
Statistics 291: Lecture 12 (February 29, 2024)

Shattering I

Instructor: Mark Sellke

Scribe: Peter Luo

1 Logistics

HW 3 is posted. It will be due on March 22, but you currently have everything you need to work on the HW,
so the recommended due date is March 8. You should choose your project topic/group by March 8 as well.

2 Remark from last time

Last time we looked at the case of high temperature and nonzero external field. The procedure for bounding
FN (β) was as follows:

1. Find the global maximum x∗(q) on
p

qSN .

2. Argue by the second moment method on Band(x∗(q)) = {y ∈ SN : 〈y −x∗(q), x∗(q)〉 = 0}.

Recent work on various models in these conditions is linked on the course website:

• Sherrington-Kirkpatrick Model: [Bolthausen 18], [Brennecke-Yau 22]

• Ising Perceptron: [Ding-Sun 18]

• Linear Regression: [Qiu-Sen 22]

3 Shattering

Today’s topic is shattering. So far in this course, we have only this phenomenon qualitatively. We now give
a more precise definition. We use N B HDr (S) to denote the r -neighborhood of a set S ⊆RN .

Definition 3.1. Given a probability measure µβ on SN , a shattering decomposition with parameters
(c,r,b, s) (in our construction, s ≫ r ) is a family of disjoint connected subsets (“clusters”) C1, . . . ,CM ⊆ SN

such that

(a) Clusters have small probability: max1≤m≤M µβ(Cm) ≤ e−cN .

(b) Clusters have small diameter: max1≤m≤M diam(Cm) ≤ r
p

N .

(c) Clusters are surrounded by a bottleneck: µ(NBHDb
p

n(Cm)) ≤ (1+e−cN )µβ(Cm) for all m ≤ M .
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(d) Separation: min m ̸=m′
xm∈Cm
x′

m∈Cm′

∥∥xm −x ′
m

∥∥≥ s
p

N .

(e) Clusters carry approximately all Gibbs mass: µβ
(⋃M

m=1 Cm
)≥ 1−e−cN .

Note that by 1 and 5, the total number of clusters is exponentially large: M ≥ ec ′N .

Definition 3.2. A Gibbs measure µβ(HN ,p ) shatters if it admits, with high probability, a shattering decom-
position with (c,r,b, s) not depending on N .

Theorem 3.3 (Alaoui-Montanari-Sellke 23). If p ≥ p0 is large, and β ∈ [C ,βcrit(p)), then µβ(HN ,p ) shatters.

The critical inverse temperature βcrit(p) is defined by EFN (β)
N→∞→ β2

2 ⇐⇒ β ≤ βcrit(p) ≈ (1+o(1))
√

log p
and C = 106.

We will prove this for β ∈
[

C , (1+o(1))
√

log p
2

)
. First, we develop a proposition.

Proposition 3.4. If β≤
√( 1

2 −ε
)

log p then E[ZN (β)2] ≤ exp(Nβ2 +o(N )) (which implies FN (β) →β2/2).

Proof. Recall that

1

N
logE[ZN (β)2] = max

−1≤R≤1

(
β2(1+Rp )

1

2
log(1−R2)

)
?≤Φ(0) =β2.

The inequality holds if β2Rp + log(1−R2)
2 ≤ 0 for all R. It turns out that the worst case is R ≈ 1− 1

p log p =⇒
β2 ≈ log p

2 .

We expect shattering to happen when β ∈ (βd (p),βcrit(p)), where βd (p) =
√

(p−1)p−1

p(p−2)p−2 is the “dynamic

threshold” (above which slow mixing/hardness of sampling should appear), andβcrit(p) is the “static thresh-
old” above which replica symmetry-breaking (RSB) appears.

Proposition 3.5. Shattering implies exponentially slow mixing of Langevin dynamics due to bottlenecks.

This is explored more on HW 3. Physicists have the following natural belief:

Proposition 3.6. No shattering implies fast mixing from a random start.

Theorem 3.7 (Gamarnik-Jagannath-Kizildag 23). For Ising p-spin models, if β ∈ (√
log2,

√
2log2

)
, and p

is large depending on β then a similar shattering behavior occurs with high probability.

We now prove Theorem 3.3.

