Statistics 291: Lecture 20 (April 04, 2024)

Towards the Spherical Parisi Formula: Ruelle Probability
Cascades

Instructor: Mark Sellke

Scribe: Kevin Luo

Ruelle probability cascades were instrumental in the proof of the Parisi formula, as they give a descrip-
tion of the Gibbs measure, though this fact we will not fully prove. They will furthermore be needed for our
interpolation.

1 Preliminaries

We are interested in understanding a heuristic for the fine-grained structure on 1-RSB Gibbs measures.
Here, where the temperature is low, we expect to have, as in our discussion of shattering, a collection of
clusters 6),%>,...; at the center of each is an extremal critical point, as illustrated in Figure 1. We will
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Figure 1: Structure on a 1-RSB Gibbs measure.

take these to be ordered, so that ug(61) = ug(62) = ---. The key distinction between the 1-RSB phase
and the shattered phase is that, since the temperature is even lower, rather than each cluster having an
exponentially small fraction of the mass, now, heuristically, the top clusters occupy a constant fraction of
the mass. One can think that this means
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Our goal today will be to understand the joint distribution of the weights of the top clusters, which is a
much more detailed question than just understanding the total free energy on the model. We will do this
by identifying each cluster with the energy of the critical point at its center. Our working models for today
will be spherical pure p-spin models (which indeed turn out to be 1-RSB).

2 The Top Critical Points and Clusters

2.1 Poisson Point Process Approximation

Let the top critical points be o', 02, ..., so that Hy(o') = Hy(a?) = ---. We know through Kac-Rice that the
“intensity” of these points at various levels of the energy behaves as the curve in Figure 2.
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Figure 2: Curve of annealed counts given by Kac-Rice

There are a lot of critical points at low energy, and the number diminishes until we reach the cross-over
point, which in this case further turns out to be the ground state (recall that before we had only argued it
was an upper bound).

If we try to zoom in very closely near the cross-over point, because the average number of critical points
diminishes exponentially fast according to this curve, in the limit, we expect the energy of the realized
critical points in this region to have intensity measure something like e™* dx, for x = Hy (o) — Ep, where Ey
is some scaling shift (and we are setting an arbitrary constant factor in the exponent to 1). Moreover it is
natural to hope for a Poisson point process in the limit. One can imagine setting Ey so that, with probability
atleast 1/2, the maximum critical point is below this level. Note that we are not considering the normalized
energy Hy(-)/ N, but actually the energies themselves — this corresponds to looking in an O(1) size window
on the graph above. These are shown in Figure 3.
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Figure 3: Heuristic distribution of maximum points

Definition 2.1 (Poisson Point Process). A Poisson point process with intensity measure A dx is the unique
point process on R such that, the number of points in [a, b] is distributed as Pois( f ab e~ * dx) and disjoint



intervals are independent.

For the rest of this lecture, we will assume that the approximation above holds. Furthermore, we will
guess that
pp(6) o PINE@D = P, 3)

That is, the mass on each cluster is proportional to the exponential of the energy at its central critical point.
Let u; = ePAN@) = obxi — pXilm. from here on, we will write things in terms of the temperature m rather
than B. Then
Ui
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Under what conditions will the normalizing sum in the denominator be finite? The correct condition is
that m < 1. The reasoning for this is that for any fixed energy level x, there should be something like O(e™™)
points of that energy level (using the PPP approximation above), so there are a lot of such points as the
energy becomes small. In order for this sum to converge, we need to the contribution to the mass of each of
these terms to be small, and this is satisfied when e*'™.e* < 1 for large, negative x, which exactly occurs
when m < 1.

Now, if one pushes through this analysis and performs the chain rule, then the u; can be found to
also follow a Poisson process, where (i1, up,...) ~ PPP(C- u~'=" du). Note that this Poisson process is
singular around 0, so there will be an infinite number of points. Furthermore, although their expected sum
JoZ u™™ du is infinite due to the tail for large u, there will always be a finite number of points past any
nonzero threshold, so we are fine, and the bulk of points near 0 have finite contribution to the sum.
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2.2 Useful Identities

Consider now x; + ¢; — log[E[e[ ], fori.i.d. distributed ¢; with finite exponential moment. Consider sorting
these quantities into X; = X, = -+, so that X;(;) = x; +¢; —log[E[e[ ], where  denotes the sorting permutation.

