
Statistics 291: Lecture 2 (January 25, 2024)

Free Energies and Moment Computations

Instructor: Mark Sellke

Scribe: Jarell Cheong Tze Wen

1 Free Energies: A Quick Introduction

We begin this class by introducing free energies. We introduce some general definitions before specializing
to our setting. In general, we would be endowed with the data of a probability space (Ω,µ), a bounded and
measurable function H : Ω→R, the “hamiltonian” or energy function, and finally an inverse temperature
β. With these objects, we can make the following three definitions.

Definition 1.1 (Partition function). The partition function Z is the function defined by the integral

Z (β) :=
∫

eβH(x) dµ(x).

Definition 1.2 (Free energy). The free energy F is the function defined by F (β) := 1
β log Z (β).

Definition 1.3 (Gibbs measure). The Gibbs measure is defined as the following Radon-Nikodym derivative:

dµβ(x) := eβH(x) dµ(x)

Z (β)
.

We can reason about why F is called a free energy through the physical interpretation where Ω specifies
the default states of nature, H specifies the energy of a state of nature, and the Gibbs measure specifies the
distribution that nature finds itself in at inverse temperature β. Recalling, from basic chemistry, that Gibbs
free energy is the amount of useful work a system can perform, we can in fact see that F has a similar, but
slightly different, interpretation. Indeed, F is the “Helmholtz” free energy, defined by the identity

F (β) =U (β)−T S(β) (1)

from thermodynamics, where U (β) = ∫
H(x)dµβ(x) is the average energy of the system, T = 1/β is the

temperature, and S(β) is the entropy of the system. By entropy, we mean the Kullback-Leibler divergence:

Proposition 1.4. If S(β) is set to be the Kullback-Leibler divergence DKL(µβ ∥µ), then (1) holds.

Proof of Proposition 1.4. The desired result follows form plugging in the definition of Kullback-Leibler di-
vergence and performing some algebraic manipulation as follows:

DKL(µβ ∥µ) :=
∫

log

(
dµ(x)

dµβ(x)

)
dµβ(x) = log Z (β)−

∫
βH(x)dµβ(x) =β(F (β)−U (β)).
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In thermodynamics or physical chemistry, one usually starts with some axiomatic definition of a physical
system that does not include the state space definition. Instead, one considers rectangular prism blocks of
gas interacting with neighboring blocks, and from there, the definitions found above can naturally arise.

The main idea is that one has differential expressions for free energy of the form

dU = T dS −P dV ,

dF =−S dT −P dV ,

where P represents pressure and V represents volume. Using the product rule changes which variable goes
where, and this corresponds to changing the relevant state variables one is tracking. From this, one could
view the Helmholtz free energy naturally as useful work at a fixed temperature T and volume V . This is not
too relevant for our class, but it’s good to know that the things we’re thinking about have real meaning.

Meanwhile, in statistics, we have the following interpretation instead: µ can be viewed as some prior
distribution, maybe for a signal we’re trying to estimate, βH can be viewed as a log-likelihood, and µβ can
be viewed as the resulting posterior. Here, β can usually be realized as some signal-to-noise ratio. Hence,
understanding the Gibbs measure in statistics amounts to understanding a posterior instead of a physical
system, but both of these settings are very natural ones to be in.

In this class, we’re going to be interested in a very particular type of state space. We’re going to set

Ω= SN := {x ∈RN : ∥x∥2 =
p

N }.

Then, we usually consider the uniform measure on the sphere, µ= Unif(SN ), which is the unique rotation-
ally invariant probability measure on the sphere. The hamiltonian is a random function HN : SN →R.

Remark. Expectations over the sphere SN will usually be written as integrals, with E= EHN reserved for the
expectation over the randomness of HN .

Then, we have the same definitions as before, specializing to our hamiltonian HN :

ZN (β) :=
∫

eβHN (x) dµ(x),

FN (β) := 1

N
log ZN (β),

dµβ(x) := eβHN (x) dµ(x)

ZN (β)
.

Observe that in the free energy, there are two differences. First, there is a 1/N factor, which makes FN (β) ≤
O (1). Second, the 1/β factor is gone, which eases computation. As a result, the free energy and the original
energy no longer have the same units, which makes things a little “unphysical,” but this saves us the trouble
of using the quotient rule whenever we want to differentiate the free energy to obtain new information.

