
Statistics 291: Lecture 20 (April 04, 2024)

Towards the Spherical Parisi Formula: Ruelle Probability
Cascades

Instructor: Mark Sellke

Scribe: Kevin Luo

Ruelle probability cascades were instrumental in the proof of the Parisi formula, as they give a descrip-
tion of the Gibbs measure, though this fact we will not fully prove. They will furthermore be needed for our
interpolation.

1 Preliminaries

We are interested in understanding a heuristic for the fine-grained structure on 1-RSB Gibbs measures.
Here, where the temperature is low, we expect to have, as in our discussion of shattering, a collection of
clusters C1,C2, . . . ; at the center of each is an extremal critical point, as illustrated in Figure 1. We will

Figure 1: Structure on a 1-RSB Gibbs measure.

take these to be ordered, so that µβ(C1) ≥ µβ(C2) ≥ ·· · . The key distinction between the 1-RSB phase
and the shattered phase is that, since the temperature is even lower, rather than each cluster having an
exponentially small fraction of the mass, now, heuristically, the top clusters occupy a constant fraction of
the mass. One can think that this means

100∑
i=1

µβ(Ci ) ≥ 1

2
(1)

with probability 99%; more formally,

lim
N→∞

k∑
i=1

µβ(Ci ) ≥ 1−ϵ (2)

with probability 1−ϵ for k ≥ k0(ϵ).
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Our goal today will be to understand the joint distribution of the weights of the top clusters, which is a
much more detailed question than just understanding the total free energy on the model. We will do this
by identifying each cluster with the energy of the critical point at its center. Our working models for today
will be spherical pure p-spin models (which indeed turn out to be 1-RSB).

2 The Top Critical Points and Clusters

2.1 Poisson Point Process Approximation

Let the top critical points be σ1,σ2, . . . , so that HN (σ1) ≥ HN (σ2) ≥ ·· · . We know through Kac-Rice that the
“intensity” of these points at various levels of the energy behaves as the curve in Figure 2.

Figure 2: Curve of annealed counts given by Kac-Rice

There are a lot of critical points at low energy, and the number diminishes until we reach the cross-over
point, which in this case further turns out to be the ground state (recall that before we had only argued it
was an upper bound).

If we try to zoom in very closely near the cross-over point, because the average number of critical points
diminishes exponentially fast according to this curve, in the limit, we expect the energy of the realized
critical points in this region to have intensity measure something like e−x dx, for x = HN (σ)−E0, where E0

is some scaling shift (and we are setting an arbitrary constant factor in the exponent to 1). Moreover it is
natural to hope for a Poisson point process in the limit. One can imagine setting E0 so that, with probability
at least 1/2, the maximum critical point is below this level. Note that we are not considering the normalized
energy HN (·)/N , but actually the energies themselves – this corresponds to looking in an O(1) size window
on the graph above. These are shown in Figure 3.

Figure 3: Heuristic distribution of maximum points

Definition 2.1 (Poisson Point Process). A Poisson point process with intensity measureΛ dx is the unique

point process on R such that, the number of points in [a,b] is distributed as Pois(
∫ b

a e−x dx) and disjoint
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intervals are independent.

For the rest of this lecture, we will assume that the approximation above holds. Furthermore, we will
guess that

µβ(Ci ) ∝ eβHN (σi ) = eβxi . (3)

That is, the mass on each cluster is proportional to the exponential of the energy at its central critical point.
Let ui = eβHN (σi ) = eβxi = exi /m ; from here on, we will write things in terms of the temperature m rather
than β. Then

µβ(Ci ) = vi := ui∑
ui

. (4)

Under what conditions will the normalizing sum in the denominator be finite? The correct condition is
that m < 1. The reasoning for this is that for any fixed energy level x, there should be something like O(e−x )
points of that energy level (using the PPP approximation above), so there are a lot of such points as the
energy becomes small. In order for this sum to converge, we need to the contribution to the mass of each of
these terms to be small, and this is satisfied when ex/m ·e−x < 1 for large, negative x, which exactly occurs
when m < 1.

