Statistics 291: Lecture 13 (March 3rd, 2024) Shattering II

Instructor: Mark Sellke
Scribe: Yufan Li

1 Non-monotonicity of Franz-Parisi potential

Recall the Franz-Parisi potential

$$
\mathscr{F}_{\beta}(\operatorname{Band}(q \sigma))=\frac{1}{N} \log \int_{\mathrm{NBHD}_{1 / N}(\operatorname{Band}(q \sigma))} e^{\beta H_{N, p}(x)} d x
$$

where $\operatorname{NBHD}_{\mathrm{r}}(S)$ denotes the r-neighborhood of a set S.
We will prove the following non-monotonicity result from last time.
Proposition 1.1. There exists some constant $p_{0}, \tilde{C}, \bar{C}$ such that for $p \geq p_{0}, \beta \in[\tilde{C}, \sqrt{(1 / 2-o(1)) \log p}), \tilde{C} \gg$ $\bar{C} \gg 1$ such that

$$
\frac{d}{d q} \mathbb{E}^{\mathbb{Q}_{N} \mathscr{F}_{\beta}(\operatorname{Band}(q \sigma)) \geq \frac{\beta^{2} p}{10}>0, \quad \forall q \in\left(1-\frac{1}{2 p}, 1-\frac{\bar{C}}{\beta p}\right) . . ~ . ~}
$$

2 Decompose the potential

Recall \mathbb{Q} denotes measure of a planted model with Hamiltonian induced by disorder $G=\frac{\beta}{N^{\frac{p-1}{2}}} \sigma^{\otimes p}+W$ where σ is a sample uniformly drawn from sphere S_{N} and W is an independent Gaussian tensor. In the planted model, an exact formula for $\mathbb{E}^{\mathbb{Q}_{N}} F_{\beta}(\operatorname{Band}(q \sigma))$ is available. To describe the this formula, we first define mixture functions

$$
\xi(R)=R^{p}, \quad \xi_{q}(R)=\left(q^{2}+\left(1-q^{2}\right) R\right)^{p}-q^{2 p} .
$$

and the general centered Gaussian process H_{N} with covariance

$$
\mathbb{E}\left[H_{N}(x) H_{N}(\tilde{x})\right]=N \xi_{q}(\langle x, \tilde{x}\rangle / N)
$$

and the associated free energy

$$
F_{\beta}\left(\xi_{q}\right):=\lim _{N \rightarrow \infty} \frac{1}{N} \mathbb{E} \log \int e^{\beta H_{N}(\boldsymbol{\sigma})} \mathrm{d} \mu_{0}(\boldsymbol{\sigma}) .
$$

Under measure \mathbb{Q}, we may decompose Franz-Parisi potential to the following

$$
\begin{equation*}
\mathrm{F}_{\beta}(\operatorname{Band}(q \sigma)) \stackrel{d}{=} \underbrace{F_{\beta}\left(\xi_{q}\right)}_{\text {effective covariance on band }}+\underbrace{\beta^{2} q^{p}}_{\text {spike }}+\underbrace{\frac{1}{2} \log \left(1-q^{2}\right)}_{\text {volume }}+O\left(N^{-1 / 2}\right) \tag{1}
\end{equation*}
$$

To obtain this relation we write

$$
\mathscr{F}_{\beta}(\operatorname{Band}(q \sigma))=\frac{\beta}{N} H_{N, p}(q \sigma)+\frac{1}{N} \log \int_{\mathrm{NBHD}_{1 / \mathrm{N}}(\operatorname{Band}(\mathrm{q} \sigma))} e^{\beta\left(H_{N, p}(x)-H_{N, p}(q \sigma)\right)} d x
$$

where the first term satisfies

$$
\frac{\beta}{N} H_{N, p}(q \sigma)=\beta^{2} q^{p}+\frac{\beta}{N^{(p+1) / 2}}\left\langle W, \sigma^{\otimes p}\right\rangle=\beta^{2} q^{p}+O\left(N^{-1 / 2}\right) .
$$

and second term give rises to the $F_{\beta}\left(\xi_{q}\right)$ term via effective covariance arguments covered before (or see Proposition 3.7 in Mark's paper "Shattering in Pure Spherical Spin Glasses").

The idea is that the positivity of the Franz-Parisi potential derivative will come from the spike component and the analysis boils down to controlling derivative of $F_{\beta}\left(\xi_{q}\right)$, free energy of a mixed-p spin glass with mixture function ξ_{q}. We write Hamiltonian of this mixed-p spin glass as

$$
H_{N}(x)=\sum_{j=1}^{p} \gamma_{j} H_{N, j}(x)
$$

where $H_{N, j}(\sigma)=\frac{1}{N^{(j-1) / 2}} \sum_{i_{1}, \ldots, i_{p}=1}^{N} g_{i_{1} \ldots i_{p}} \sigma_{i_{1}} \cdots \sigma_{i_{p}}$.

