
Statistics 291: Lecture 14 (March 7, 2024)

Shattering III

Instructor: Mark Sellke

Scribe: Alan Chung

1 Introduction

Today, we show that shattering implies that there cannot exist a stable sampling algorithm. A sampling
algorithm A is defined as a function

A(HN ,p ,ω) →σ ∈RN (or SN ),

where ω is some randomness independent from the Hamiltonian HN ,p . In the case of Langevin Dynamics,
this randomness would be the initialization and Brownian motion (x0,B[0,T ]). Denote the distribution of
samples that A outputs, conditional on the Hamiltonian, as Law(A;HN,p) = Law(A(HN,p,ω))|HN,p).

Definition 1.1 (δ-approximate sampler). We say that A is a δ-approximate sample for µβ (which, in our
contexts, will be a gibbs measure), if

EHN ,p

[
1p
N

W2(Law(A;HN,p),µβ)

]
≤
p
δ.

Here, the expectation is taken over the randomness in the hamiltonian.

Essentially, this is saying is that the Wasserstein distance is small on average for most hamiltonians,
though potentially is large for some set of "bad" hamiltonians. Note that this is a relatively weak require-
ment for a sampling algorithm, i.e. it is much less stringent than demanding small total variation error.

2 Stability

In this section, we discuss what it means for an algorithm to be stable and consider a few examples.
Let HN ,p and H̃N ,p be two i.i.d. p-spin Hamiltonians. Then, define the perturbation

Hϵ
N ,p :=p

1−ϵHN ,p +p
ϵH̃N ,p .

We let µβ be the Gibbs measure for HN ,p and µϵ
β

be the Gibbs measure for Hϵ
N ,p .

Definition 2.1 (Stable). We say that a sequence of algorithms (AN ) is stable if

lim
ϵ↓0

limsup
N→∞

EHN ,p

[
1p
N

W2(Law(A;HN,p),Law(A,HN,p)

]
= 0.
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Definition 2.2 (Strongly Stable). We say that a sequence of algorithms (AN ) is strongly stable if

lim
ϵ↓0

limsup
N→∞

EHN ,p ,ω

[
1p
N

∥∥A(HN ,p ,ω)− A(HN ,p ,ω)
∥∥]

= 0

Proposition 2.3. Let xT be the output of spherical Langevin Dynamics. Then xT is strongly stable for any
fixed T .

Proof. We have

d(xt −xϵt ) =β
(
∇sph HN ,p (xt )−∇sph Hϵ

N ,p (xϵt )
)

d t − N −1

N

(
xt −xϵt

)
d t +p

2
(
P⊥

xt
−P⊥

xϵt

)
dBt

If HN ,p and H̃N ,p are C -bounded, then Ito’s formula yields

d

d t
E

[
1

N
∥xt −xϵt ∥2

2

]
︸ ︷︷ ︸

f (t )

≤C ′E
[

1

N
∥xt −xϵt ∥2

2 +ϵ
]

.

For this f defined above, note f (0) = 0. Then, Gronwell’s lemma yields

f ′(t ) ≤C ′( f (t )+ϵ) ⇒ f (t ) ≤C ′ϵteC ′t .

This suffices for the proof, since this bound is N -independent.

Corollary 2.4. For β≤β0(p), we have that

lim
ϵ↓0

limsup
N→∞

1p
N

W2(µβ,µϵβ) = 0.

In light of this, we say that µβ is stable.

Proof. Consider

W2(µβ,µϵβ) ≤W2(µβ),Law(xT))+W2(Law(xT),Law(xϵT))+W2(Law(xϵT),µϵβ).

We have seen that the first and third terms decay at the rate Ce−T /c
p

N with high probability. Then, we’ve
bounded the second term by F (t )

p
ϵN . Then, we can conclude the proof by taking T large, and ϵ small

(depending on T ). (Informally, ϵ≪ 1
T ≪ 1.)

In fact, what we’ve shown is that if there exists a stable δ-approximate sampler for every δ > 0, then
µβ is stable (by taking ϵ≪ δ≪ 1). We can also consider the contrapositive, that is, if µβ is unstable, then
there does not exist a stable δ-approximation for some δ> 0. We will show that shattering implies that µβ
is unstable, which will then imply that there does not exist a stable sampler.

Theorem 2.5. Let β ∈
[
C ,

√( 1
2 −o(1)

)
log(p)

]
(so that shattering occurs), and let p be odd (this is just for

convenience; we show how to extend this to all p below). Then,

liminf
ϵ↓0

liminf
N→∞

E
[

1p
N

E[W2(µβ,µϵβ)]

]
> 0.

Let {Cm}M
m=1 denote the set of shattering clusters for HN ,p . The idea of the proof is the following two

steps:

A) If ϵ is small, then {Cm}M
m=1 is also a valid shattering decomposition for µϵ

β
.

B) The weights of the clusters change drastically, in that µβ(Cm) and µϵ
β

(Cm) are completely different.
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2.1 Proving A)

Suppose that HN ,p and H̃N ,p are C -bounded. Then ∥HN ,p −Hϵ
N ,p∥ ≤O(C N

p
ϵ). This implies that for every

S ⊆ SN , we have

e−O(βC N
p
ϵ) ≤ µβ(S)

µϵ
β

(S)
≤ eO(βC N

p
ϵ).

This implies that if ϵ≪ c
βC , the same shattering decomposition is valid for µϵ

β
. (Just check the defining

properties.)