Now, if one pushes through this analysis and performs the chain rule, then the ui can be found to
also follow a Poisson process, where (u1,u2, . . . ) ∼ PPP(C ·u−1−m du). Note that this Poisson process is
singular around 0, so there will be an infinite number of points. Furthermore, although their expected sum∫ ∞

0 u−m du is infinite due to the tail for large u, there will always be a finite number of points past any
nonzero threshold, so we are fine, and the bulk of points near 0 have finite contribution to the sum.

2.2 Useful Identities

Consider now xi +ℓi − logE[eℓ], for i.i.d. distributed ℓi with finite exponential moment. Consider sorting
these quantities into x̃1 ≥ x̃2 ≥ ·· · , so that x̃π(i ) = xi +ℓi −logE[eℓ], whereπ denotes the sorting permutation.

Proposition 2.2. With (x1, x2, . . . ) and (x̃1, x̃2, . . . ) defined above, one has the distributiona equality

(x1, x2, . . . )
d= (x̃1, x̃2, . . . ). (5)

Before beginning the proof, we give a little intuition for this procedure. One should think of the ℓi as
being a Gaussian perturbation, where this process consists of partially renoising the Hamiltonian, i.e.

HN →
p

1− t/N HN +
p

t/N H̃N (6)

for t =O(1).
By applying this small amount of noise, we expect the clusters themselves to stay intact, but for their

energies to change a little bit. One can view this noising procedure as a Markov process on the xi ’s, which
we view as corresponding to the cluster masses µβ(Ci ). Since the marginal law of the entire spin glass
remains the same, we should expect that the behavior of the clusters, once reordered, remains the same. By
applying this small amount of noise, we expect the clusters themselves to stay intact, but for their energies
to change a little bit. One can view this noising procedure a Markov process on the xi ’s, and which we view
as corresponding to the cluster masses µβ(Ci ). Since the marginal law of the entire spin glass remains the
same, we should expect that the distribution of the clusters, once ordered, remains the same.

Proof of Proposition 2.2. The intensity of xi +ℓi − logE[eℓ] at y ∈R is∫
R

e−y+ℓ−logE[eℓ] dp(ℓ) = e−y , (7)

which is indeed the same intensity measure as for the xi , where p(ℓ) corresponds to the law of ℓ. In essence,
above, we integrate over the intensity of a corresponding x, coupled with the density of ℓ such that the
final sum is y .
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Since we defined vi the normalized cluster weights, and each cluster weight is proportional to the
energy at its critical point, this further implies

(v1, v2, . . . )
d= (ṽ1, ṽ2, . . . ) (8)

where

ṽi = ũi∑
ũ j

, where ũ j = e x̃ j /m . (9)

Corollary 2.3. Let Li = eℓi /m . Then

(u1,u2, . . . )
d= (ũ1, ũ2, . . . ) (10)

where

ũπ(i ) = ui Li

E[Lm]1/m
, (11)

where again π(i ) is just the sorting permutation.

The above follows from exponentiating xi /m, which is exactly the definition of ui .

Lemma 2.4. For i.i.d. Li ,

E log
∑

vi Li = log(E[Lm]1/m) = 1

m
logE[Lm]. (12)

Proof.

E log

∑
ui Li∑

ui

(a)= E log

∑
ui Li∑

ũi

(b)= log(E[Lm]1/m). (13)

(a) corresponds to applying the distributional equality shown in Proposition 2.2, while (b) follows from
Corollary 2.3.