3 Take derivatives

Lemma 3.1. For any N, β, and $H_{N}(x)=\sum_{j=1}^{p} \gamma_{j} H_{N, j}(x)$, we have that for $x, \tilde{x}_{\sim}^{i d} \mu_{\beta}\left(H_{N}\right)$. Then,

$$
\frac{d}{d \gamma_{j}} \mathbb{E} F_{\beta}\left(H_{N}\right)=2 \beta^{2} / j \cdot\left(1-\mathbb{E}\left[R(x, \tilde{x})^{j}\right]\right) .
$$

Proof Sketch. For fixed disorder,

$$
\begin{aligned}
\mathbb{E} \frac{d}{d \gamma_{j}} F_{\beta}\left(H_{N}\right)=\mathbb{E} & \frac{1}{N} \frac{\frac{d}{d \gamma_{j}} \int_{S_{N}} e^{\beta H_{N}(x)} d x}{Z_{\beta}\left(H_{N}\right)}=\frac{1}{N} \mathbb{E} \frac{\int_{S_{N}} \beta H_{N, j}(x) \exp \left(\beta H_{N}(x)\right) d x}{Z_{\beta}\left(H_{N}\right)} \\
& =\beta \sum_{i_{1}, \ldots, i_{p}=1}^{N} \mathbb{E} g_{i_{1}, \ldots, i_{p}} \frac{\int_{S_{N}} x_{i_{1}} \ldots x_{i_{p}} e^{\beta H_{N}(x)} d x}{N^{(p+1) / 2} Z_{\beta}\left(H_{N}\right)} .
\end{aligned}
$$

The result then follows from Gaussian integration by parts similarly to previous lectures.
A simple calculation yields

$$
\frac{\mathrm{d}}{\mathrm{~d} q} \xi_{q}(x)=2 p q\left((1-x)\left(q^{2}+\left(1-q^{2}\right) x\right)^{p-1}-q^{2 p-2}\right) .
$$

The following Corollary follows from this, the Lemma above and chain rule.
Corollary 3.2. For $x, \tilde{x}^{i i d} \mu_{\beta}\left(H_{N}\right)$

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} q} F_{\beta}\left(\xi_{q}\right) & =\frac{\beta^{2}}{2} \cdot \mathbb{E}\left[\frac{\mathrm{~d}}{\mathrm{~d} q}\left(\xi_{q}(1)-\xi_{q}(R(x, \tilde{x}))\right)\right] \\
& =-\beta^{2} p q \cdot \mathbb{E}\left[(1-R(x, \tilde{x}))\left(q^{2}+\left(1-q^{2}\right) R(x, \tilde{x})\right)^{p-1}\right] \\
\frac{\mathrm{d}}{\mathrm{~d} \beta} F_{\beta}\left(\xi_{q}\right) & =\beta \cdot \mathbb{E}\left[\xi_{q}(1)-\xi_{q}(R(x, \tilde{x}))\right] \geq \beta \cdot \mathbb{E}\left[(1-R(x, \tilde{x})) \xi_{q}^{\prime}(R(x, \tilde{x}))\right] \\
& =\beta p\left(1-q^{2}\right) \cdot \mathbb{E}\left[(1-R(x, \tilde{x}))\left(q^{2}+\left(1-q^{2}\right) R(x, \tilde{x})\right)^{p-1}\right] .
\end{aligned}
$$

4 Two tricks

We will employ two tricks

- Bound $\frac{\mathrm{d}}{\mathrm{d} q} F_{\beta}\left(\xi_{q}\right)$ by $\frac{\mathrm{d}}{\mathrm{d} \beta} F_{\beta}\left(\xi_{q}\right)$
- Bound $\frac{\mathrm{d}}{\mathrm{d} \beta} F_{\beta}\left(\xi_{q}\right)$ by ground state energy.

Concretely,

$$
\frac{\mathrm{d}}{\mathrm{~d} q} F_{\beta}\left(\xi_{q}\right) \geq-\frac{\beta q}{1-q^{2}} \frac{\mathrm{~d}}{\mathrm{~d} \beta} F_{\beta}\left(\xi_{q}\right) \geq-\frac{\beta q}{1-q^{2}} \mathbb{E} \max _{x \in S_{N}} \frac{H_{N}(x)}{N}
$$

Finally, recall that we showed via chaining argument

$$
\mathbb{E}_{x \in S_{N}} H_{N, j}(x) / N \leq O(\sqrt{j \log j})
$$

and by Binomial expansion, using basic inequality $\binom{p}{j} \leq p^{j} / j!, p\left(1-q^{2}\right) \leq 1($ since $1 \geq 1-q / 2 p)$,

$$
\xi_{q}(R)=\sum_{j=1}^{p}\binom{p}{j}\left(1-q^{2}\right)^{j} q^{2(N-j)} R^{j} \leq \sum_{j=1}^{p} \frac{R^{j}}{j}
$$

Combining these, we conclude

$$
\mathbb{E}_{x \in S_{N}} H_{N}(x) / N \leq C \sum_{j=1}^{p} \frac{\sqrt{j \log j}}{j!} \leq C^{\prime}
$$

where C^{\prime} is some absolute constant. For $1-(2 p)^{-1}<q \leq 1 \leq C \beta$, we conclude from (1) and the above that

$$
\frac{\mathrm{d}}{\mathrm{~d} q} \mathscr{F}_{\beta}(\operatorname{Band}(q \sigma)) \geq-\frac{(C \beta+1) q}{1-q^{2}}+\beta^{2} p q^{p-1}>-\frac{C \beta}{1-q}+\frac{\beta^{2} p}{2} .
$$

By inspection, the right-most expression is positive whenever

$$
1-\frac{1}{2 p} \leq q \leq 1-\frac{2 C}{\beta p}, \quad \max \left\{C^{-1}, 4 C\right\} \leq \beta
$$

This concludes the proof.

