Statistics 291: Lecture 10 (February 22, 2024) Concentration for Langevin Dynamics

Instructor: Mark Sellke
Scribe: Alan Chung

1 Introduction

In the last lecture, we looked at fast mixing for Langevin Dynamics at high temperature on the sphere, and also for log-concave distributions on the full space (i.e., on \mathbb{R}^{N}). Today, we will look at mixing on $O(1)$ time scales for general β. There exist some ways to do this by considering some complicated set of equations, either using Dynamical Mean-Field theory of via Approximate Message Passing. In this lecture though, we will instead show concentration of the hamiltonian and overlap functions, $\frac{1}{N} H_{n}\left(X_{t}\right)$ and $R\left(X_{s}, X_{t}\right)$.

One might imagine that we should strive to show that for $t=O(1)$, that $\frac{1}{N} H_{N}\left(X_{t}\right)$ is a Lipschitz function of ($H_{N}, B_{[0, t]}, \ldots$), but this turns out not to be true. In particular, considering the diffusion equation

$$
d X_{t}=\sqrt{2} P_{X_{t}}^{\perp} d B_{t}+\left(\beta \nabla_{s p h} H_{N}\left(X_{t}\right)-\left(\frac{N-1}{N}\right) X_{t}\right) d t
$$

the projection $P_{X_{t}}^{\perp}$ prevents things from being Lipschitz. Even if this projection term did not cause problems, we would still need a concentration result in an infinite-dimensional space for $B_{[0, t]}$, which also presents challenges. Actually, there are standard ways to fix this Lipschitz issue, one of which is- to consider "soft spherical dynamics," such as in the equation

$$
d X_{t}=\sqrt{2} d B_{t}+\left(\beta \nabla_{s p h} H_{N}\left(X_{t}\right)-\nabla V_{N}\left(X_{t}\right)\right)
$$

where this V_{N} is a "confining potential" that helps project things back onto the sphere. In particular, such a potential might have the form

$$
V_{N}(x)=\frac{\lambda}{N}\left(\|x\|^{2}-N\right)^{2}+\frac{\|x\|^{2 p}}{N^{p-1}}
$$

However, it turns out that the process is still not Lipschitz if X_{t} is unusually large.

2 Discrete-time Langevin Dynamics for $H_{N, p}$

In the remainder of the lecture, we will consider the pure p-spin hamiltonian. For ease of notation, however, we will drop the subscript p and write this simply as H_{N}. The dynamics are given by

$$
\begin{align*}
X^{(k+1)}= & \operatorname{Proj}\left(X^{(k)}+\beta \nabla_{s p h} H_{N}\left(X^{(k)}\right)+\sqrt{2} g_{k}\right) \tag{1}\\
& \operatorname{Proj}(x)= \begin{cases}\frac{x \sqrt{N}}{\|x\|} & \|x\| \geq \frac{\sqrt{N}}{2} \\
2 x & \|x\|<\frac{\sqrt{N}}{2}\end{cases}
\end{align*}
$$

where $\left(g_{k}\right)$ is a sequence of i.i.d. $\mathscr{N}(0,1)$ random variables. Here, we are considering a step size of 1 for convenience, and also we note that the projection function is 2-Lipschitz.

Definition 2.1 (C-bounded hamiltonian). We say (in the context of these lectures) that a hamiltonian H_{N} is C-bounded (of order 2) if

$$
\sup _{\|x\| \leq \sqrt{N}}\left\|H_{N}(x)\right\| \leq C N, \quad \sup _{\|x\| \leq \sqrt{N}}\left\|\nabla H_{N}(x)\right\| \leq C \sqrt{N}, \sup _{\|x\| \leq \sqrt{N}}\left\|\nabla^{2} H_{N}(x)\right\|_{o p} \leq C
$$

