Statistics 291: Lecture 21 (April 9, 2024)
 Upper Bound: Guerra's Interpolation Bound

Instructor: Mark Sellke
Scribe: Neil Shah

The goal for today is to prove the interpolation upper bound for the Spherical Parisi Formula. This is work from [Guerra 03, Talagrand 06].

We will assume today that $\xi^{\prime \prime}(R) \geq 0$ on $|R| \leq 1$. A lot of earlier proofs of the Parisi Formula have this restriction and we assume it to avoid some oddities for the sake of lecture.

1 Review of Ruelle Probability Cascades

Recall the Ruelle Cascades from last time. Given $m_{0}<m_{1}<\cdots<m_{r-1}$, look at a depth r rooted tree with vertices labelled by $\mathbb{N}^{\varnothing} \cup \mathbb{N}^{1} \cup \cdots \cup \mathbb{N}^{r}=\mathbb{N}^{\leq r}$. There is some room \mathbb{N}, with some children including \mathbb{N}^{1}, and then eventually down in the leaves \mathbb{N}^{r}. There are weights on the edges that are i.i.d. from the Poisson point process from last class. For edges on the first layer, we have

$$
u_{1} \geq u_{2} \geq \cdots \sim \operatorname{PPP}\left(u^{-1-m_{0}}\right)
$$

In general, if $\gamma=\gamma_{1}, \ldots, \gamma_{d} \in \mathbb{N}^{d}$, then

$$
u_{\gamma 1} \geq u_{\gamma 2} \geq \cdots \sim \operatorname{PPP}\left(u^{-1-m_{d}}\right)
$$

These are independent for different $\gamma \in \mathbb{N}^{\leq r-1}$. Additionally, let the weights of the leaves be the product of all the edges going down to that leaf. So, we have

$$
w_{\alpha}=\boldsymbol{u}_{\alpha_{1}} u_{\alpha_{1} \alpha_{2}} \cdots u_{\alpha_{1} \cdots \alpha_{r}} \in \mathbb{N}^{r}
$$

In general, we have

$$
v_{\alpha}=\frac{w_{\alpha}}{\sum_{\alpha^{\prime} \in \mathbb{N}^{r}} w_{\alpha^{\prime}}}
$$

as our random probability measure on \mathbb{N}^{r}.
Given increasing $\phi:[0,1] \rightarrow \mathbb{R}_{+}$,

$$
g_{\phi}=\left\{g_{\phi}(\alpha)\right\}_{\alpha \in \mathbb{N}^{r}}
$$

is a centered Gaussian process. Then, we have

$$
\mathbb{E}\left[g_{\phi}(\alpha) g_{\phi}\left(\alpha^{\prime}\right)\right]=\phi\left(g_{\alpha \wedge \alpha^{\prime}}\right)
$$

Explicitly, one can write this Gaussian process as

$$
g_{\phi}(\alpha)=\sum_{i=1}^{r} \sqrt{\phi\left(g_{d}\right) \cdot \phi\left(g_{d-1}\right)} \cdot \tilde{g}_{\alpha_{1} \cdots \alpha_{d}}
$$

where the latter terms \tilde{g} are i.i.d. $\mathscr{N}(0,1)$. We specifically will use

$$
\theta(q)=q \xi^{\prime}(q)-\xi(q)
$$

which is increasing since $\theta^{\prime}(q)=q \xi^{\prime \prime}(q) \geq 0$ for $q \geq 0$.

2 Interpolation Upper Bound

Define the Hamiltonian

$$
H_{N, t}(\sigma, \alpha)=\sin (t)\left[H_{N}(\sigma)+t g_{\theta}(\alpha)\right]+\cos (t)\left\langle G_{\xi^{\prime}}(\alpha), \sigma\right\rangle .
$$

We also define

$$
Z_{N, t}=\sum_{\sigma} v_{\alpha} \int_{S_{N}} e^{H_{N, t}(\sigma, \alpha)} d \sigma=\int e^{H_{N, t}(\sigma, \alpha)} d \sigma d v(\alpha)
$$

and

$$
f_{N}(t)=\frac{1}{N} \mathbb{E}\left[\log Z_{N, t}\right]
$$

Observe that at $t=\frac{\pi}{2}$, the σ and α parts decouple to give

$$
f_{N}(\pi / 2)=\mathbb{E}\left[F_{N}\left(H_{N}\right)\right]+\frac{1}{N} \mathbb{E}\left[\log \sum_{\alpha} v_{\alpha} e^{g_{\theta}(\alpha)}\right] .
$$

In this, we want to find the first term and will be able to compute the second one.
Then, observe that at $t=0$, we have a mixture of external fields.
Proposition 2.1. For f as defined above,

$$
f_{N}^{\prime}(t) \leq 0 \Longrightarrow f_{N}(0) \geq f_{N}\left(\frac{\pi}{2}\right)
$$

