
Statistics 291: Lecture 18 (March 28, 2024)

OGP for Inference (Sparse PCA)

Instructor: Mark Sellke

Scribe: Neil Shah

1 Final Project Reminders

The rough expectation for the final project is that there will be:

• a written report: approximately 8 pages if solo and 12 if duo,

• and a presentation: approximately 20 minutes if solo and 30 if duo.

The available presentation dates will be April 16, April 18, and April 23. At most four presentations will take
place per day.

2 Defining the Problem

Say we have a sparse (Wigner) PCA with x ∈ {−1,0,1}n , ∥x∥1 = k << n, and write x ∈ Tk . Observe that

Y = λ

k
xx⊤+W

and W ∼ GOE(n).

There are two natural goals that we might have here:

(a) Detection: Create a statistical test that distinguishes Y versus W ∼ GOE.

(b) Recovery: Devise an algorithm such that A (Y) =±x (the sign won’t be distinguishable).

For this setup, think k = nα, α ∈ (0,1), λ= n−θ, and θ ∈ (0,1).

One example of a similar problem is community detection. In community detection, we have that

Adjacency Matrix = [Low rank signal]+ [Noise],

as is the case in this problem. Planted cliques, sparse (Wishart) PCA, and Gaussian mixtures are also similar
to this problem.

To solve questions like this, we want to know: what are some efficient approaches for sparse PCA?

• Top eigenvalue: λ1(Y), λ1(W) ≈ 2, and λ1(Y) > 2+δ when λ> 1+ϵ.

1

• Look at largest diagonal entries: λ
k xx⊤ shifts by λ

k . So, if

λ

k
≥C

√
logn

n
,

then we can just take the k largest diagonal entries. For now, we’re working with λ≫ kp
n

.

It is generally believed that these are the only polynomial time algorithm for these problems (in the sense
that if these algorithms fail, then no other polynomial time algorithm exists).

3 Analysis

Proposition 3.1. Suppose λ ≥ c
√

k logn
n for some constant c, k ≤ n1−δ. Then, since we have maximum

likelihood estimate (MLE)
x̂MLE = argmax

v∈Tk

〈Y , v⊗2〉,

we have, with high probability, that

(a) maxv∈Tk 〈Y , v⊗2〉 ≥ λk
2 .

(b) maxv∈Tk 〈W, v⊗2〉 ≤ λk
3 .

Hence, thresholding, max value suffices to distinguish Y versus W .

Proof. We’ll start with part (a). Take v = x:

〈Y , x⊗2〉 = λ

k
〈x, x〉2︸ ︷︷ ︸
≈λk

+ 〈W, x⊗2〉︸ ︷︷ ︸
Normal(0, k2

n)

.

We need kp
n
≪λk, which would require that λ≫ 1p

n
. The assumption that λ≥ c

√
k logn

n then finishes this
part.

Next, we address part (b). Start with 〈W, v⊗2〉 ∼ Normal(0, k2

n). Taking a union bound, we find that with

high probability (since we know |Tk | ∼ nk = exp(k logn)),

max
v∈Tk

〈W, v⊗2〉 ≤ kp
n
·
√

C log |Tk | ≤
k

3
2
√

lognp
n

≪λk.

Lemma 3.2. If λ≫
√

k
n , then with high probability,

|〈x̂MLE, x〉| ≥ k

10
.

Proof. Using a union bound, with high probability,

〈Y , v⊗2〉 < λk

2
.

2

for all v such that |〈v, x〉| ≤ k
10 .

Then, note that #v ≤ |Tk |. We have

〈Y , v⊗2〉 = λ

k
〈x, v〉2 +Normal(

k2

n
) =⇒ max

v∈Tk ,|〈v,x〉|≤ k
10

〈Y , v⊗2〉 < λk

2
.

Naturally, one might boost by taking large coordinates of Y x̂MLE. However, this is hard to analyze because
x̂MLE already depends on Y . Instead, suppose Y ′ = λ

k x⊗2 +W ′. We wishfully analyze Y ′x̂MLE. Then,

Y ′x̂MLE = λx

k
〈x, x̂MLE〉+W ′x̂MLE.