Proof of Theorem 3.3. We will prove this for β ∈
[

c, (1+o(1))
√

log p
2

)
. The idea is to use contiguity at expo-

nential scale, which was conveniently on HW 2. This idea originates from [Achlioptas-Coja Oghlan 2008]
about the k-SAT problem. We first define two distributions on (HN ,p ,σ), as on HW 2.

• The “null” model’s is given by PN : First, HN ,p is a pure p-spin model, and then σ∼µβ = e
βHN ,p(σ)

ZN (β) dµ

• The “planted” model is given by QN : First sample σ ∼ Unif(SN ), and then let HN ,p = ˜HN ,p +
β

N (p−1)/2σ
⊗p , where H̃N ,p is an independent p-spin Hamiltonian.
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Note that

LawQN (HN ,p |σ) ∝ exp

(
−1

2

∥∥∥∥G(p)
N − β

N (p−1)/2
σ⊗p

∥∥∥∥2

2

)
∝ exp

−
∥∥∥G(p)

N

∥∥∥2

2

2
+βHN ,p (σ)

 .

From HW, the Radon-Nikodym derivative is

dQN (HN ,p ,σ)

dPN (HN ,p ,σ)
= ZN (β)

EZN (β)
.

For β≤β2, then QN
PN

= eo(N ) with exponentially good PN probability. This implies PN ◁QN . In other words
QN -exponentially likely events are PN -exponentially likely.

We will use the following proposition, which we will prove next time. For now, we state it and assume it
is true.

Proposition 3.8. Suppose p ≥ p0 and β ∈ [C ,β2). Then for N large,

d

d q
EQN Fβ(qσ) ≥ β2p

10
> 0

for all q ∈
[

1− 1
2p ,1− 100

βp

]
, where

Fβ(Band(qσ)) = 1

N
log

∫
NBHD1/N (Band(qσ))

eβHN ,p (x) d x.

Definition 3.9. The quantity Fβ(Band(qσ)) is known as the Franz-Parisi potential.

Graphing this potential, we see that the function strictly decreases for β≤ 1− 1
2p , but then increases in

the range
[

1− 1
2p ,1− 100

βp ]
]

.

The intuition here is that d
d q EFβ(Band(qσ)) is dominated by βσ⊗p

N (p−1)/2 , which implies

d

d q
(β2q p ) =β2pq p−1,

which is large for q = 1− O(1)
p .

Returning back to our proof, we let ∆=
p

p
100 . In PN take σ∼µβ.

Claim 3.10. With probability ≥ 1−e−cN ,

µβ

(
Ball10∆

p
N (σ)

)
≤ (

1+e−cN )
µβ

(
Ball∆

p
N (σ)

)
≈√

2/p.

This claim is immediate by contiguity at exponential scale, and our proposition. Next, let

Sgood =
{

x ∈ SN :µβ
(
Ball10∆

p
N (x)

)
≤ (

1+e−cN )
µβ

(
Ball∆

p
N (x)

)}
≤ exp

(
Nβ2

2
− cN

)
.

Then,
EHN ,pµβ(Sgood) ≥ 1−e−cN .

Because our second moment computation succeeded,Φ(q) <β2 for all q ∈ (0,1], while ZN (β) = eNβ2/2+o(N )

with high probability. Then

Eσ∼µβ [Zβ(Band(qσ)] = 1

ZN (β)

∫
SN×SN

eβ(HN ,p (σ)+HN ,p (σ′) · 1{R(σ,σ′)≈q dσdσ′
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≤ exp(NΦ(q)+Nε)

≤ exp(Nβ2 −Nε),

where the inequality follows Markov with high probability. But, if x , x ′ ∈ Sgood, then∥∥x −x ′∥∥ ̸∈
[

2∆
p

N ,8∆
p

N
]

.

Therefore, we can view the condition
∥∥x −x ′∥∥≤ 2∆

p
N as an equivalence relation on Sgood, so it induces a

partition A1, . . . , Am with Sgood =⋃m
i=1 Ai . Take Cm = Ball2∆

p
N (xm) for arbitrary xm ∈ Am . Note that Cm are

spherical caps. We now check all of the shattering conditions:

1. Clusters have small probability by definition of Sgood

2. Clusters have small diameter, also by definition of Sgood.

3. Clusters are surrounded by bottlenecks by definition

4. We have separation because
∥∥xm −x ′

m

∥∥≥ 8∆
p

N .

5. Since
⋃m

i=1 Cm ⊇ Sgood and Sgood covers µβ, then clusters cover µβ.
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