2.2 Proving B)

Next, suppose we view the clusters as point masses, so that we are looking at a distribution over a discrete
set of objects. In particular, supposing that there are M clusters, and that we label the clusters {1,2, . . . , M },
define

µ̂β(m) = µβ(Cm)∑M
m=1µβ(Cm)

, µ̂ϵβ(m) =
µϵ
β

(Cm)∑M
m=1µ

ϵ
β

(Cm)
. (1)

We now state the following lemma. Here s is the separation parameter between clusters in the shattering
decomposition, and the last exponential term captures the total mass not included in the clusters.

Lemma 2.6.

E
[

1

N
W2(µβ,µϵβ)2

]
≥ s2E

[
dTV(µ̂β, µ̂ϵβ)

]
−e−cN /10.

Proof Outline. Note that in (1), the denominators are each at least 1−e−cN /5 by construction. Aside from
this tiny error, any coupling between µβ and µϵ

β
directly induces a coupling between µ̂β and µ̂ϵ

β
, and

thinking about this coupling gives the bound.

We now try to lower bound E
[

dTV(µ̂β, µ̂ϵ
β

)
]

. We would like to show something of the form

P
(
dTV(µ̂β, µ̂ϵβ) ≥ 0.001)

) ?≥ 0.01.

If this is indeed true, then observe that

dTV(µ̂β, µ̂ϵβ) = 1

2

∑
m

∣∣∣µ̂β(m)− µ̂ϵβ(m)
∣∣∣= 1

2
Em∼µ̂β

[∣∣∣∣∣ µ̂
ϵ
β

(m)

µ̂β(m)
−1

∣∣∣∣∣
]

.

By the Markov inequality, we conclude that if dTV(µ̂β, µ̂ϵ
β

) ≤ 0.001, then

Pm∼µ̂β

(
µ̂ϵ
β

(m)

µ̂β(m)
∈ [0.9,1.09]

)
≥ 0.9 ⇒Pm1,m2∼µ̂β

 µ̂
ϵ(m1)
β

µ̂ϵ
β

(m2)
∈ [0.8,1.2]

µ̂β(m1)

µ̂β(m2)

≥ 0.8

It suffices to argue that this above probability inequality is false, because then dTV(µ̂β, µ̂ϵ
β

) > 0.001, which

would suffice for the proof.
The final remaining point is the following anti-concentration statement for probability ratios under µ̂ϵ

β
.

Lemma 2.7. Given HN ,p (with a valid shattering decomposition) and distinct clusters m1 ̸= m2 , and any
a,b ∈R, we have

PH̃N ,p

(
log

(
µ̂ϵ
β

(m1)

µ̂ϵ
β

(m2)

)
∈ [a,b]

∣∣∣HN ,p ,G̃ (p)
N

)
≤O

(
b −ap

Nϵ

)
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Noting that the clusters have a separation of s
p

N and are spherical caps, we can find a vector v with
norm ∥v∥ =p

N such that for any x1 ∈Cm1 and x2 ∈Cm2 :

〈x1, v〉 ≥ 〈x2, v〉+ s
p

N
p odd⇒ 〈x1, v〉p ≥ 〈x2, v〉p +

(
sN

2

)p

. (2)

(Recall that p is odd in the statement of Theorem 2.5.)

The goal is to show that log
(
µ̂ϵ
β

(m1)/µ̂ϵ
β

(m2)
)

anti-concentrates. The main idea is to show that its

derivative with respect to the underlying (gaussian) randomness is very large. This will imply that the
above quantity is a function of a gaussian whose derivative grows very large, which would imply anticon-
centration.

Let G̃ (p)
N be the p-tensor corresponding to H̃ p

N . We can write

G̃ (p)
N = Z v⊗p +Ǧ (p)

N

such that 〈v⊗p ,Ǧ (p)
N 〉 = 0, i.e., we consider the decomposition of the tensor G̃ (p)

N in the direction v .
Hence H̃N ,p (x) = Z̃ 〈v, x〉p + HN ,p (x) for some Gaussian random variable Z̃ . Rescaling, we can write
g = Z̃ ·N p−1/2 ∼N (0,1), noting that H̃N ,p (v) ∼N (0, N ) ⇒ Z̃ ∼N (0, N 1−2p ). Now defining,

Y (Z̃ ) = log

(
µ̂ϵ
β

(m1)

µ̂ϵ
β

(m2)

)
,

it follows from (2) that

Y ′(Z̃ ) ≥ βsp N ppϵ
2p , ∀Z̃ ∈R.

This implies that dY
d g ≥ βsp

2p

p
Nϵ. Hence, this function Y is a function of a standard Gaussian, but the

derivative of Y grows arbitrarily large, which implies anticoncentration.
In the above, we assumed that p is odd so that an inequality was preserved by monotonicity. When p is

even, one can slightly "redefine" the shattering by pairing up antipodal clusters on the sphere, since the
Gibbs measure µβ is invariant under this symmetry. Then in Lemma 2.7, one requires that m1 ̸= m2 and
that the clusters are not antipodal, and needs to be slightly more ad-hoc to construct a good direction v .

To conclude these notes, we relate the content in this paper to some notions from other papers. In
particular, [AMS23] calls the condition

liminf
ϵ↓0

liminf
N→∞

W2(µβ,µϵβ) > 0

transport disorder chaos. A theorem by Chatterjee proves that for general mixed p-spin models without
external field (at low or high temperature), there is "disorder chaos". Namely if x ∼ µβ and xϵ ∼ µϵ

β
are

independent Gibbs samples, then
plimN→∞R(x,xϵ) = 0.

In the RSB setting, whenβ>βc , then it is not true: for x, x ′ I I D∼ µβ, we have E[R(x, x ′)2] ̸→ 0. In the RSB phase
of low temperature, disorder chaos implies transport chaos, which implies stable sampling is impossible
under RSB. However in the RS phase, transport disorder chaos is a more informative notion (and might or
might not hold depending on β).
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