
Statistics 291: Lecture 10 (February 22, 2024)

Concentration for Langevin Dynamics

Instructor: Mark Sellke

Scribe: Alan Chung

1 Introduction

In the last lecture, we looked at fast mixing for Langevin Dynamics at high temperature on the sphere, and
also for log-concave distributions on the full space (i.e., on RN ). Today, we will look at mixing on O(1) time
scales for general β. There exist some ways to do this by considering some complicated set of equations,
either using Dynamical Mean-Field theory of via Approximate Message Passing. In this lecture though, we
will instead show concentration of the hamiltonian and overlap functions, 1

N Hn(X t ) and R(Xs , X t ).
One might imagine that we should strive to show that for t =O(1), that 1

N HN (X t ) is a Lipschitz function
of (HN ,B[0,t ], . . . ), but this turns out not to be true. In particular, considering the diffusion equation

d X t =
p

2P⊥
X t

dBt +
(
β∇sph HN (X t )−

(
N −1

N

)
X t

)
d t ,

the projection P⊥
X t

prevents things from being Lipschitz. Even if this projection term did not cause prob-
lems, we would still need a concentration result in an infinite-dimensional space for B[0,t ], which also
presents challenges. Actually, there are standard ways to fix this Lipschitz issue, one of which is- to con-
sider "soft spherical dynamics," such as in the equation

d X t =
p

2dBt + (β∇sph HN (X t )−∇VN (X t )),

where this VN is a "confining potential" that helps project things back onto the sphere. In particular, such
a potential might have the form

VN (x) = λ

N
(||x||2 −N )2 + ||x||2p

N p−1 .

However, it turns out that the process is still not Lipschitz if X t is unusually large.

2 Discrete-time Langevin Dynamics for HN ,p

In the remainder of the lecture, we will consider the pure p-spin hamiltonian. For ease of notation, however,
we will drop the subscript p and write this simply as HN . The dynamics are given by

X (k+1) = Proj
(

X (k) +β∇sph HN (X (k))+p
2gk

)
(1)

Proj(x) =
{

x
p

N
||x|| ||x|| ≥

p
N

2

2x ||x|| <
p

N
2

,
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where (gk ) is a sequence of i.i.d. N (0,1) random variables. Here, we are considering a step size of 1 for
convenience, and also we note that the projection function is 2-Lipschitz.

Definition 2.1 (C -bounded hamiltonian). We say (in the context of these lectures) that a hamiltonian HN

is C -bounded (of order 2) if

sup
||x||≤pN

∥HN (x)∥ ≤C N , sup
||x||≤pN

∥∇HN (x)∥ ≤C
p

N , sup
||x||≤pN

∥∥∇2HN (x)
∥∥

op ≤C

Lemma 2.2. Suppose that HN , H̃N are C -bounded. Suppose that X (k) evolves according to eq. (1) with
hamiltonian HN and gaussian variables (gk ), and X̃ (k) evolves similarly but according to hamiltonian H̃N

and randomness (g̃k ). If X (0) = X̃ (0), then

∥∥∥X (k) − X̃ (k)
∥∥∥≤ (10C p(β+1))k

(∥∥∥G (p)
N −G̃ (p)

N

∥∥∥+ k−1∑
i=0

∥∥gi − g̃i
∥∥)

Sketch of Proof. The proof follows by induction. We saw in the last lecture that if HN if C -bounded, then∥∥∥∇HN (X (k))−∇HN (X̃ (k))
∥∥∥≤C

∥∥∥X (k) − X̃ (k)
∥∥∥ .

We also have that if ||y || ≤p
N , then∥∥∇HN (y)−∇H̃N (y)

∥∥≤ p
∥∥∥G (p)

N −G̃ (p)
N

∥∥∥ .

To see this, note that if y = (
p

N ,0,0, . . . ,0), then this bound is√√√√p2(g1,1,...,1 − g̃1,1,...,1)2 +
N∑

i=2

∑
s ym

(g1,1,...,i − g̃1,1,...,i )2 ≤ p
∥∥∥G (p)

N −G̃ (p)
N

∥∥∥ .