To gain some intuition for this, it helps to think about what happens when m = 1, even though it is
not truly allowed. When one sets this, the above expression reduces to logE[L], which corresponds to an
annealed approximation of E log

∑
vi Li . This is what one would expect if all the weights vi are extremely

small, in which case the law of large numbers would give
∑

vi
Li ≈ E[Li ] with high probability. Indeed for

m = 1, the Poisson point process for the ui has intensity proportional to u−2, which corresponds to there
being even more points near zero, and less large clusters. For large m, indeed all of the clusters should be
very small – there are no dominating weights, and hence one can essentially apply the law of large numbers
as above.

2.3 Tangentially Related Facts

Given two i.i.d. samples σ1,σ2, drawn such that

P[σ1 = i ] =P[σ2 = i ] = vi , (14)

one can ask what P[σ1 =σ2] would be. The answer turns out to be 1−m. In essence, as the temperature
goes down, the overlap goes to 1. Roughly speaking, if we expect all overlaps to be orthogonal, with centers
at

√
qN , then the overlap distribution has a piecewise constant CDF, as shown in Figure 4. This is what is

called a 1-RSB overlap distribution.
This is related to the Chinese Restaurant Process.

Definition 2.5 (Chinese Restaurant Process). One has an infinite collection of infinitely large tables. People
arrive at the restaurant 1 by 1. The first person goes to a random table. The second person now joins the
first person with probability 1/2, or starts a new one with probability 1/2. The third person joins person
1 with probability 1/3, joins person 2 with probability 1/3, and starts their own table with probability 1/3,
and so on.

4



Figure 4: 1-RSB overlap distribution

This is a type of Pólya urn model. If one looks at the number of people at Table 1 versus the number not
at table 1, then this is a Pólya urn model where the fraction at table 1 is a v1 = y1 ∼ Unif([0,1]). Likewise, if
one looks at the proportion of people at Table 2 versus the number at table numbers three or higher, this
is an independent Pólya urn, where the proportion follows v2 = (1− y1)y2, where y2 ∼ Unif([0,1]). This
procedure continues, where v3 = (1− y1)(1− y2)y3, and so on. In these models, these yi are drawn from
Beta(1,1) distributions. For our clusters, instead we have y1 ∼ Beta(1−m,m), y2 ∼ Beta(1−m,2m), and so
on.

How can this be represented in terms of the restaurant story? If the current tables have sizes s1, s2, . . . , sk ,
and n people total, then the n +1st person joins table si with probability si−m

n ; otherwise, they start a new
table with probability km/n.

3 Ruelle Probability Cascades

We now want to perform a multi-level analog of our analysis in the prior section. This corresponds to
analyzing a tree of finite depth r , but where each node has infinite nodes: Along each edge from the root,

Figure 5: The tree corresponding to a Ruelle Probability Cascade.

we assign weights u1,u2, . . . . Similarly, we assign weights u11,u12, . . . for the edges from the first node on
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the 2nd level, and continue down the tree, similarly to how we labeled the edges last lecture. Now, fixing
α ∈Nd , where α=α1α2 · · ·αd , we define the weight wα = uα1 uα2 uα1α2α3 · · ·uα1···αr .

At the bottom level, for γ ∈Nr , we further define the weights

vγ =
wγ∑

α∈Nr wα
. (15)

We generate u1,u2, · · · ∼ PPP(u−1−m0 ), and more generally, for α ∈ Nd , we generate uα1,uα2, · · · ∼
PPP(u−1−md ), where m0 < m1 < ·· · < mr−1 < mr = 1.

Note that the above Poisson point processes are again not integrable around 0, so we once more have
infinitely many points, but in that region, the points contribute finite weight, by the same analysis as before.

The idea here is again that vγ should represent the weights of the clusters in an r -step RSB model.
As in the previous lecture, the tree structure naturally yields

P[α∧γ= d ] = md −md−1. (16)

We want to be able to do the renoising analysis we did in the prior section, but now we need to conduct it
in such a way that the hierarchy of the tree is respected. Before, this was not so much an issue, since the
tree only had one level.