In a lot of probability and statistical physics settings, one usually takes for granted that the routine thing
to do is, given some state space and hamiltonian, to compute the free energy. We will not take this point of
view too strongly, and instead we prefer to use the free energy as a tool to obtain the kind of geometric and
algorithmic consequences that we are often after.

Example. Consider the “shattering” phenomenon from the previous lecture. This is the scenario where
there are little clumps in the Gibbs measure, all very small in terms of diameter and probability mass. These
clumps are mostly separated from each other, but in total they cover most of the Gibbs measure.

Upon a sufficiently strong understanding of free energies, we may consider sampling X ∼µβ from the
Gibbs measure, and then we can understand not just the free energy on the sphere, but free energies on
all sorts of subsets of the sphere. For instance, we might be able to say that the free energy of some cap on
the sphere is larger than the free energy of the band around the cap. If this is the case, we get a “bottleneck”
which allows us to deduce that the cap is one of the aforementioned clumps.
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2 The p-Spin Hamiltonian

Definition 2.1 (p-spin hamiltonian). The p-spin hamiltonian is the hamiltonian HN ,p : SN →R given by

HN ,p (x) := 1

N (p−1)/2

N∑
i1,...,ip=1

gi1···ip xi1 · · ·xip , x ∈ SN .

Here, the gi1···ip are i.i.d. N (0,1). We can also write HN ,p (x) = 〈G (p)
N , x⊗p〉, where G (p)

N , x⊗p ∈RN p
.

Proposition 2.2. If x, x̃ ∈ SN , then HN ,p (x), HN ,p (x̃) are N (0, N ) (with variance N ), jointly gaussian, and

EHN ,p (x)HN ,p (x̃) = N

( 〈x, x̃〉
N

)p

.

Proof of Proposition 2.2. That HN ,p (x), HN ,p (x̃) are centered and jointly gaussian is clear because linearity
preserves centered gaussians and the gi1···ip are all centered gaussian. Next, by linearity and independence,

Var[HN ,p (x)] = 1

N p−1

N∑
i1,...,ip=1

x2
i1
· · ·x2

ip
= 1

N p−1

(
N∑

i=1
x2

i

)p

= 1

N p−1 N p = N .

Since “different gi1···ip ’s do not interact with each other,” by an analogous calculation, we deduce that

EHN ,p (x)HN ,p (x̃) = 1

N p−1

N∑
i1,...,ip=1

xi1 x̃i1 · · ·xip x̃ip = 1

N p−1

(
N∑

i=1
xi x̃i

)p

= N

( 〈x, x̃〉
N

)p

.

Remark. We can define a symmetrized version of G (p)
N , which we call G (p),sym

N , by setting

G (p),sym
N ,i1···ip

= 1

p !

∑
π∈Sym(p)

gπ(i1)···π(ip ).

Then, it is the case that 〈G (p)
N , x⊗p〉 = 〈G (p),sym

N , x⊗p〉, and when p = 2, G (p),sym
N is a GOE matrix.

Remark. In fact, HN ,p is a centered gaussian process on SN .

Remark. HN ,p has a rotationally invariant distribution, i.e. if A⊤
N AN = AN A⊤

N = IN , then H̃N ,p , defined by

H̃N ,p (x) := HN ,p (AN x),

has the same distribution as HN ,p as functions SN →R. After all, covariance is rotationally invariant, plus
centered gaussian processes are determined by their covariance.

Remark. The scaling factor in HN ,p is good because morally, SN has exp(Θ(N )) amount of space, and also
this scaling yields the operator norm of a random tensor.

Proposition 2.3. For all p, there exists C =C (p) > 0 so that with probability 1−e−N (extremely high proba-
bility), we obtain the inequality

max
x∈SN

|HN ,p (x)| ≤C N .

Proof of Proposition 2.3. We instead bound the larger quantity

M̄ := N−(p−1)/2 max
x(1),...,x(p)∈SN

〈G (p)
N , x(1) ⊗·· ·⊗x(p)〉. (2)

Let ϵ= 1/10p, and let Nϵ ⊆ SN satisfy:

• ϵ
p

N -net: if x ∈ SN , then there exists x̃ ∈Nϵ such that ∥x − x̃∥2 ≤ ϵ
p

N .
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• |Nϵ| ≤ (10/ϵ)N .