Note that 〈x, x̂MLE〉 is roughly order k by construction and the entries in the second term are roughly
Normal(0, k

n). Then,

Entry j ≈ λx j

10
±O(

√
k

n
.

So, if λ≫
√

k
n , take the largest coordinates (with signs).

A trick we can use is to turn Y into 2 independent observations with slightly worse SNR. Take W̃ ∼ GOE(n).
Then, take

Y1 = Y +W̃ = λx⊗2

k
+ (W +W̃)

and

Y2 = Y −W̃ = λx⊗2

k
+ (W −W̃).

Then,
W +W̃p

2
,

W −W̃p
2

i.i.d.∼ GOE(n).

So, we have the inefficient recovery algorithm as follows:

(a) Compute x̂MLE(Y1).

(b) Take large entries of Y2 · x̂MLE.

It is natural to expect the MLE might be the fastest algorithm possible when polynomial time algo-
rithms fail. The next result shows this is not true: one can instead use a modified MLE on a sparser set of

coordinates. In particular it runs in time eno(1)
when on the boundary of the polynomial time region, and

degrades gracefully with problem parameters. a

Theorem 3.3 (Ding-Kunisky-Wein-Bandeira 19). In hard regimes, there is a recovery algorithm that uses
time

e
Θ̃

(
k2

nλ2

)
.

The idea is to take k2

λ2n
≪ k1 ≪ min(k,λ2n). Then, compute x̂k ′

MLE(Y1) ∈ Tk ′ and take large entries of Y2x̂k ′
MLE.

This paper gave this theorem as well as evidence of optimality. Based on low degree polynomials. The
idea is that degree ≤ D polynomial functions of the input serve as a proxy for algorithms with running time
nO(D). Moreover there is a natural optimal hypothesis test within the linear space of degree ≤ D polynomi-
als, given by an orthogonal projection of the likelihood ratio between the null and alternative hypotheses,
which can be analyzed explicitly.

3

Now, if we believe exp(Θ̃(k2

nλ2)) is the optimal running time how could we validate this belief via the land-

scape of Ĥ(v) = 〈Y , v⊗2〉?

One natural guess is that the Gibbs measure µĤ
β

with β= β∗ = λn
2k (which gives the posterior distribution

from a uniform signal prior) should exhibit free energy barriers. Thus consider the function

F j = log
∑

v∈Tk ,|〈x,v〉|= j
exp(βĤ(v)). (1)

In the “MLE works but polynomial time algorithms fail” regime, this function should be maximized for large
values of 〈x, v〉 (unlike shattering!). If F j were monotone, we might expect a simple Markov chain sampler
such as Glauber dynamics to converge fast, although this would require much more to prove. On the other
hand, suppose F j is D-non-monotone, i.e. F j ≤ F0 −D for some D > 0. Then we would expect such a
Markov chain to mix in time at least eD . In fact it is not hard to prove this from a worst-case initialization v
with small inner product (though ideally one could understand a uniformly random initialization).

However we just saw that optimal algorithms require fiddling with the sparsity level. So the right

conjecture should be that for any (β,k ′) in (1), there is a Θ̃(k2

nλ2) non-monotonicity in F j , and this might
be minimized at the value k ′ used in the faster algorithm above. This is essentially what [Ben Arous-Wein-
Zadik] were able to show!

Theorem 3.4 (Ben Arous-Wein-Zadik). (Roughly): for any β, k ′, there is a free energy barrier of depth

D ≥ k2

nλ2 ≈ equality for β=β∗ Bayesian.

While this can be considered an OGP result, it is in a different style from the ones we’ve seen previously.
First, the problem setting is quite different: instead of optimizing a “pure noise” function, we are trying to
recover a random signal. Second, it gives a fine-grained prediction for the running time of algorithms. On
the other hand, the OGPs we saw before rigorously prove failure of all algorithms in a natural family. The
result above implies slow mixing for certain Markov chains from a worst-case initialization, but doesn’t
prove failure of other natural algorithms.

4

	Final Project Reminders
	Defining the Problem
	Analysis

