
Statistics 291: Lecture 17 (March 26, 2024)

Multi-OGP

Instructor: Mark Sellke

Scribe: Sabarish Sainathan

1 Review of problem 2.4 on Homework 3

Recall that this problem asks us to show that measures that admit shattering decompositions have expo-
nentially long mixing times. Precisely, suppose µβ shatters into C1, . . . ,Cm with radii r

p
N and separation

s
p

N .
Here’s a sketch of how one might show this:

(a) Sample X0 ∼µβ. With probability at least 1−e−cN for some c > 0, X0 ∈C j for some j .

(b) Let X t be a Langevin dynamics started at X0. Define the stopping time τ= inf
{

t : d(X t ,C j ) > s
p

N /3
}

,

where r
p

N is the cluster diameter. We intend to show that P[τ≥ ecN ] ≥ 1−e−cN .

(c) By problem 2.2, X t does not move substantially during small intervals: for some δ> 0, P[∥xt −xτ∥ ≤
s
p

N /10 ∀t ∈ [τ,τ+δ]] ≥ 1−e−N ≥ 1
2 for large N .

(d) This implies that conditionally on the event τ < ecN , the expected time that X t is not in cluster C j

durng the interval [0,ecN ] is at least δ/2. By the separation property, X t is also distance at least
s
p

N /10 from each of the other clusters during the interval [τ,τ+δ]. However since X0 is started
from the stationary distribution, we have X t ∼µβ for all fixed t , so the expected time spent outside
any cluster on t ∈ [0,T ] should be at most e−10c T . This implies that P[τ≥ ecN ] ≥ 1−e−cN completing
the proof.

2 Overview

As in the last class, we’ll continue studying the maximum independent set problem in the Erdös-Rényi (ER)
graph G(n,d/n) in the setting 1 ≪ d ≪ n.

We previously proved the upper bound in the following theorem of Frieze:

Theorem 2.1. |MaxIndSet(G(n,d/n))| = (2±o(1))Φwith high probability, whereΦ= n logd/d.

We further showed a computational hardness result illustrated by the following theorem — namely,
that a class of local algorithms do not find maximum independent sets.

Theorem 2.2 ([4]). If A is an R-local algorithm to compute independent sets, then

E[|A (G(n,d/n))|] ≤ (1+1/
p

2+o(1))Φ
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Our goal for today is the following improvement.

Theorem 2.3 ([5]). E|A (G(n,d/n))| ≤ (1+o(1))Φ.

Recall our proof strategy for the first of these theorems. We showed (1) that the expected number of
independent sets with overlap within a small multiplicative interval of Φ decays exponentially, implying
by Markov’s inequality that such independent sets are exponentially unlikely. We also showed (2) that
R-local algorithms asymptotically very likely generate independent sets with overlap within this interval
by constructing pairs of graphs with a particular correlation structure for the ωv random variables defined
in the last lecture. (1) and (2) generate a contradiction.

This proof strategy uses the overlap gap property. The tighter upper bound of [5] leverages a symmet-
ric multi-overlap gap property: the overlaps of collections of r independent sets exhibit an overlap gap
property violated by R-local algorithms accepting distributions with particular correlation structures.

In particular, we can construct such a collection of r ER graphs, each pair of which are p-correlated:

(a) Generate G̃0 ∼G(n, pd/n).

(b) G̃i
i i d∼ G(n,1− 1−d/n

1−pd/n ), for each i ∈ [r ]. Note that the edge probability is asymptotically (1−p)d/n.

(c) Return the collection of p-correlated graphs Gi = G̃0 ∪ G̃i . Each possible edge of Gi exists with

probability pd
n + (

1− pd
n

) · (1− 1−d/n
1−pd/n

)
= d/n, and that the correlation of this edge existing between

each pair of graphs is p.

In the next section, we will sketch a cleaner proof of Theorem 2.3 by Wein [6], leveraging an asymmetric
version of multi-OGP.

