
Statistics 291: Lecture 16 (March 21, 2024)

Overlap Gap Property and Hardness of Optimization

Instructor: Mark Sellke

Scribe: Sabarish Sainathan

1 Overview

Today, we’ll introduce the overlap gap property (OGP), which is a geometric frameework to show algorith-
mic hardness for random optimization problems. To illustrate this framework, we’ll consider the problem
of finding a maximum independent set in a sparse random graph. The OGP will demonstrate that a class
of local algorithms will not be able to find such a set.

2 Random graph models

Recall that an independent set of a graph is a set of vertices with no connecting edges. A maximum inde-
pendent set is one with the largest possible cardinality in the graph.

Consider the following random graph models:

• Erdős-Rényi: Given a collection of n vertices, an edge between any pair of vertices exists indepen-
dently with probability d/n. In the setting where n >> d , the degree distribution of each vertex
approaches Poisson(d) in distribution (from the Poisson limit theorem). We’ll use the notation
G(n,d/n).

• Random regular graph (Gn,d ): A d-regular graph with n vertices, uniformly randomly sampled from
the collection of all such graphs.

– Aside: How does one construct a random regular graph? We’ll generate one using the configu-
ration model.

Fix n vertices. Attach d “half-edges” to each vertex, such that we have d ·n half-edges overall.
Iteratively match half-edges uniformly at random, and attach the matched half-edges to form
edges between vertices.

There are a few obscured details with this procedure: we assume that d ·n is even, and we
might have cycles, self-loops, or multiple parallel edges. In the limit n → ∞, the number of
occurrences of these aberrancies is ∼ Poisson(Od (1)) and therefore conditioning on obtaining
a simple graph is contiguous with the original model.

In this lecture, we’ll be interested in the setting n >> d >> 1 (for example, d = loglogn.)
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3 Finding maximum independent sets

We’ll first consider a greedy algorithm for finding a maximal independent set, originating in [3]. Given a
random graph G(n,d/n),

• Uniformly randomly order the vertices. Let this ordering be {v1, . . . , vn}.

• Let I ←∅.

• For j ∈ [n]:

– If vertex v j has no neighbors in
{

v1, . . . , v j−1
}∩ I , then I ← {v j }∪ I .

• Return I .

Let’s form some intuition for the size of the sets generated by this algorithm. Since n >> d , we can
assume that each iteration of the algorithm deletes roughly d vertices from eligibility and adds one vertex
to I . Thus, |I |≳ n/d .

The following analysis improves this lower bound by a logd term.

Theorem 3.1 (Grimmett-McDiarmid, [3]). For G(n,d/n), random-order greedy gives

|I | = (1±o(1)) logd

d
n

with high probability.

Proof. We’ll give a heuristic proof, ignoring concentration in n. For each k ∈N0, the number of iterations
of the algorithm to proceed from |I | = k to |I | = k+1 is a geometric random variable τk ∼ Geom(pk ), where

pk = (1−d/n)k .

corresponds to the probability that the current vertex is not connected to any vertex in I . Since pk → e−dk/n

in the limit n →∞, we compute that the expected time at which |I | = m is roughly

E[T|I |=m] =
m∑

k=1
E[τk ] =

m∑
k=1

edk/n .

Using the fact that d << n, we conclude that ed/n ≈ 1 and make the approximation

E[T|I |=m] ≈ m ·edm/n ≤ n

when m ≈ n logd/d . The upper bound of n here follows from the fact that there are at most n iterations in
the algorithm. By concentration of the indicator random variable χT|I |=m≤n around this expectation, one
can show the asymptotic bounds for m hold w.h.p.

The maximal independent sets obtained from this algorithm are not typically maximum, however.
Indeed, the size of maximum independent sets in ER graphs is roughly twice the size, as seen in the
following theorem.

Theorem 3.2 (Frieze ’90). For G(n,d/n), maximal set size |I | = (2±o(1)) logd
d n whp.