The triangle inequality then implies that∥∥∥∇HN (X (k))−∇H̃N (X̃ (k))
∥∥∥≤

∥∥∥∇HN (X (k))−∇HN (X̃ (k))
∥∥∥+∥∥∥∇HN (X̃ (k))−∇H̃N (X̃ (k))

∥∥∥
≤C

∥∥∥X (k) − X̃ (k)
∥∥∥+p

∥∥∥G (p)
N −G̃ (p)

N

∥∥∥ .

Then, using the fact that Proj is 2-Lipschitz, we have that

∥X (k) − X̃ (k)∥ ≤ 2
(
(Cβ+1)

∥∥∥X (k) − X̃ (k)
∥∥∥+pβ

∣∣∣∥G (p)
N −G̃ (p)

N

∥∥∥+p
2
∥∥gk − g̃k

∥∥)
.

Then using induction suffices for the proof.

Before proving the main result, we first state the following:

Theorem 2.3 (Kirszbraun Extension Theorem). Let Rd1 ,Rd2 be Euclidean spaces. Suppose that U ⊆Rd1 and
thatφ : U → H2 is L-Lipschitz. Then, there exists an extensionΦ ofφ so thatΦ :Rd1 →Rd2 that is L-Lipschitz,
and so that

clo
(
Convex Hull(Φ(Rd1 )

)= clo
(
Convex Hull(Φ(U )

)
Sketch of Proof. Assume WLOG that L = 1. It suffices to show this for the case where S is finite, and we
extend the map to one additional point. This suffices if the underlying space is separable, since we just
extend to a countable dense subset. Hence let S = (x1, x2, . . . , xm), and we extend to one more point x ∈Rd1 .

Given (x1, x2, . . . , xm) and (φ(x1),φ(x2), . . . ,φ(xm)), let y ∈Rd2 be the point minimizing

r = max
1≤i≤m

∥y −φ(xi )∥
∥x −xi∥

?≤ 1.
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It suffices to show this latter inequality, since that would imply that the extension has Lipschitz constant 1.
Firstly, we note that y ∈ Convex Hull(φ(x1), . . . ,φ(xm)). To see this, suppose that

r = ∥y −φ(xi )∥
∥x −xi∥

holds exactly on 1 ≤ i ≤ j . Then, y ∈ Convex Hull(φ(x1), . . . ,φ(x j )). If this is not the case, we can move the
point y slightly closer to the Convex Hull to minimize the objective further.

Hence, we write y as a convex combination y = ∑m
i=1 piφ(xi ). Then, consider i.i.d. random vectors

Z , Z ′ so that Z = xi with probability pi . Then note that E[φ(Z )] = E[φ(Z ′)] = y. Then, that φ is 1-Lipschitz
implies that

E
[∥∥φ(Z )−φ(Z ′)

∥∥2
]
≤ E

[∥∥Z −Z ′∥∥2
]

.

The left hand side equals 2E
[∥∥φ(Z )− y

∥∥2
]
= 2r 2E

[∥Z −x∥2
]
. The right hand side satisfies E

[∥∥Z −Z ′∥∥2
]
=

2E
[∥Z −E[Z ]∥2

]≤ 2E
[∥Z −x∥2

]
. Then this implies that r ≤ 1.

3 Main Theorem

We first write the main theorem, then provide a sketch on how to prove it.

Theorem 3.1. Fix X (0) ∈SN . For k =O(1) and large N , there exists Ak (G (p)
N , g0, g1, . . . , gk−1) so that

(a) P
(

Ak (G (p)
N , g0, g1, . . . , gk−1) = X (k)

)
≥ 1−e−N .

(b) Ak is Ok,β(1)-Lipschitz.

(c)
∥∥∥Ak (G (p)

N , g0, g1, . . . , gk−1)
∥∥∥≤p

N .

