly seen to be

2kN (1− 2−k)αN .

Thus, Markov’s inequality implies the upper bound αSAT ≤ 2k log 2 for the satisfiability
threshold. This problem will investigate some improved results.

(a) Say a solution is locally maximal if there is no way to obtain another solution by
changing 1 variable from FALSE to TRUE. Use Markov’s inequality on the set
Smax of locally maximal solutions to obtain an improved bound on αSAT .

Next we consider the NAE-k-SAT problem, where each clause is paired with a
“reversed” version where all literals are negated. For example, the reverse of
(x4 ∨ ¬x6 ∨ x7) is (¬x4 ∨ x6 ∨ ¬x7). Each “pair” of clauses is just counted as
1 constraint.

(b) Show that Markov’s inequality implies αSAT ≤ 2k−1 log 2 for NAE-k-SAT.

(c) Show that the second moment for the number of NAE-k-SAT solutions is given by
exp

{(
f(α, k)± o(1)

)
N
}
, where

f(α, k) = log 2+ max
R∈[0,1]

(
α

(
1− 4

2k
+

2

2k
(
Rk + (1−R)k

))
−R log(R)− (1−R) log(1−R)

)
1For example, the clause (¬x4 ∨ x6 ∨ ¬x7) would be written as (−1 · x4) ∨ (1 · x6) ∨ (−1 · x7).
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(d) Show that for α ≤ α0 small enough , the first and second moments of the number
of NAE-k-SAT solutions match up to a factor of eo(N), with k fixed as N → ∞.
(By being more careful and using a general “sharp threshold” result, this calcu-
lation implies an almost matching lower bound for the satisfiability threshold of
NAE-k-SAT.)

Similarly to p-spin models with non-zero linear term (“external field”), the sec-
ond moment method fails completely for random k-SAT due to the asymmetry. A
work-around is to weight satisfying assignments. In particular, for 0 < λ < 1,
let us say σ ∈ {−1, 1}N has weight w(σ, C) for clause C, where w(σ, C) = 0 if σ
violates C, and otherwise w(σ, C) = λk for k the number of disagreements. Then
define the total weight w(σ) to be the product

∏M
i=1w(σ, Ci) over the clauses Ci.

(e) Argue that to show a solution exists, it suffices to successfully apply the second
moment method toW =

∑
σ w(σ) rather than the unweighted number of solutions.

(f) Show that λ must solve
(1 + λ)k−1(1− λ) = 1

if the second moment method is to have a chance to work for some α > 0. In
particular, this means the unweighted 2nd moment method (with λ = 1) will
not work. (Hint: consider the second moment contribution from slightly non-zero
overlaps.)

(g) Show that for α ≤ 2k(log 2− ok(1)), the first and second moments for W match up
to a eo(N) factor. (Again, arguing more carefully leads to an almost sharp lower
bound for αSAT .)

Problem 2. The 2-Core of Random XOR-SAT (72 points)

Recall that a random k-XOR-SAT instance consists of M = αN clauses defined on the
mod-2 variables x1, . . . , xN ∈ Z2:

2

xi1,j + · · ·+ xik,j ≡ aj (mod 2), ∀1 ≤ j ≤ M.

During class, it was claimed that the behavior of random k-XOR-SAT is related to
the 2-core of the associated random k-uniform hypergraph3 G with M hyperedges
{xi1,j , . . . , xik,j}. In this problem, you will investigate this claim in more detail.

(a) Let G′ ⊆ G be a sub-hypergraph, consisting of subsets V2 ⊆ [N ] of vertices and
E2 ⊆ [M ] of clauses, such that for every clause j ∈ E2, the vertices xi1,j , . . . , xik,j
are all in V2. We say G′ is 2-stable if every v ∈ V2 is contained in at least 2 clauses
j ∈ E2, i.e. G

′ has minimum degree at least 2. Prove that:

• Recursively “pruning” degree 1 vertices yields a (possibly empty) 2-stable
sub-hypergraph G′.

• The resulting G′ contains any other 2-stable sub-hypergraph of G.

2More precisely, we assume each set {xi1,j + · · · + xik,j} is a uniformly random subset of k distinct
variables, and these subsets are independent for different j.

3A k-uniform hypergraph is just a graph with “hyper-edges” that are sets of k vertices. Thus an
ordinary graph is a 2-uniform hypergraph.
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The second property justifies the name 2-core. Recall from class that a non-empty
2-core corresponds to shattering in the set of solutions.

In the remaining parts, you may assume that M ∼ Poisson(αN) instead of
M = αN , except at the end where you will compare these models.

(b) Consider the variable x1 and fix a radius r. Viewing G as a random bipartite graph,
prove that as N → ∞, the r-neighborhood4 of x1 converges in total variation to
a probability distribution on rooted trees, and describe the distribution explicitly.
(Hint: it may be helpful to construct a coupling step-by-step.)

(c) Explain the equivalence between pruning and the following belief propagation re-
cursion: each variable-to-clause edge ei→a and clause-to-variable edge ea→i is ini-
tialized with a message “PRESENT”. At time t, these messages are updated as
follows: the message mt

i→a is “PRESENT” if i received at least one “PRESENT”
message mt−1

a′→i for a′ ̸= a in the previous time-step, else the message mi→a is
“ABSENT”. In the other direction, the message mt

a→i is “ABSENT” if at least 1
“ABSENT” message mt−1

i′→a was sent for i′ ̸= i, otherwise “PRESENT”.

(d) Define the sequence (p0, p1, . . . ) by p0 = 1 and

pt+1 = 1− e−kαpk−1
t .

Using the limiting tree description from before, prove that for each fixed t, the
expected number of “PRESENT” messages mt

i→a at time t is kαpt(1 + o(1))N as
N → ∞.

(e) Prove that p∗ = limt→∞ pt exists for all (k, α), and that p∗ = 1 if and only if

x < 1 − e−kαxk−1
for all x ∈ [0, 1]. In general, show p∗ is the smallest solution to

x = 1− e−kαxk−1
on x ∈ [0, 1].

(f) The dynamical threshold αd(k) from class is defined by

sup{α : x < 1− e−kαxk−1∀x ∈ [0, 1]}.

Show that when α < αd(k), for any ε > 0, there exists t such that in the limit
N → ∞, the expected proportion of clauses remaining after t steps of pruning is
at most ε.5

(g) Prove that if G ⊆ G̃, then the 2-core of G is contained in that of G̃. Conclude
that the 2-core has at most εN clauses with high probability when M = ⌊αN⌋
is fixed, for α < αd(k). (Hint: compare the fixed M and Poissonian M cases for
α < α̃ < αd.)

(h) Show that for M = ⌊αN⌋ and small enough ε depending on (k, α), the expected
number of subsets of at most

√
εN clauses containing no variable exactly once

tends to 0 with N . Conclude that for α < αd(k), the 2-core is empty with high
probability, both for fixed and Poisson M .

4That is, the rooted subgraph of G within distance r of x1, with distinguished root x1.
5In the opposite case α > αd(k), the size of the 2-core is given by p∗ with high probability. This is

harder to prove since one needs to handle pruning for a number of steps diverging with N .
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Problem ∞. Survey

If you submit an extra credit problem for grading, you are encouraged to rate it in the
same way as the official problems.
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