Proof. The upper bound is an application of the first-moment method; the lower bound, an application of
the second-moment method. We’ll prove the upper bound and refer the reader to the source for the lower
bound.
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Let Cm be the collection of independent sets of the graph of cardinality m. Then

E[|Cm |] =
(

n

m

)
(1−d/n)

(m
2

)
,

where we have used linearity of expectation to sum over the event probabilities that each m-set of vertices
is an independent set. Let m = δn for δ := δ(d ,n) where δ depends on n through the sub-constant term in
the theorem statement. Then

exp

(
−d

n
·
(

m

2

))
= exp

(
−dδ2n

2
+o(1)

)
= exp

(
−n

(2+o(1))2 log2 d

2d

)
By Stirling’s approximation,(

n

m

)
= exp(n log(1/1−δ)+δn log((1−δ)/δ)+o(1))

= exp(nH(δ)+o(1))

= exp(−nδ logδ+o(1))

= exp

(
n

(2+o(1)) log2 d

d

)
.

where the last approximation follows when δ(d ,n) = od (1) (since this term dominates the entropy H(δ) in
this case). For all ϵ> 0, we notice that (2+ϵ)2 > 2(2+ϵ), so we may choose a sufficiently small ϵ := ϵ(n,d) > 0
such that

E[|Cm |] ≤ e−cn

for some c > 0. By Markov’s inequality,
P(|Cm | ≥ 1) ≤ e−cn .

Remark. This theorem is also true for random d-regular graphs. In the next section, we’ll interchangeably
use the two random graph models as a pedagogical simplification; the statements typically apply to both
models.

4 R-local algorithms

Suppose first that our graph is a rooted, d-regular tree. It is easy to see that we obtain an asymptotically
maximal independent set by choosing alternating levels of the tree: first, choose the root; then all vertices
of depth 2; then, of depth 4; and so on, of depth 2k for k ∈N0.

We might extend this reasoning to our (regular) random-graph setting. In an O(1) neighborhood of
a typical vertex, Gn,d is isomorphic to a d-regular tree: the likelihood of a cycle in this neighborhood is
infinitesimal since d << n. An algorithm might seek to patch together independent sets obtained from
small neighborhoods of vertices in the tree. In the case of an ER graph, the setting is not too different:
the small neighborhoods are (typically) Galton-Watson trees with an approximately Poisson(d) number of
descendants.

This intuition inspires the notion of a “local algorithm,” in which we treat each vertex as the root of a
local tree in the graph.

Definition 4.1 (R-local algorithm.). Suppose we are given an algorithm f that operates on an R-local
neighborhood of any vertex (where the neighborhood is defined according to a distance metric d — in our
case, shortest path distance). An R-local algorithm consists of the following meta-routine:
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(a) Generate i.i.d. random variables ωv for v ∈V (for example, ωv ∼ Unif([0,1])).

(b) Let χv∈I = fR ({ωw : d(v, w) < R}).

Note that I is called an “iid factor” in the literature [2].

Remark. This approach generates (a local version of) random-order greedy. Indeed, use the set of ωv to
decide the (local) random ordering, and apply the remainder of the algorithm as before.

In fact, it’s not too bad that we’re moving from a global algorithm to a local algorithm: we’re unlikely
to have long dependency chains, since length-L chains occur with probability O(1/L!). More generally,
[?] conjectured that local algorithms can optimally solve any combinatorial optimization problem on
sparse graphs. This conjecture was proven true for finding maximum matchings. It is not true for finding
maximum independent sets, as we will see in the next section.

Remark. On the other hand, local algorithms are not sufficient if the graph is equipped with some kind of
global structure.

Indeed, consider the stochastic block model, in which the collection of vertices are bifurcated into two
sets of n/2 vertices each. An edge between sets exists with probability b/n, and an edge within a set exists
with probability a/n, where a > b. If a >> b one can find the bifurcation by computing the top eigenvector
of the normalized adjacency matrix. This is patently a global algorithm, and local algorithms encounter
difficulty in performing this computation.

5 Algorithmic hardness and the OGP

[2] disproves the conjecture of [4] up to a constant factor of the maximum independent set.

Theorem 5.1 (Gamarnik-Sudan ’13, [2]). For β= 1/
p

2, γ ∈ (1+β,2]), d ≥ d∗(γ) large, and R := R(d ,γ), no

R-local algorithm produces independent sets of average size m := γ logd
d ·n.