It is well-known that such a Nϵ exists. For a construction, just pack radius ϵ
p

N /3 balls into the sphere. The
cardinality bound follows from considering the volume of the sphere. Then, define

M̄ϵ := N−(p−1)/2 max
x̃(1),...,x̃(p)∈Nϵ

〈G (p)
N , x̃(1) ⊗·· ·⊗ x̃(p)〉.

Lemma 2.4. With probability 1−e−N , we have M̄ϵ ≤C N /2.

Proof of Lemma 2.4. We simply employ a union bound. This is more general than Proposition 2.2, but it is
also true, by a very similar computation, that each

〈G (p)
N , x̃(1) ⊗·· ·⊗ x̃(p)〉 ∈N (0, N ).

Therefore, for sufficiently large C ,

P[M̄ϵ ≥C N /2] ≤
(

10

ϵ

)pN

e−C 2N /10 ≤ e−N .

Lemma 2.5. With probability 1 (i.e. almost surely), we have M̄ ≤ 2M̄ϵ.

Proof of Lemma 2.5. We employ the triangle inequality. Fix x(1), . . . , x(p) ∈ SN attaining M̄ , and round

x( j ) → x̃( j ) ∈Nϵ,

i.e. pick the x̃( j ) ∈Nϵ such that ∥x( j ) − x̃( j )∥2 ≤ ϵ
p

N that we know to exist by the construction of Nϵ. Then,

|〈G (p)
N , x(1) ⊗·· ·⊗x(p) − x̃(1) ⊗·· ·⊗ x̃(p)〉| ≤

p∑
j=1

|〈G (p)
N , x̃(1) ⊗·· ·⊗ x̃( j−1) ⊗ [x( j ) − x̃( j )]⊗·· ·⊗x(p)〉|,

and the latter sum is bounded above by pϵM̄ ≤ M̄ /2 (with this final inequality by our choice of ϵ).

Now, the desired result follows immediately from Lemma 2.4, Lemma 2.5, and some manipulation.

Remark. The proof above yields C ≤O (
√

p log p). This is true for M̄ , but for maxx∈SN |HN ,p (x)|, the sharp

constant is in fact
√

log p.

Exercise. A proof of Proposition 2.3 can also be obtained through the technique of chaining.

2.1 Addition to Lecture (Used in HW1, Will be Explained in Lecture 5)

We showed above that

M̄ ≡ N−(p−1)/2 max
x(1),...,x(p)∈SN

〈G (p)
N , x(1) ⊗·· ·⊗x(p)〉 ≤C N (3)

with probability 1−e−N . It is not hard to check that

∇HN (x) = N−(p−1)/2∇x〈G (p)
N , x⊗p〉 = pN−(p−1)/2〈G (p)

N , x⊗(p−1)〉

and so for y ∈ SN with norm ∥y∥ =p
N ,

〈∇HN (x), y〉 ≤ pN−(p−1)/2〈G (p)
N , x⊗(p−1) ⊗ y〉 ≤ pM̄ .

This shows that with probability 1−e−N , we have

sup
x∈SN

∥∇HN (x)∥ ≤C p
p

N

for C as in (3).
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3 Free Energy Moment Computations

Theorem 3.1. The inequality limN→∞EFN (β) ≤β2/2 holds. Moreover, for small β (at most some β0), this is
an equality, and for large β (at least some β1), this is a strict inequality.

Providing a full proof of Theorem 3.1 will be the subject of the next class, but we can begin to think about
the case of large β, and then work our way towards the case of small β as well. Observe that

E

∫
eβHN ,p (x) dµ(x) = Eeβ

p
N g = eβ

2N /2,

where g ∼ N (0,1). The first equality follows by linearity of expectation since for every x ∈ SN , HN ,p (x)

has the same distribution as
p

N g . Therefore, by applying Jensen’s inequality on the logarithm, we get the
bound

EFN (β) = 1

N
E log ZN (β)

≤ 1

N
log EZN (β)

= 1

N
log E

∫
eβHN ,p (x) dµ(x)

= 1

N
logeβ

2N /2

= β2

2
.

We use F ann
N (β) to denote the “annealed free energy” β2/2. Next, for large β,

log ZN (β) ≤βmax
x∈SN

|HN ,p (x)|,

so altogether, with probability 1−e−N , we have the bound

FN (β) ≤ β

N
max
x∈SN

|HN ,p (x)| ≤Cβ≪ β2

2
.

