
Statistics 291: Lecture 15 (March 19, 2024)

Subag’s Optimization Algorithm and Ultrametricity

Instructor: Mark Sellke

Scribe: Kenny Gu

1 Introduction

So far, we’ve primarily been looking at spherical spin glasses of the form HN ,p (x) = N−(p−1)/2〈G (p)
N , x⊗p〉.

We will now begin to explore algorithms for optimizing these objects. Next lecture, we will also explore
optimization techniques for large independent sets on sparse random graphs.

Earlier in the course, the Kac-Rice formula suggested E∞ = 2
√

p−1
p as a natural threshold for optimiza-

tion problems. Recall that

• If E < E∞, then E
∣∣LocalMaxSN (HN ,p ; (−∞,E ])

∣∣≤ e−cN 2

• If E > E∞, then most critical points are local maxima in expectation. That is,

E

∣∣∣∣Crt
SN

(HN ,p ; [E ,∞))

∣∣∣∣= (1+o(1))E

∣∣∣∣LocalMax
SN

(HN ,p ; [E ,∞))

∣∣∣∣
To derive this threshold, we computed the following: conditioning on ∇sphHN ,p (x) = 0 and HN ,p (x)/N = E ,

we have ∇2
sphHN ,p (x)

d= √
p(p −1)GOE(N − 1)− pE IN−1. By the Wigner semicircle law calculations, the

distributions looked like:

E = E E > E E < E

In the case of E < E∞, we see that we are unlikely to have a local maximum, while for E > E∞, we probably
have a local maximum.

We might guess that gradient flow reaches this threshold E∞, and then gets stuck in one of the local
maxima that have started to appear. This is still an open question though there has been progress. Note
that in one direction, gradient flow could get stuck in a saddle, or regions with very small gradient. Or it
could avoid local maxima altogether and outperform E∞. Instead, we will explore a somewhat strange
algorithm today that achieves E∞ without getting stuck.
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2 Greedy Hessian ascent

Greedy Hessian ascent, as introduced in Subag (2018), works by (1) initializing x0 at the origin and (2)
taking orthogonal steps on the tangent space of subspheres at each step in a greedy way until we reach SN .

More formally, we fix some δ> 0 small and let m = 1/δ ∈Z+. For k = 0,1, . . . ,m −1:

(1) Let vk be the top unit eigenvector of ∇2
tanHN ,p (xk ) = P⊥

xk∇2HN ,p (xk )P⊥
xk such that vk ⊥ xk .

(2) Set xk+1 = xk ±p
Nδvk , choosing ± such that 〈xk+1 −xk ,∇sphHN ,p (xk )〉 ≥ 0.

Theorem 2.1. For any ϵ> 0, limδ→0 limN→∞P
(
HN ,p (xm)/N ≥ 2

√
p−1

p −ϵ
)
= 1.

Proof. (incorrect cheating proof) In our first attempt at a proof, we’ll cheat a little bit: we’ll see afterward
why this “proof” is not correct and propose an alternative correct proof.

Recall that for any fixed x ∈ SN , ∇2
tanHN ,p (x)

d=
√

p(p −1) N−1
N GOE(N −1). Similarly, for ∥x∥ = √

N q ,

∇2
tanHN ,p (x)

d=
√

p(p −1)q p−2GOE(N − 1), which implies λmax(∇2
tanHN ,p (xk )) ≈ 2

√
p(p −1)(kδ)p−2. We

can then Taylor expand

HN ,p (xk+1) = HN ,p (xk )+〈∇sphHN ,p (xk ), xk+1 −xk〉+ 1

2
〈∇2

sphHN ,p (xk ), (xk+1 −xk )⊗2〉

+O

(
∥xk+1 −xk∥3 · sup

∥y∥≤pN

∥∇3HN ,p (y)∥op

)

where we have

• 〈∇sphHN ,p (xk ), xk+1 −xk〉 ≥ 0 by construction

• 1
2 〈∇2

sphHN ,p (xk ), (xk+1 −xk )⊗2〉 ≈ Nδ
2 λmax(∇2

tanHN ,p (xk )) ≈ Nδ
√

p(p −1)(kδ)p−2

• O
(
∥xk+1 −xk∥3 · sup∥y∥≤pN ∥∇3HN ,p (y)∥op

)
=O(δ3/2N )

Together, we have

HN ,p (xk+1)−HN ,p (xk ) ≥ Nδ

√
p(p −1)(kδ)p−2 +O(δ3/2N )

so we can use a telescoping sum to write

HN ,p (xm) =
m−1∑
k=0

(HN ,p (xk+1)−HN ,p (xk ))

δ→0≥ N (1−ϵ)
∫ 1

0

√
p(p −1)q p−2d q −O(δ1/2N )

= N (1−ϵ) ·2

√
p −1

p
.

