
Statistics 291: Lecture 13 (March 3rd, 2024)

Shattering II

Instructor: Mark Sellke

Scribe: Yufan Li

1 Non-monotonicity of Franz-Parisi potential

Recall the Franz-Parisi potential

Fβ(Band(qσ)) = 1

N
log

∫
NBHD1/N (Band(qσ))

eβHN ,p (x)d x

where NBHDr(S) denotes the r -neighborhood of a set S.
We will prove the following non-monotonicity result from last time.

Proposition 1.1. There exists some constant p0,C̃ ,C̄ such that for p ≥ p0, β ∈ [C̃ ,
√

(1/2−o(1)) log p), C̃ ≫
C̄ ≫ 1 such that

d

d q
EQN Fβ(Band(qσ)) ≥ β2p

10
> 0, ∀q ∈

(
1− 1

2p
,1− C̄

βp

)
.

2 Decompose the potential

Recall Q denotes measure of a planted model with Hamiltonian induced by disorder G = β

N
p−1

2

σ⊗p +W

where σ is a sample uniformly drawn from sphere SN and W is an independent Gaussian tensor. In the
planted model, an exact formula for EQN Fβ(Band(qσ)) is available. To describe the this formula, we first
define mixture functions

ξ(R) = Rp , ξq (R) = (
q2 + (

1−q2)R
)p −q2p .

and the general centered Gaussian process HN with covariance

E [HN (x) HN (x̃)] = Nξq (〈x, x̃〉/N )

and the associated free energy

Fβ(ξq ) := lim
N→∞

1

N
E log

∫
eβHN (σ)dµ0(σ).

Under measure Q, we may decompose Franz-Parisi potential to the following

Fβ(Band(qσ))
d= Fβ

(
ξq

)︸ ︷︷ ︸
effective covariance on band

+β2q p︸ ︷︷ ︸
spike

+ 1

2
log

(
1−q2)︸ ︷︷ ︸

volume

+O(N−1/2). (1)
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To obtain this relation we write

Fβ(Band(qσ)) = β

N
HN ,p (qσ)+ 1

N
log

∫
NBHD1/N(Band(qσ))

eβ(HN ,p (x)−HN ,p (qσ))d x

where the first term satisfies

β

N
HN ,p (qσ) =β2q p + β

N (p+1)/2

〈
W ,σ⊗p〉=β2q p +O(N−1/2).

and second term give rises to the Fβ(ξq ) term via effective covariance arguments covered before (or see
Proposition 3.7 in Mark’s paper “Shattering in Pure Spherical Spin Glasses”).

The idea is that the positivity of the Franz-Parisi potential derivative will come from the spike compo-
nent and the analysis boils down to controlling derivative of Fβ(ξq ), free energy of a mixed-p spin glass
with mixture function ξq . We write Hamiltonian of this mixed-p spin glass as

HN (x) =
p∑

j=1
γ j HN , j (x)

where HN , j (σ) = 1
N ( j−1)/2

∑N
i1,...,ip=1 gi1...ipσi1 · · ·σip .

3 Take derivatives

Lemma 3.1. For any N ,β, and HN (x) =∑p
j=1γ j HN , j (x), we have that for x, x̃ i i d∼ µβ(HN ). Then,

d

dγ j
EFβ(HN ) = 2β2/ j ·

(
1−E[R(x, x̃) j ]

)
.

Proof Sketch. For fixed disorder,

E
d

dγ j
Fβ(HN ) = E 1

N

d
dγ j

∫
SN

eβHN (x)d x

Zβ(HN )
= 1

N
E

∫
SN

βHN , j (x)exp
(
βHN (x)

)
d x

Zβ(HN )

=β
N∑

i1,...,ip=1
Egi1,...,ip

∫
SN

xi1 ...xip eβHN (x)d x

N (p+1)/2Zβ(HN )
.

The result then follows from Gaussian integration by parts similarly to previous lectures.

A simple calculation yields

d

dq
ξq (x) = 2pq

(
(1−x)

(
q2 + (

1−q2)x
)p−1 −q2p−2

)
.

The following Corollary follows from this, the Lemma above and chain rule.

Corollary 3.2. For x, x̃ i i d∼ µβ(HN )

d

dq
Fβ

(
ξq

)= β2

2
·E

[
d

dq

(
ξq (1)−ξq (R(x, x̃))

)]
=−β2pq ·E

[
(1−R(x, x̃))

(
q2 + (

1−q2)R(x, x̃)
)p−1

]
.

d

dβ
Fβ

(
ξq

)=β ·E[
ξq (1)−ξq (R(x, x̃))

]≥β ·E
[

(1−R(x, x̃))ξ′q (R(x, x̃))
]

=βp(1−q2) ·E
[

(1−R(x, x̃))
(
q2 + (

1−q2)R(x, x̃)
)p−1

]
.
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4 Two tricks

We will employ two tricks

• Bound d
dq Fβ

(
ξq

)
by d

dβFβ

(
ξq

)
• Bound d

dβFβ

(
ξq

)
by ground state energy.

Concretely,
d

dq
Fβ

(
ξq

)≥− βq

1−q2

d

dβ
Fβ

(
ξq

)≥− βq

1−q2 Emax
x∈SN

HN (x)

N
.

Finally, recall that we showed via chaining argument

Emax
x∈SN

HN , j (x)/N ≤O
(√

j log j
)

and by Binomial expansion, using basic inequality
(p

j

)≤ p j / j !, p(1−q2) ≤ 1 (since 1 ≥ 1−q/2p),

ξq (R) =
p∑

j=1

(
p

j

)
(1−q2) j q2(N− j )R j ≤

p∑
j=1

R j

j
.

Combining these, we conclude

Emax
x∈SN

HN (x)/N ≤C
p∑

j=1

√
j log j

j !
≤C ′

where C ′ is some absolute constant. For 1− (2p)−1 < q ≤ 1 ≤Cβ, we conclude from (1) and the above that

d

dq
Fβ(Band(qσ)) ≥− (Cβ+1)q

1−q2 +β2pq p−1 >− Cβ

1−q
+ β2p

2
.

By inspection, the right-most expression is positive whenever

1− 1

2p
≤ q ≤ 1− 2C

βp
, max

{
C−1,4C

}≤β.

This concludes the proof.
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