Although this is a result about a random variable with high probability, and the previous bound from
Jensen’s inequality is one of the expectation, we can make these ideas rigorous next class by proving that:

Proposition 3.2. For all β, we have |FN (β)−EFN (β)| ≤ o(1) with high probability.

Now, we turn our attention to the case where β is small. For this, we will make frequent use of the second
moment method, which is the general principle for some random variable Z that if E[Z 2] ≈ E[Z ]2 in some
sense, then Z ≈ E[Z ] in some sense. There are a few different versions of this method, some which involve
truncation, i.e. computing E[Z 21G ], where G is some “good event.” The strong form of this is the following:

Proposition 3.3. Suppose that as N →∞, we have

rN (β) := E[ZN (β)2]

E[ZN (β)]2 → 1.

Then, ZN (β) ≈ EZN (β) in the sense that P[|ZN (β)−EZN (β)| ≥ 1
2EZN (β)] → 0 as N →∞.

Proof of Proposition 3.3. This is a simple application of Chebychev’s inequality. As N →∞,

P

[
|ZN (β)−EZN (β)| ≥ 1

2
EZN (β)

]
≤ 4Var[ZN (β)]

E[ZN (β)]2 = 4(rN (β)−1) → 0.
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However, the condition on rN (β) in Proposition 3.3 is far too strong (and too precise), so for us, we’ll usually
just show that rN (β) ≤ eo(N ) for fixed smallβ and N →∞. Surprisingly, this will be enough to get the correct
free energy, which is a nice feature of these types of models. Now, we prove this condition for our rN (β).

Definition 3.4 (Overlap). The overlap R : SN ×SN → [−1,1] is the function R(x, x̃) = 〈x, x̃〉/N .

Being a little loose with the underlying measure µ, we can express

E[ZN (β)2] =
∫

SN

∫
SN

Eexp(βHN ,p (x)+βHN ,p (x̃))d xd x̃.

The term inside the exp(·) is N (0,2β2(1+R(x, x̃)p )N ), so we can reparameterize in terms of R to get

E[ZN (β)2] =
∫ 1

−1
exp(β2(1+Rp )N )dνN (R)

for some probability distribution νN for R. Moreover, some geometric reasoning about the volume of the
cross-sections on the sphere lets us deduce that dνN (R) ≈ (1−R2)N /2 dR, and in fact, it is true that

dνN (R) =αN (1−R2)N /2−1,

where αN is a constant depending on N that is nice in the sense that αN ∈ [1,O (
p

N )]. Therefore,

E[ZN (β)2] =αN

∫ 1

−1
exp N

(
β2(1+Rp )+ 1

2
log(1−R2)

)
(1−R2)−1 dR.

To find the asymptotics of this final integral, we realize that to leading exponential order, it suffices to find
the maximum value over R of the expression inside the exponential. In general, this is known as Laplace’s
principle, and with this we find that as N →∞,

1

N
logE[ZN (β)2] → max

−1≤R≤1

{
β2(1+Rp )+ 1

2
log(1−R2)

}
.

For small β≤β0, this maximum is at R = 0 (as can be seen visually or with basic calculus), so the maximum
value is β2 = 2F ann

N (β), and rN (β) = eo(N ) naturally follows. A question now arises about which properties
our p-spin model needed to have for this result on rN (β) to hold. For now, this will be answered within the
context of spherical spin-glasses. We will consider the mixed p-spin model determined by the following:

Definition 3.5 (Mixed p-spin hamiltonian). A mixed p-spin hamiltonian is a function of the form

HN (x) =
P∑

p=1
γp HN ,p (x),

where the HN ,p ’s are p-spin hamiltonians. These are still centered gaussian processes determined by

EHN (x)HN (x̃) = Nξ(R(x, x̃)), ξ(R) =
P∑

p=1
γ2

p Rp .

As long as ξ′(0) = 0 (which is equivalent to γ1 = 0), we can follow the argument above to show rN (β) ≤ eo(N ).

Remark. The mixed p-spin Hamiltonian is a centered Gaussian process with rotationally invariant covari-
ance structure. The fact that ξ(x, x̃) =∑P

p=1γ
2
p R(x, x̃)p is the covariance of a Gaussian process means it is

positive definite. It is actually a famous result in [1] that no other functions of R(x, x̃) are positive definite
in arbitrarily high dimension. Thus the class of mixed p-spin models is quite natural from the Gaussian
process point of view.
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