The key to the above “proof” was the distribution of ∇2
tanHN ,p (x). The proof fails because this fact

only holds for fixed x independent of the disorder, but xk necessarily depends on HN ,p . One of the main
insights of Subag (2018) is that this dependency doesn’t end up being too much of an issue, though we
need to adapt our proof to handle this dependency.

The following lemma is the key to completing the correct proof.

Lemma 2.2. For any ϵ> 0, with probability 1−e−N for large N, for all x ∈ RN with ∥x∥ ∈ [1,
p

N ] simulata-
neously, λmax(∇2

tanHN ,p (xk )) ≥ 2
√

p(p −1)R(x, x)−ϵ.
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Proof. Intuitively, for λmax(GOE(N )) ≤ 2− ϵ, we need a constant fraction of the eigenvalues to move. Let

A j = 1
j

∑ j
i=1λi (Mn) for Mn ∼GOE (n). Recall from Lecture 7 that the Hoffman-Wielandt inequality implies

that P(|A j −EA j | ≥ t ) ≤ e−N j t 2/1000. Therefore, for small δ depending on ϵ, we have the implication

E[AδN ] ≥ 2−ϵ =⇒ P(AδN ≥ 2−2ϵ) ≥ 1−e−δϵ
2N 2/1000

We then proceed by an ϵ-net argument. Letting N be a N−10-net for {x ∈ RN : ∥x∥ ∈ [1,
p

N ]}, we know
|N | ≤ N 100N and the set of points in this ϵ-net is independent of HN ,p . Thus the GOE hessian description
works for all y ∈N , so by a union bound and the above argument:

P(∀y ∈N ,λmax(∇2
tanHN ,p (y)) ≥ 2

√
p(p −1)R(y, y)−ϵ) ≥ 1−N 100N ·e−δϵ

2N 2/1000

≥ 1−e−δϵ
2N 2/2000.

We can conclude the proof by extending this event to all ∥x∥ ∈ [1,
p

N ] by rounding to the nearest y ∈ N .
Here we use the high-probability bounds on sup∥x∥≤pN ∥∇3HN ,p (x)∥ to control the rounding error. The

requirement that ∥x∥ ≥ 1 ensures that rounding does affect the orthogonal projection matrix P⊥
x too much

(which appears in the definition of tangential Hessian).

3 Mixed models and ultrametricity

For a mixed model HN = ∑
p γp HN ,p , recall that we have ξ(q) = ∑

p γ
2
p q p . In fact, the same algorithm as

above results in performance ALG(ξ) = ∫ 1
0

√
ξ′′(q)d q .

Theorem 3.1 (Chen-Sen). The following are equivalent:

• limN→∞ E
[

maxx∈SN
HN (x)

N

]
= ALG(ξ).

• γ1 = 0 and γ′′(q)−1/2 is concave on [0,1] — i.e., ξ is mostly quadratic.

• ξ is full RSB at 0 temperature.

If we were to use the top two unit eigenvectors during each iteration of Subag’s algorithm, we end up
with an orthogonally branching tree. In full RSB, for low temperature, µβ looks like this complete binary
tree in the sphere in some sense. On the other hand, from k-RSB, if we think of the measure as being
generated by such a tree, we are limited to k “levels of branching.”

The following theorem helps formalize this connection between RSB and trees.

Theorem 3.2. (Chen-Panchenko). Suppose γ1 = 0 and γp > 0 for p ≥ 2. Fix k > 0 and let x1, . . . , xk i i d∼ µβ.

Consider the k ×k array M N ,k
i , j = ∥xi − xk∥/

p
N ∈ [0,2]. As N →∞, Law(M N ,k

i , j ) converges to M∞,k which is

almost surely ultrametric (i.e., M∞,k
i , j ≤ max(M∞,k

i ,ℓ , M∞,k
ℓ,k ) for any ℓ a.s.).

Above, we required γp > 0 for p ≥ 2 (we call such a ξ “generic”). We need this condition to break
symmetry, though even very small γp ∼ N−0.1 suffices.

Ultrametrics and trees have a two-sided connection. On one end, for T a finite tree with positive edge
weights, the distance between leaves is an ultrametric. On the other end, all finite ultrametrics correspond
to a tree structure: for all t > 0, x ∼ y if dist(x, y) ≤ t is an equivalence relation. Furthermore, smaller values
of t correspond to refined partitions. Therefore, we can directly build a tree according to these partitions.

For large β (i.e., low temperatures), Law(M∞
1,2) have has full RSB behavior at low temperatures; it will

depend on ξ. In this case, one has “full” support [0,1−ϵ] for the overlap, with ϵ→ 0 as β→∞.
Next time, we will use the overlap gap property to show the failure of algorithms.
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