3 Asymmetric multi-OGP proof

Suppose A is R-local and E|A ((G(n,d/n)))| ≥ (1+3ϵ)Φ. By concentration,

P {|A (G(n,d/n))| ≥ (1+2ϵ)Φ} ≥ 1−e−δn

for small δ> 0.
We’ll generate a sequence of ER graphs in the following way. Start with G0 ∼G(n,d/n). Considering an

ordering {ek } of the
(n

2

)
possible edges, where we allow k > (n

2

)
to wrap around the indices mod

(n
2

)
. In step

t ∈N, we re-sample the event that et exists in the graph independently to generate the graph Gt given Gt−1.
The intuition here is that if you change one edge, you change a sub-linear number of i.i.d. factors

(defined in the last lecture). This means that the sequence of graphs maps to an (intuitively) continuous
path in the space of independent sets. We’ll trace out this path in independent set space until we get
to an independent set with sufficiently small overlap with our last marked independent set. We’ll mark
this independent set and continue tracing out the path to obtain a sequence of sufficiently separated
independent sets Si .

This collection of times and sets will be termed the “forbidden structure,” and has the following precise
definition:

Definition 3.1. (Forbidden structure with (k,n,ϵ).) Let 0 = t0 < t1 < ·· · < tk ≤ n3 be a sequence of times
such that the independent sets Si :=A (Gti ) satisfies∣∣∣∣∣S j+1\

⋃
i≤ j

Si

∣∣∣∣∣ ∈
[
ϵΦ

4
,
ϵΦ

2

]
(1)

for each j ∈ [k]. (Intuitively, about ϵΦ new vertices appear which haven’t been used yet.) Then the tuple
(t0,S0, . . . , tk ,Sk ) is a forbidden structure.
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We start by showing that R-local algorithms generate forbidden structures.

Lemma 3.2. Take 1 ≪ ϵ−1 ≪ d. Suppose A is R-local and E|A (G(n,d/n))| ≥ (1+3ϵ)Φ. Then with probability
at least 1−e−δn for some δ> 0, the forbidden structure exists for k = ϵ−3.

Proof. We’ll apply a discrete version of the intermediate value theorem to show the interpolation sequence
of ER graphs will generate a collection of Si such that (1) is satisfied (without yet assuring that tk < n3).
R-locality of the algorithm A implies that |A (Gt )∆A (Gt+1)| ≤ ϵΦ

10 for all t with high probability, since
re-sampling edge et+1 affects at most O(d R ) many iid factors, which is vanishingly small compared toΦ.

We shall use the fact that
∣∣∣A (Gt j +

(n
2

))∩ (⋃
i≤ j Si

)∣∣∣≤Φ/2. Indeed, choosing ϵ−2 ≤ 2
p

d/logd , the forbid-

den structure upper bound (1) implies that∣∣∣∣∣⋃i≤ j
Si

∣∣∣∣∣≤ j · ϵΦ
2

≤ k · ϵΦ
2

≤ np
d

.

It follows that the restriction of Gt j +
(n

2

) to the set of vertices
⋃

i≤ j Si is isomorphic to G(≤ n/
p

d ,d/n) (by

independence of the graph Gt j +
(n

2

) with the independent sets S0, . . . ,S j ). The upper bound of the maximum

independent set identified by an R-local algorithm on this subgraph is smaller thanΦ/2 whp. Note that we
used the fact that tk ≤ n3 here.

Now fix some j < k. The difference |A (Gtk+
(n

2

))\
⋃

i≤ j Si | ≥ Φ/2 whp, which by our earlier symmetric

difference discretization shows that there must exist some time t j+1 such that S j+1 = A (Gt j+1 ) satisfies
(1).

By Markov’s inequality, the following lemma is sufficient to guarantee the exponentially unlikely exis-
tence of a forbidden structure. Below we use forbidden structure to mean any (t0,S0, . . . , tk ,Sk ) as above, in
which each S j is an independent set of size at least (1+2ϵ)Φ in Gt j .