Proposition 2.2. With (x1, x»,...) and (%1, X»,...) defined above, one has the distributional equality

(1, %2,..) & (1, For00). 5)

Before beginning the proof, we give a little intuition for this procedure. One should think of the ¢; as
being a Gaussian perturbation, where this process consists of partially renoising the Hamiltonian, i.e.

Hy —V1—-t/NHy+Vt/INHy (6)

for t = 0(1).

By applying this small amount of noise, we expect the clusters themselves to stay intact, but for their
energies to change a little bit. One can view this noising procedure as a Markov process on the x;’s, which
we view as corresponding to the cluster masses ug(%;). Since the marginal law of the entire spin glass
remains the same, we should expect that the behavior of the clusters, once reordered, remains the same.

Proof of Proposition 2.2. The intensity of x; + £; —logE[e/] at y € Ris
f e—y+(—log[E[e"] dp)=e?, @)
R
which is indeed the same intensity measure as for the x;, where p(¢) corresponds to the law of ¢. In essence,

above, we integrate over the intensity of a corresponding x, coupled with the density of ¢ such that the
final sum is y. O



Since we defined v; the normalized cluster weights, and each cluster weight is proportional to the
energy at its critical point, this further implies
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Corollary 2.3. LetL; = e’i/™. Then
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where again 7 (i) is just the sorting permutation.
The above follows from exponentiating x;/m, which is exactly the definition of u;.

Lemma 2.4. Fori.id. L;,

1
[ElogZ v;L; = log([E[Lm]”m) = —IlogE[L™]. (12)

m

Proof.
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Elo = Elog =——— = log(E[L™]"'™). (13)
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(a) corresponds to applying the distributional equality shown in Corollary 2.3, while (b) follows from the
definition of #;. O

To gain some intuition for this, it helps to think about what happens when m = 1, even though it is
not truly allowed. When one sets this, the above expression reduces to logE[L], which corresponds to an
annealed approximation of Elog}_ v;L;. This is what one would expect if all the weights v; are extremely
small, in which case the law of large numbers would give }°,, L; = E[L;] with high probability. Indeed for
m = 1, the Poisson point process for the u; has intensity proportional to =2, which corresponds to there
being even more points near zero, and less large clusters. For large m, indeed all of the clusters should be
very small - there are no dominating weights, and hence one can essentially apply the law of large numbers
as above.

2.3 Tangentially Related Facts

Given two i.i.d. samples ¢!, 02, drawn such that

Plo! =il =Plo®=i]=v;, (14)
one can ask what P[o! = 0] would be. The answer turns out to be 1 — m. In essence, as the temperature
goes down, the overlap goes to 1. Roughly speaking, if we expect all overlaps to be orthogonal, with centers
at y/gN, then the overlap distribution has a piecewise constant CDE as shown in Figure 4. This is what is
called a 1-RSB overlap distribution.

This is related to the Chinese Restaurant Process.

Definition 2.5 (Chinese Restaurant Process). One has an infinite collection of infinitely large tables. People
arrive at the restaurant 1 by 1. The first person goes to a random table. The second person now joins the
first person with probability 1/2, or starts a new one with probability 1/2. The third person joins person
1 with probability 1/3, joins person 2 with probability 1/3, and starts their own table with probability 1/3,
and so on.



Figure 4: 1-RSB overlap distribution

This is a type of Pélya urn model. If one looks at the number of people at Table 1 versus the number not
at table 1, then this is a P6lya urn model where the fraction at table 1 is a vy = y; ~ Unif([0, 1]). Likewise, if
one looks at the proportion of people at Table 2 versus the number at table numbers three or higher, this
is an independent Pélya urn, where the proportion follows v, = (1 — y1)y2, where y, ~ Unif([0,1]). This
procedure continues, where v3 = (1 — y1)(1 — ¥2)y3, and so on. In these models, these y; are drawn from
Beta(1, 1) distributions. For our clusters, instead we have y; ~ Beta(1 — m, m), y, ~ Beta(1 — m,2m), and so
on.