Proof. Taking the derivative, we have

$$
f_{N}^{\prime}(t)=-\frac{\sin (t)}{N} \cdot \sum_{j=1}^{N} \mathbb{E} \frac{\sum_{d} \int \sqrt{\xi^{\prime}\left(q_{d}\right) \cdot \xi^{\prime}\left(q_{d-1}\right)} \cdot \tilde{g}_{\xi^{\prime}, j} \sigma_{j} e^{H_{N, t}(\sigma, \alpha)} d \sigma d v(\alpha)}{Z_{N, t}}
$$

Applying Gaussian integration by parts, we can cancel out the \tilde{g} term in the numerator and add an expectation up front in the summation. Differentiating the numerator,

$$
-\sin (t) \cos (t) \cdot \frac{\int\left(\xi^{\prime}\left(q_{d}\right)-\xi^{\prime}\left(q_{d-1}\right)\right) \cdot \sigma^{2} e^{H_{N, t}(\sigma, \alpha)} d \sigma d v(\alpha)}{=} \sum_{d} \xi^{\prime}\left(q_{d}\right)-\xi^{\prime}\left(q_{d-1}\right)=\xi^{\prime}(1)
$$

Then, differentiating the denominator (a bit more annoying), we have

$$
\frac{\iint\left(\xi^{\prime}\left(q_{d}\right)-\xi^{\prime}\left(q_{d-1}\right)\right) \cdot \sigma_{j} \sigma_{j}^{\prime} 1_{\alpha_{1} \cdots \alpha_{d}=\alpha_{1}^{\prime} \cdots \alpha_{d}^{\prime}} e^{H_{N, t}(\sigma, \alpha)+H_{N, t}\left(\sigma^{\prime}, \alpha^{\prime}\right)} d \sigma d \sigma^{\prime} d \alpha d\left(\alpha^{\prime}\right)}{\left(Z_{N, t}\right)^{2}}
$$

We end up with the overlap function

$$
\mathbb{E}_{(\sigma, \alpha),\left(\sigma^{\prime}, \alpha^{\prime}\right) \text { i.i.d } \mu_{N, t}}\left[R\left(\sigma, \sigma^{\prime}\right) \xi^{\prime}\left(q_{\alpha \wedge \alpha^{\prime}}\right)\right] .
$$

Proceeding similarly for the other terms, we end up with

$$
f_{N}^{\prime}(t)=-\sin (t) \cos (t) \mathbb{E}_{(\sigma, \alpha),\left(\sigma^{\prime}, \alpha^{\prime}\right)}\left[\xi^{\prime}(1)-\xi(1)-\Theta\left(q_{r}=1\right)-\xi^{\prime}(q) R+\xi(R)+\Theta(q)\right] .
$$

The first three terms go to 0 by the definition of Θ. To compute the second line, we fix q. Then, the second line is convex in $R \in[-1,1]$ (since we made the extra assumption $\xi^{\prime \prime}(R) \geq 0$ for $R \in[-1,1]$). By inspection it thus has a minimum when $q=R$. This minimum value is 0 (by definition of θ again) and so we know that this second line is nonnegative.

It will be convenient to use the notations

$$
\alpha[d]=\left(\alpha_{1}, \alpha_{1} \alpha_{2}, \ldots, \alpha_{1} \alpha_{2} \ldots \alpha_{d}\right), \quad \alpha[1: d]=(\alpha[1], \ldots, \alpha[d])
$$

Next, we have

$$
\frac{1}{N} \mathbb{E} \log \sum_{\alpha} v_{\alpha} e^{g_{\Theta}(\alpha)}
$$

where

$$
e^{g_{\Theta}(\alpha)}=\prod_{d} \exp \left(\sqrt{\Theta\left(q_{d}\right)-\Theta\left(q_{d-1}\right)} \cdot \tilde{g}_{\alpha[d]}\right)=F_{r}\left(\tilde{g}_{\alpha[1: r]}\right) .
$$

Using the general property of Ruelle cascades from last time,

$$
\frac{1}{N} \mathbb{E} \log \sum_{\alpha} v_{\alpha} F_{r}\left(\tilde{g}_{\alpha[1: r]}\right)=\frac{1}{N} \log F_{0}
$$

where by backwards recursion we define:

$$
F_{d}(\tilde{g}[1: d])=\mathbb{E}\left[F_{d+1}^{m_{d}}\left(\tilde{g}_{[1: d+1]}\right) \mid \tilde{g}_{[1: d]}\right]^{\frac{1}{m_{d}}}
$$

Doing out one step of this computation, we have

$$
F_{r-1}\left(\tilde{g}_{\alpha[1: r-1]}\right)=\prod_{d=1}^{r-1} \exp \left(\sqrt{\theta\left(q_{d}\right)-\theta\left(q_{d-1}\right)} \tilde{g}_{\alpha[d]}\right) \cdot \mathbb{E}\left[\exp \left(m_{r-1} \sqrt{\theta\left(q_{r}\right)-\theta\left(q_{r-1}\right)} \cdot \tilde{g}_{\alpha}\right)\right]^{\frac{1}{m_{r-1}}}
$$

where the second term becomes

$$
e^{m_{r-1}\left(\frac{\theta\left(q_{r}\right)-\theta\left(q_{r-1}\right)}{2}\right)} .
$$