Our approach will be to generate independent yγ for each γ ∈N≤r . For α=α1α2 · · ·αr (so α is a leaf),
now define

Fα = Fr (yα1 , yα1α2 , yα1α2α3 , · · · , yα1···αr ). (17)

We then have the following:

Theorem 3.1.
E log

∑
α∈Nr

vαFα = logF0, (18)

where F0 is defined by the following backwards recursion:

Fd (y1, y2, · · · , yd ) = Eyd+1
[

Fd+1(y1, · · · , yd+1)md−1 | (y1, · · · , yd )
]1/md−1

. (19)

As an example, when r = 2, this results in

F0 = Ey1
[
Ey2 [

F2(y1, y2)m1 | y1]m0/m1
]1/m0

, (20)

and by construction, one can see that the correlations essentially respect the hierarchy.

Proof. We show the proof in the case of r = 2. The rest are similar. First, we rewrite

E log
∑
i , j

ui ui j F2(yi , yi j ) = E log
∑

i
ui

(∑
j

ui j F2(yi , yi j )

)
(21)

Note that for each fixed i , the collection {F2(yi , yi j )} j≥1 above, conditioned on yi , are in fact i.i.d. Hence
we can apply Corollary 2.3, which provides that, for each i , conditional on yi ,∑

i j
ui j F2(yi , yi j )

d=∑
i j

ũi jE[F2(yi , yi j )m1 | yi ]1/m1 . (22)

Hence we can rewrite the above as

E log
∑

i
ui

(∑
j

ui j F2(yi , yi j )

)
= E log

∑
i

ui

[(∑
j

ũi j

)
E
[
F2(yi , yi j )m1 | yi

]1/m1

]
. (23)
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We are now in a position to apply Corollary 2.3 again, where the i.i.d. variable is now the bracketed term
above. The corollary provides

∑
i

ui

[(∑
j

ũi j

)
E
[
F2(yi , yi j )m1 | yi

]1/m1

]
d=∑

i
ũi

(∑
j

ũi j

)
E
[
E
[
F2(yi , yi j )m1 | yi

]m0/m1
]1/m0

, (24)

thus obtaining

E log
∑

i
ui

[(∑
j

ũi j

)
E
[
F2(yi , yi j )m1 | yi

]1/m1

]
= E log

∑
i , j

ũi ũi jE
[
E
[
F2(yi , yi j )m1 | yi

]m0/m1
]1/m0

(25)

= E log
∑
i , j

ũi ũi jE
[
E
[
F2(y1, y2)m1 | y1

]m0/m1
]1/m0

. (26)

To conclude, note that

E log
∑
i , j

vi j F2(yi , yi j ) = E log

(∑
i j ui ui j F2(yi , yi j )∑

ui ui j

)
(27)

Proposition 2.2 once again provides
∑

i , j ui ui j
d=∑

i , j ũi ũi j

= E log

(∑
i , j ui ui j F2(yi , yi j )∑

i , j ũi ũi j

)
(28)

= logF0 (29)

where this follows from (26) and the definition of F0.

4 Preview of the remainder

The interpolation scheme we will use is, for σ ∈SN and α ∈Nr ,

HN ,t (σ,α) = log vα+
(
sin(t )

(
HN (σ)+ gθ(α)

)+cos(t )
〈
Gξ′ (α),σ

〉)
, (30)

where

• θ(y) = yξ′′(y)−ξ(y),

• gθ is a centered Gaussian process with covariance function Egθ(α)gθ(γ) = θ(qα∧γ), for some increas-
ing sequence q0 < q1 < q2 < ·· · < qd ,

• Gξ′ is similar but a spherical Gaussian process instead, i.e. Gξ′ is a random vector in RN with IID
coordinates having the law of gξ′ .

The log vα at the start just amounts to using the weights vα as the “base” measure on Nr , just like the
uniform measure on SN has been our base measure throughout the class.
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