Lemma 2.2. Suppose that H_{N}, \tilde{H}_{N} are C-bounded. Suppose that $X^{(k)}$ evolves according to eq. (1) with hamiltonian H_{N} and gaussian variables $\left(g_{k}\right)$, and $\tilde{X}^{(k)}$ evolves similarly but according to hamiltonian \tilde{H}_{N} and randomness $\left(\tilde{g}_{k}\right)$. If $X^{(0)}=\tilde{X}^{(0)}$, then

$$
\left\|X^{(k)}-\tilde{X}^{(k)}\right\| \leq(10 \operatorname{Cp}(\beta+1))^{k}\left(\left\|G_{N}^{(p)}-\tilde{G}_{N}^{(p)}\right\|+\sum_{i=0}^{k-1}\left\|g_{i}-\tilde{g}_{i}\right\|\right)
$$

Sketch of Proof. The proof follows by induction. We saw in the last lecture that if H_{N} if C-bounded, then

$$
\left\|\nabla H_{N}\left(X^{(k)}\right)-\nabla H_{N}\left(\tilde{X}^{(k)}\right)\right\| \leq C\left\|X^{(k)}-\tilde{X}^{(k)}\right\| .
$$

We also have that if $\|y\| \leq \sqrt{N}$, then

$$
\left\|\nabla H_{N}(y)-\nabla \tilde{H}_{N}(y)\right\| \leq p\left\|G_{N}^{(p)}-\tilde{G}_{N}^{(p)}\right\| .
$$

To see this, note that if $y=(\sqrt{N}, 0,0, \ldots, 0)$, then this bound is

$$
\sqrt{p^{2}\left(g_{1,1, \ldots, 1}-\tilde{g}_{1,1, \ldots, 1}\right)^{2}+\sum_{i=2}^{N} \sum_{\text {sym }}\left(g_{1,1, \ldots, i}-\tilde{g}_{1,1, \ldots, i}\right)^{2}} \leq p\left\|G_{N}^{(p)}-\tilde{G}_{N}^{(p)}\right\|
$$

The triangle inequality then implies that

$$
\begin{aligned}
\left\|\nabla H_{N}\left(X^{(k)}\right)-\nabla \tilde{H}_{N}\left(\tilde{X}^{(k)}\right)\right\| & \leq\left\|\nabla H_{N}\left(X^{(k)}\right)-\nabla H_{N}\left(\tilde{X}^{(k)}\right)\right\|+\left\|\nabla H_{N}\left(\tilde{X}^{(k)}\right)-\nabla \tilde{H}_{N}\left(\tilde{X}^{(k)}\right)\right\| \\
& \leq C\left\|X^{(k)}-\tilde{X}^{(k)}\right\|+p\left\|G_{N}^{(p)}-\tilde{G}_{N}^{(p)}\right\| .
\end{aligned}
$$

Then, using the fact that Proj is 2-Lipschitz, we have that

$$
\left\|X^{(k)}-\tilde{X}^{(k)}\right\| \leq 2\left((C \beta+1)\left\|X^{(k)}-\tilde{X}^{(k)}\right\|+p \beta \mid\left\|G_{N}^{(p)}-\tilde{G}_{N}^{(p)}\right\|+\sqrt{2}\left\|g_{k}-\tilde{g}_{k}\right\|\right)
$$

Then using induction suffices for the proof.
Before proving the main result, we first state the following:
Theorem 2.3 (Kirszbraun Extension Theorem). Let $\mathbb{R}^{d_{1}}, \mathbb{R}^{d_{2}}$ be Euclidean spaces. Suppose that $U \subseteq \mathbb{R}^{d_{1}}$ and that $\phi: U \rightarrow H_{2}$ is L-Lipschitz. Then, there exists an extension Φ of ϕ so that $\Phi: \mathbb{R}^{d_{1}} \rightarrow \mathbb{R}^{d_{2}}$ that is L-Lipschitz, and so that

$$
\operatorname{clo}\left(\text { Convex } \operatorname{Hull}\left(\Phi\left(\mathbb{R}^{d_{1}}\right)\right)=\operatorname{clo}(\text { Convex } \operatorname{Hull}(\Phi(U))\right.
$$

Sketch of Proof. Assume WLOG that $L=1$. It suffices to show this for the case where S is finite, and we extend the map to one additional point. This suffices if the underlying space is separable, since we just extend to a countable dense subset. Hence let $S=\left(x_{1}, x_{2}, \ldots, x_{m}\right)$, and we extend to one more point $x \in \mathbb{R}^{d_{1}}$.