Lemma 3.3. Let C be the collection of forbidden structures. Then E|C | ≤ e−δn , where δ := δ(d ,ϵ) > 0.

Proof. Let b j ·Φ= ∣∣S j \
⋃

i< j Si
∣∣ (number of new vertices) and a jΦ= |S j | (clearly a j > b j ).

The number of time sequences is at most n3k , since each time is at most n3. This is upper bounded by

n3/ϵ3 = eo(n) given our choice of k.
Similarly, the number of possible values of the sequence (a0,b0, . . . , ak ,bk ,c) is at most n3k+3 ≤ eo(n)

since each value is at most n. Not here that c is defined such that cΦ= ∣∣⋃
j≤k S j

∣∣≤C (ϵ) ·Φ.
Since the cardinalities of these sequences are sub-exponential, we can simply condition |C | on them

and sum over all possible sequences without affecting the exponential decay of E|C |.
Indeed, let’s compute the first moment for the expected number of forbidden structures conditioned

on sequences of times and a’s and b’s. We will write things up to factors of (1+o(1)) in the exponent (for
fixed ϵ and large d ,n). We have the following combinatorial upper bound for |C |, derived by considering
the number of iterative constructions of forbidden structures given the constraints:

E[|C ||(t j , a j ,b j , . . . )] ≤
(

n

a0Φ

) ∏
j≤k

(
n

b jΦ

)(
cΦ

(a j −b j )Φ

)
·
(
1− d

n

)b j (a j −b j )Φ2

.

We’ll first consider the asymptotics of the expression

≤
(

n

b jΦ

)
·
(
1− d

n

)b jΦ·(a jΦ−b jΦ)

.

By Stirling’s approximation, the combination is exp
(
n ·

(
b jΦ

n

)
· log

(
n

b jΦ

))
; the log term in the exponent is

roughly logd , so the combination grows as roughly exp
(
b jΦ logd

)= exp(b j n log2 d/d).
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Since d/n = o(1), the probability term is ∼ exp
(
−d

n (1+ϵ)b jΦ
2
)
= exp

(
−(1+ϵ)b j

n log2 d
d

)
, where we have

used the fact that b j ≤ ϵΦ/2 and a j > (1+3ϵ)Φ. Now using b j ≥ ϵΦ/4, this quantity is asymptotically upper
bounded by exp(−ϵ2/10n log2 d/d).

The other binomial coefficient is naively bounded as(
cΦ

(a j −b j )Φ

)
≤ ecΦ ≤ exp

(
O

(
n logd

d

))
.

This is of smaller order by a logd factor within the exponent.
For each j , the product term is

exp

(
− ϵ

2

10

n log2 d

d
+O(

n logd

d
)

)
≤ exp

(
−ϵ2 n log2 d

20d

)
.

Now considering the entire upper bound for the conditional expectation and taking the expectation over
the sequences, we have the upper bound

E[|C |] ≤ exp

(
o(n)+ C n log2 d

d
− 1

10ϵ

n log2 d

d

)
≤ e−δn .

Remark. What about fixed d , rather than d >> 1? [2] showed that the maximum independent set of the
regular graph Gn,d is whp nα∗(d)− logn−c∗(d)±O(1), whereα∗(d) = 2logd/d . This (much more difficult)
result uses both first and second moment arguments on 1-RSB clusters, a more involved combinatorial
analog of the near-maximal critical points we studied using Kac–Rice.

Remark. (Symmetric binary perceptron.) Recall that this problem asks us to find σ ∈ {±1}N , obeying M =
αN constraints

|〈σ, g i 〉| ≤ κ
p

N ,

where g1, . . . , gM ∼N (0, IN ) iid.
For κ small: solutions exist for α<α∗(κ) ≈ 1

log2(1/k) .

However algorithms are only known to succeed for α ≤ O(κ2) [1]. In fact stable algorithms fail for
α≥C k2 log(1/k) as shown by [3] using the (symmetric) multi-OGP. This is a rather dramatic gap!
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