How can this be represented in terms of the restaurant story? If the current tables have sizes sy, s, ..., Sk,
and n people total, then the n + 1st person joins table s; with probability % :lm; otherwise, they start a new
table with probability km/n.

3 Ruelle Probability Cascades

We now want to perform a multi-level analog of our analysis in the prior section. This corresponds to
analyzing a tree of finite depth r, but where each node has infinite nodes: Along each edge from the root,

Figure 5: The tree corresponding to a Ruelle Probability Cascade.

we assign weights u;, uy,.... Similarly, we assign weights u11, u;2,... for the edges from the first node on



the 2nd level, and continue down the tree, similarly to how we labeled the edges last lecture. Now, fixing
aeN? where a = ajasy- --aq, we define the weight wq = U, Ua, Ua aras *** Uay—a;-
At the bottom level, for y € N”, we further define the weights

Wy

= — (15)
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We generate up, up, -+ ~ PPP(u~1~"0), and more generally, for a € N, we generate Ug, Ug2, " ~
PPP(u~17"d), where mg < m; <---<my_; <m, = 1.

Note that the above Poisson point processes are again not integrable around 0, so we once more have
infinitely many points, but in that region, the points contribute finite weight, by the same analysis as before.
The idea here is again that vy should represent the weights of the clusters in an r-step RSB model.

As in the previous lecture, the tree structure naturally yields

Plany=dl=mg—mg_,. (16)

We want to be able to do the renoising analysis we did in the prior section, but now we need to conduct it
in such a way that the hierarchy of the tree is respected. Before, this was not so much an issue, since the
tree only had one level.

Our approach will be to generate independent y, for each y € N*". For a = ajaz---a, (so a is a leaf),
now define

Fa:Fr(yapymaz,ymagay'”’J/czlma,)- (17)
We then have the following:
Theorem 3.1.
Elog ) vaFy=logF, (18)
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where F is defined by the following backwards recursion:

d+1 1/mg_
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As an example, when r = 2, this results in

1/m
FOZ[EJ/1 [[Eyz [FZ(yl’yz)mllyl]mO/ml] 0» (20)
and by construction, one can see that the correlations essentially respect the hierarchy.
Proof. We show the proofin the case of r = 2. The rest are similar. First, we rewrite
Elog)_ uiu;jFa(yi,yij) =Elog)_ u; (Z uisz(J’irJ’ij)) 21)
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Note that for each fixed i, the collection {F>(y;, yij)} j=1 above, conditioned on y;, are in fact i.i.d. Hence
we can apply Corollary 2.3, which provides that, for each 7, conditional on y;,

d e ~
Y wiiF(yi, yi)) Y i jELE (v, yi )™ | yil V™. (22)
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Hence we can rewrite the above as

1/m1

E[F(yi,yi)™ | yi (23)
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Elog)  u; (Z uisz(yi,yij)) =Elog)_ u;
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We are now in a position to apply Corollary 2.3 again, where the i.i.d. variable is now the bracketed term

above. The corollary provides
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thus obtaining
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To conclude, note that
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Proposition 2.2 once again provides }.; ; u;u;j =3.; j ;i
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where this follows from (26) and the definition of F;.

4 Preview of the remainder
The interpolation scheme we will use is, for o € #y and a e N,

Hp,:(0,a) =log v + (sin(?) (Hy(0) + gg (@) + cos(1) (G (), 07)),
where
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* gp is a centered Gaussian process with covariance function Egg (@) gg(y) = 0(gany), for some increas-

ing sequence gp < g1 < g2 < - - < qg,

* Gg is similar but a spherical Gaussian process instead, i.e. Gg is a random vector in RN with IID

coordinates having the law of g.

The log v, at the start just amounts to using the weights v, as the “base” measure on N', just like the

uniform measure on .4y has been our base measure throughout the class.
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