Given $\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ and $\left(\phi\left(x_{1}\right), \phi\left(x_{2}\right), \ldots, \phi\left(x_{m}\right)\right)$, let $y \in \mathbb{R}^{d_{2}}$ be the point minimizing

$$
r=\max _{1 \leq i \leq m} \frac{\left\|y-\phi\left(x_{i}\right)\right\|}{\left\|x-x_{i}\right\|} \stackrel{?}{\leq} 1 .
$$

It suffices to show this latter inequality, since that would imply that the extension has Lipschitz constant 1. Firstly, we note that $y \in \operatorname{Convex} \operatorname{Hull}\left(\phi\left(x_{1}\right), \ldots, \phi\left(x_{m}\right)\right)$. To see this, suppose that

$$
r=\frac{\left\|y-\phi\left(x_{i}\right)\right\|}{\left\|x-x_{i}\right\|}
$$

holds exactly on $1 \leq i \leq j$. Then, $y \in$ Convex $\operatorname{Hull}\left(\phi\left(x_{1}\right), \ldots, \phi\left(x_{j}\right)\right)$. If this is not the case, we can move the point y slightly closer to the Convex Hull to minimize the objective further.

Hence, we write y as a convex combination $y=\sum_{i=1}^{m} p_{i} \phi\left(x_{i}\right)$. Then, consider i.i.d. random vectors Z, Z^{\prime} so that $Z=x_{i}$ with probability p_{i}. Then note that $\mathbf{E}[\phi(Z)]=\mathbf{E}\left[\phi\left(Z^{\prime}\right)\right]=y$. Then, that ϕ is 1-Lipschitz implies that

$$
\mathbf{E}\left[\left\|\phi(Z)-\phi\left(Z^{\prime}\right)\right\|^{2}\right] \leq \mathbf{E}\left[\left\|Z-Z^{\prime}\right\|^{2}\right]
$$

The left hand side equals $2 \mathbf{E}\left[\|\phi(Z)-y\|^{2}\right]=2 r^{2} \mathbf{E}\left[\|Z-x\|^{2}\right]$. The right hand side satisfies $\mathbf{E}\left[\left\|Z-Z^{\prime}\right\|^{2}\right]=$ $2 \mathbf{E}\left[\|Z-\mathbf{E}[Z]\|^{2}\right] \leq 2 \mathbf{E}\left[\|Z-x\|^{2}\right]$. Then this implies that $r \leq 1$.

3 Main Theorem

We first write the main theorem, then provide a sketch on how to prove it.
Theorem 3.1. Fix $X^{(0)} \in \mathbb{S}^{N}$. For $k=O(1)$ and large N, there exists $A_{k}\left(G_{N}^{(p)}, g_{0}, g_{1}, \ldots, g_{k-1}\right)$ so that
(a) $\mathbb{P}\left(A_{k}\left(G_{N}^{(p)}, g_{0}, g_{1}, \ldots, g_{k-1}\right)=X^{(k)}\right) \geq 1-e^{-N}$.
(b) A_{k} is $O_{k, \beta}(1)$-Lipschitz.
(c) $\left\|A_{k}\left(G_{N}^{(p)}, g_{0}, g_{1}, \ldots, g_{k-1}\right)\right\| \leq \sqrt{N}$.

The idea behind the proof is that we first define ϕ on C-bounded H_{N} as in Theorem 2.2, and then extend to all H_{N} using the Kirszbraun Extension Theorem, which implies that the extension is Lipschitz, and then we use concentration.

Corollary 3.2. Fix $j, k \in \mathbb{Z}_{+}$, and $c=c(j, k, \beta, \epsilon)$. Then

$$
\mathbb{P}\left(\left|R\left(X^{(j)}, X^{(k)}\right)-\mathbf{E}\left[R\left(X^{(j)}, X^{(k)}\right)\right]\right| \geq \epsilon\right) \leq e^{-c N}
$$

Proof Sketch. We note that $R\left(X^{(j)}, X^{(k)}\right)=\frac{1}{N}\left\langle X^{(j)}, X^{(k)}\right\rangle$ is $2 / \sqrt{N}$-Lipschitz on

$$
\left\{\left(X^{(j)}, X^{(k)}\right):\left\|X^{(j)}\right\|,\left\|X^{(k)}\right\| \leq \sqrt{N}\right\}
$$