Doing this computation r times, in each step we similarly act on another term of the product defining F_{r}. Thus we find:

$$
\frac{1}{N} \mathbb{E} \log \sum_{\alpha} v_{\alpha} e^{g_{\Theta}(\alpha)}=\sum_{d=1}^{r} \frac{1}{m_{d-1}}\left(\Theta\left(q_{d}\right)-\Theta\left(q_{d-1}\right)\right)
$$

Finally, we also need $f_{N}(0)$ which is a bit more complicated. We consider

$$
\frac{1}{N} \mathbb{E} \log \sum_{\alpha} v_{\alpha} \int_{\mathbb{R}^{N}} e^{\left\langle G_{\xi}(\alpha), \sigma\right\rangle} d \lambda_{b}(\sigma)
$$

where one replaces S_{N} by $d \lambda_{b}(\sigma)=\mathscr{N}\left(0, I_{N} / b\right)$ for $b>1$. The point is that to leading exponential order,

$$
\mathbb{P}_{x \sim \lambda_{b}}\left[\|x\| \in\left[\sqrt{N}, \sqrt{N}+\frac{1}{N}\right]\right] \approx \sqrt{\frac{b}{2 \pi}}^{N} e^{-N b / 2} \cdot \operatorname{Vol}\left(S_{N}\right)=\exp \left(N\left(\frac{1+\log b-b}{2}\right)\right) .
$$

Therefore modulo some slight technicalities, we can prove an upper bound for any desired λ_{b} and transfer to the sphere up to this additional term. λ_{b} reduces this to a scalar problem. The advantage of working
with λ_{b} is that the N coordinate directions behave independently in the backward recursion, so we will just focus on one of them. Fix 1 coordinate $j \in[N]$. Then, we have

$$
F_{r}\left(\tilde{g}_{[1: r]}\right)=\sqrt{\frac{b}{2 \pi}} \int_{\mathbb{R}} \exp \left(\frac{-b z^{2}}{2}+g_{\xi^{\prime}}(\alpha) z\right) d z=\exp \left(\frac{g_{\xi^{\prime}}(\alpha)^{2}}{2 b}\right)
$$

which (doing one step) implies

$$
F_{r-1}\left(\tilde{g}_{\xi}\left(\alpha_{[1: r]}\right)\right)=\mathbb{E}\left[\exp \left(\frac{m_{r-1}\left[g_{\xi^{\prime}}\left(\alpha_{[1: r-1]}\right)+\sqrt{\xi^{\prime}\left(q_{r}\right)-\xi^{\prime}\left(q_{r-1}\right)} \cdot z\right]^{2}}{2 b}\right)\right]^{\frac{1}{m_{r-1}}}
$$

In general, for z a standard Gaussian, one easily computes

$$
\mathbb{E}^{z}\left[e^{\left(a_{1}+a_{2} z\right)^{2}}\right]=e^{\left(1-2 a_{2}^{2}\right)^{-1}} \sqrt{1-2 a_{2}^{2}}
$$

Plugging in the corresponding values of a_{1} and a_{2}, we obtain

$$
F_{r-1}\left(\tilde{g}_{\xi}\left(\alpha_{[1: r]}\right)\right)=\exp \left(\frac{g_{\xi^{\prime}}\left(\alpha_{[1: r-1]}\right)^{2}}{2\left(b-m_{r-1}\left(\xi^{\prime}\left(q_{r}\right)-\xi^{\prime}\left(q_{r-1}\right)\right)\right)}\right) \cdot\left(\frac{b-m_{r-1}\left(\xi^{\prime}\left(q_{r}\right)-\xi^{\prime}\left(q_{r-1}\right)\right)}{b}\right)^{\frac{1}{2 m_{r-1}}}
$$

The first term is of a similar form as F_{r}, while the second is a constant. Recursing, we will continue to pick up more constant factors of the latter type. The end result is:

$$
\limsup _{N \rightarrow \infty} \mathbb{E} F_{N} \leq \frac{1}{2}\left(\frac{\xi^{\prime}\left(q_{0}\right)}{D_{r}}+\sum_{d} \frac{\log \left(D_{d} / D_{d-1}\right)}{m_{d-1}}+b-1-\log b\right)
$$

where

$$
D_{k}=b-\sum_{d=1}^{k} m_{d-1}\left(\xi^{\prime}\left(q_{d}\right)-\xi^{\prime}\left(q_{d-1}\right)\right)
$$

So, we get the Spherical Parisi Upper Bound

$$
\limsup _{N \rightarrow \infty} \mathbb{E} F_{N}\left(H_{N}\right) \leq \inf _{b>1 ; \vec{m}, \vec{q}} \frac{1}{2}\left(\frac{\xi^{\prime}\left(q_{0}\right)}{D_{r}}+\sum_{d} \frac{\log \left(D_{d} / D_{d-1}\right)}{m_{d-1}-\sum_{d} m_{d}\left(\theta\left(q_{d}\right)-\theta\left(q_{d-1}\right)\right)}+b-1-\log (b)\right) .
$$

Next time, we'll make this formula slightly nicer by thinking of things in a less discrete way and also present some ideas about the lower bound.