The idea behind the proof is that we first define φ on C -bounded HN as in Theorem 2.2, and then extend
to all HN using the Kirszbraun Extension Theorem, which implies that the extension is Lipschitz, and then
we use concentration.

Corollary 3.2. Fix j ,k ∈Z+, and c = c( j ,k,β,ϵ). Then

P
(∣∣∣R (

X ( j ), X (k)
)
−E

[
R

(
X ( j ), X (k)

)]∣∣∣≥ ϵ)≤ e−cN .

Proof Sketch. We note that R(X ( j ), X (k)) = 1
N

〈
X ( j ), X (k)

〉
is 2/

p
N -Lipschitz on

{(X ( j ), X (k)) : ∥X ( j )∥,∥X (k)∥ ≤
p

N }.

Then, consider the following composition of functions(
G (p)

N , g0, . . . , gk−1

)
7→ (

A j (. . . ), Ak (. . . )
) 7→ R(A j (. . . ), Ak (. . . )).

Because both functions are Lipschitz, then the composed function has Lipschitz constant that is the prod-

uct of the Lipschitz constants of the two individual functions, which is Ok,β

(
1p
N

)
. The result then follows

through Lipschitz concentration.

Corollary 3.3. Fix k ∈Z+. Then for c = c(k,β,ϵ), we have

P

(∣∣∣∣ 1

N
HN (X (k))−E

[
1

N
HN (X (k)

]∣∣∣∣≥ ϵ)≤ e−cN .
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Proof Sketch. For C -bounded HN , the function X (k) 7→ 1
N HN (X (k)) is C /

p
N−Lipschitz. Hence,

{ 1
N HN (X (k)

}
has Ok,β(1/

p
N ) Lipschitz modification Ek

(
G (p)

N , g0, . . . , gk−1

)
. The result then follows through Lipschitz

concentration.

For the next corollary, define the response Y (k, j ) = R(X (k), g j ) for j < k. This captures how the noise
at previous time steps affects the future dynamics.

Corollary 3.4.
P

(∣∣Y (k, j )−E[Y (k, j )]
∣∣≥ ϵ)≤ e−cN .

Proof Sketch. The idea is that R(X (k), g j ) is O(1/
p

N )-Lipschitz on the set

Ŝ =
{

(G (p)
N , g0, . . . , gk−1), HN is C -bounded and ∥g j ∥ ≤ 2

p
N

}
.

Then the proof follows similarly to the previous ones.

4 Analytical Solutions for Spin Glasses

The paper [CK93] presents an analytical solution for a large range spin-glass model. In particular, for some
version of Langevin Dynamics, they define R(s, t ) = plimN→∞R(Xs , X t ), Y (s, t ) = plimN→∞R(Xs ,Bt ), s > t .
Then, these quantities satisfy the following set of differential equations:

Y (s, s) = R(s, s) = 1

∂s Y (s, t ) =−µ(s)Y (s, t )+β2p(p −1)
∫ s

t
Y (u, t )Y (s,u)R(s,u)ρ−2du

∂s R(s, t ) =−µ(s)R(s, t )+β2p(p −1)
∫ s

0
R(u, t )Y (s,u)R(s,u)p−2du +β2p

∫ t

0
R(s,u)p−1Y (t ,u)du

µ(s) = 1

2
+β2p2

∫ s

0
R(s,u)p−1Y (s,u)du

This was proven formally in [ADG04].

References

[ADG04] Gerard Ben Arous, Amir Dembo, and Alice Guionnet. Cugliandolo-kurchan equations for dynam-
ics of spin-glasses, 2004. 4

[CK93] L. F. Cugliandolo and J. Kurchan. Analytical solution of the off-equilibrium dynamics of a long-
range spin-glass model. Physical Review Letters, 71(1):173–176, July 1993. 4

4


	Introduction
	Discrete-time Langevin Dynamics for HN, p
	Main Theorem
	Analytical Solutions for Spin Glasses