Then, consider the following composition of functions

$$
\left(G_{N}^{(p)}, g_{0}, \ldots, g_{k-1}\right) \mapsto\left(A_{j}(\ldots), A_{k}(\ldots)\right) \mapsto R\left(A_{j}(\ldots), A_{k}(\ldots)\right)
$$

Because both functions are Lipschitz, then the composed function has Lipschitz constant that is the product of the Lipschitz constants of the two individual functions, which is $O_{k, \beta}\left(\frac{1}{\sqrt{N}}\right)$. The result then follows through Lipschitz concentration.

Corollary 3.3. Fix $k \in \mathbb{Z}_{+}$. Then for $c=c(k, \beta, \epsilon)$, we have

$$
\mathbb{P}\left(\left\lvert\, \frac{1}{N} H_{N}\left(X^{(k)}\right)-\mathbf{E}\left[\left.\frac{1}{N} H_{N}\left(X^{(k)}\right] \right\rvert\, \geq \epsilon\right) \leq e^{-c N}\right.\right.
$$

Proof Sketch. For C-bounded H_{N}, the function $X^{(k)} \mapsto \frac{1}{N} H_{N}\left(X^{(k)}\right)$ is C / \sqrt{N}-Lipschitz. Hence, $\left\{\frac{1}{N} H_{N}\left(X^{(k)}\right\}\right.$ has $O_{k, \beta}(1 / \sqrt{N})$ Lipschitz modification $E_{k}\left(G_{N}^{(p)}, g_{0}, \ldots, g_{k-1}\right)$. The result then follows through Lipschitz concentration.

For the next corollary, define the response $Y(k, j)=R\left(X^{(k)}, g_{j}\right)$ for $j<k$. This captures how the noise at previous time steps affects the future dynamics.

Corollary 3.4.

$$
\mathbb{P}(|Y(k, j)-\mathbf{E}[Y(k, j)]| \geq \epsilon) \leq e^{-c N}
$$

Proof Sketch. The idea is that $R\left(X^{(k)}, g_{j}\right)$ is $O(1 / \sqrt{N})$-Lipschitz on the set

$$
\hat{S}=\left\{\left(G_{N}^{(p)}, g_{0}, \ldots, g_{k-1}\right), \quad H_{N} \text { is } C \text {-bounded and }\left\|g_{j}\right\| \leq 2 \sqrt{N}\right\}
$$

Then the proof follows similarly to the previous ones.

4 Analytical Solutions for Spin Glasses

The paper [CK93] presents an analytical solution for a large range spin-glass model. In particular, for some version of Langevin Dynamics, they define $R(s, t)=\operatorname{plim}_{N \rightarrow \infty} R\left(X_{s}, X_{t}\right), Y(s, t)=\operatorname{plim}_{N \rightarrow \infty} R\left(X_{s}, B_{t}\right), s>t$. Then, these quantities satisfy the following set of differential equations:

$$
\begin{aligned}
& Y(s, s)=R(s, s)=1 \\
& \partial_{s} Y(s, t)=-\mu(s) Y(s, t)+\beta^{2} p(p-1) \int_{t}^{s} Y(u, t) Y(s, u) R(s, u)^{\rho-2} d u \\
& \partial_{s} R(s, t)=-\mu(s) R(s, t)+\beta^{2} p(p-1) \int_{0}^{s} R(u, t) Y(s, u) R(s, u)^{p-2} d u+\beta^{2} p \int_{0}^{t} R(s, u)^{p-1} Y(t, u) d u \\
& \mu(s)=\frac{1}{2}+\beta^{2} p^{2} \int_{0}^{s} R(s, u)^{p-1} Y(s, u) d u
\end{aligned}
$$

This was proven formally in [ADG04].

References

[ADG04] Gerard Ben Arous, Amir Dembo, and Alice Guionnet. Cugliandolo-kurchan equations for dynamics of spin-glasses, 2004. 4
[CK93] L. F. Cugliandolo and J. Kurchan. Analytical solution of the off-equilibrium dynamics of a longrange spin-glass model. Physical Review Letters, 71(1):173-176, July 1993. 4