Remark. Since γ< 2, there exists a multiplicative size gap between the maximum independent sets and
those generated by any local algorithm (thereby disproving the conjecture).

In fact, the size gap is even larger: the same theorem holds for any γ > 1, proven in [5]. This was an

impressive result, since the independent sets of size (1+ ϵ) logd
d n are (typically) clustered: their overlaps

either have large cardinality (if they belong to the same cluster) or very small cardinality (different clusters)
[1].

Proof. The moral approach is the following. Extending the analysis in [1], we will show that for all γ
satisfying the theorem statement, independent sets of size m satisfy an overlap gap property: they overlap

at least (1+ δ) logd
d n or at most (1− δ) logd

d n for some z ∈ (0,β), with high probability for large n. By a
particular coupling construction, we identify pairs of independent sets generated by local algorithms that
have overlap spanning this gap interval, obtaining a contradiction.

For the coupling, we’ll apply an interpolation strategy on random graphs. Given p ∈ [0,1], let G ,G̃ ∼
G(n,d/n) be two random graphs that are p-correlated. In the case of ER graphs, we construct a pair of such
graphs by iterating over every pair of vertices. In each iteration, generate Y ∼ Bernoulli(p) independently.
If Y = 1, then add an edge between the current pair of vertices with probability d/n to both graphs. If Y = 0,
add an edge between the current pair of vertices with probability d/n independently to each graph. The
remainder of the proof is easier to see in the random regular graph case, though we note again that the
result applies to both random graph models.

Consider an R-local algorithm A that maps a graph to an independent set. Note that it’s not neces-
sary to parameterize A in terms of the size of graph, since it’s a local algorithm operating on an O(1)
neighborhood.

Let α := E[|IA |/n]. Let f : [0,1] → [0,1] be defined as f (p) = E[|IA (G) ∩ IA (G̃)|/n].

Lemma 5.2. f (1) =α, f (0) =α2, and f is continuous for random regular graphs.
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That f (1) =α is immediate, since G ,G̃ are identical (by construction) in this case.
f (0) =α2 by independence of the two graphs:

f (0) = 1

n

n∑
i=1

P(vi ∈A (G))2 =α2.

And third, f is continuous since perturbing p by a small amount will with high probability preserve the
local neighborhood of most vertices. This is of course an intuitive argument, made concrete in the source.

Lemma 5.3. If α≥ γ logd/d, there exists p such that f (p) = logd/d.

By the upper bound from Frieze, α< 2(1+ϵ)d
logd n for some small ϵ> 0, so α2 =O(log2 d/d 2) ≤ logd/d for

sufficiently large d . Given the assumption on α, the intermediate value theorem guarantees that f takes
on every value in the interval [α2,α] — in particular, logd/d .

Lemma 5.4. |IA (G) ∩ IA (G̃)|/n concentrates (exponentially) around f (p), uniformly in p.

This is easier to see in the random regular graph model. Here’s some intuition: the set of vertices in both
sets are mostly independent by sparsity of the graph. Let Ḡ =G ∪G̃ ; we’ll partition this set into a collection
of sets such that each partition consists of vertices distance 2R away from one another: [n] =⋃M

i=1 Ji . Note

that if v, w ∈ J1, d(v, w) > 2R. A quick bound shows that M ≤ (2d)2R . This partition makes use of the fact
that |I ∩ Ji | is an iid sum of (bounded) random variables, which implies exponential concentration around
f (p) · |Ji |, Hence f (p) ·n ≈ |I | exponentially.

Lemma 5.5 (Overlap gap). For small δ> 0 such that δ<
√
β2 −1 <β, the number of independent sets of size

in ((1−δ)dn/logd , (1+δ)dn/logd) approaches 0 in probability.

Note that the constraint on β implies that β ∈ (1/
p

2,1).
By exponential concentration of the overlap of independent sets generated by a random algorithm

around n logd/d , there exists a pair of independent sets of the graph with overlap within (1 − ϵ,1 +
ϵ)n logd/d with high probability in n; this contradicts the overlap gap property.
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