
Statistics 291: Lecture 21 (April 9, 2024)

Upper Bound: Guerra’s Interpolation Bound

Instructor: Mark Sellke

Scribe: Neil Shah

The goal for today is to prove the interpolation upper bound for the Spherical Parisi Formula. This is work
from [Guerra 03, Talagrand 06].

We will assume today that ξ
′′

(R) ≥ 0 on |R| ≤ 1. A lot of earlier proofs of the Parisi Formula have this
restriction and we assume it to avoid some oddities for the sake of lecture.

1 Review of Ruelle Probability Cascades

Recall the Ruelle Cascades from last time. Given m0 < m1 < ·· · < mr−1, look at a depth r rooted tree with
vertices labelled by N∅∪N1 ∪·· ·∪Nr =N≤r . There is some room N, with some children including N1, and
then eventually down in the leavesNr . There are weights on the edges that are i.i.d. from the Poisson point
process from last class. For edges on the first layer, we have

u1 ≥ u2 ≥ ·· · ∼ PPP(u−1−m0 ).

In general, if γ= γ1, . . . ,γd ∈Nd , then

uγ1 ≥ uγ2 ≥ ·· · ∼ PPP(u−1−md ).

These are independent for different γ ∈N≤r−1. Additionally, let the weights of the leaves be the product of
all the edges going down to that leaf. So, we have

wα = uα1 uα1α2 · · ·uα1···αr ∈Nr .

In general, we have

vα = wα∑
α′∈Nr wα′

as our random probability measure on Nr .

Given increasing φ : [0,1] →R+,
gφ = {gφ(α)}α∈Nr

is a centered Gaussian process. Then, we have

E[gφ(α)gφ(α′)] =φ(gα∧α′ ).
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Explicitly, one can write this Gaussian process as

gφ(α) =
r∑

i=1

√
φ(gd ) ·φ(gd−1) · g̃α1···αd ,

where the latter terms g̃ are i.i.d. N (0,1). We specifically will use

θ(q) = qξ
′
(q)−ξ(q),

which is increasing since θ′(q) = qξ
′′

(q) ≥ 0 for q ≥ 0.

2 Interpolation Upper Bound

Define the Hamiltonian

HN ,t (σ,α) = sin(t )[HN (σ)+ t gθ(α)]+cos(t )〈Gξ′ (α),σ〉.
We also define

ZN ,t =
∑
σ

vα

∫
SN

eHN ,t (σ,α) dσ=
∫

eHN ,t (σ,α) dσd v(α)

and

fN (t ) = 1

N
E[log ZN ,t ].

Observe that at t = π
2 , the σ and α parts decouple to give

fN (π/2) = E[FN (HN )]+ 1

N
E
[

log
∑
α

vαegθ(α)].

In this, we want to find the first term and will be able to compute the second one.

Then, observe that at t = 0, we have a mixture of external fields.

Proposition 2.1. For f as defined above,

f ′
N (t ) ≤ 0 =⇒ fN (0) ≥ fN (

π

2
).

Proof. Taking the derivative, we have

f ′
N (t ) =−sin(t )

N
·

N∑
j=1

E

∑
d

∫ √
ξ′(qd ) ·ξ′(qd−1) · g̃ξ′, jσ j eHN ,t (σ,α) dσd v(α)

ZN ,t
.

Applying Gaussian integration by parts, we can cancel out the g̃ term in the numerator and add an expec-
tation up front in the summation. Differentiating the numerator,

−sin(t )cos(t ) ·
∫ (
ξ′(qd )−ξ′(qd−1)

) ·σ2eHN ,t (σ,α) dσd v(α)

=
∑
d
ξ′(qd )−ξ′(qd−1) = ξ′(1).

Then, differentiating the denominator (a bit more annoying), we have∫ ∫ (
ξ′(qd )−ξ′(qd−1)

) ·σ jσ
′
j 1α1···αd=α′

1···α′
d

eHN ,t (σ,α)+HN ,t (σ′,α′) dσdσ′ dαd(α′)

(ZN ,t )2 .

We end up with the overlap function

E
(σ,α),(σ′,α′)i.i.d.∼ µN ,t

[R(σ,σ′)ξ′(qα∧α′ )].
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Proceeding similarly for the other terms, we end up with

f ′
N (t ) =−sin(t )cos(t )E(σ,α),(σ′,α′)

[
ξ′(1)−ξ(1)−Θ(qr = 1)−ξ′(q)R +ξ(R)+Θ(q)

]
.

The first three terms go to 0 by the definition ofΘ. To compute the second line, we fix q . Then, the second
line is convex in R ∈ [−1,1] (since we made the extra assumption ξ′′(R) ≥ 0 for R ∈ [−1,1]). By inspection it
thus has a minimum when q = R. This minimum value is 0 (by definition of θ again) and so we know that
this second line is nonnegative.

It will be convenient to use the notations

α[d ] = (α1,α1α2, . . . ,α1α2 . . .αd ), α[1 : d ] = (α[1], . . . ,α[d ]).

Next, we have
1

N
E log

∑
α

vαegΘ(α)

where
egΘ(α) =∏

d
exp

(√
Θ(qd )−Θ(qd−1) · g̃α[d ]

)
= Fr

(
g̃α[1:r ]

)
.

Using the general property of Ruelle cascades from last time,

1

N
E log

∑
α

vαFr (g̃α[1:r ]) = 1

N
logF0

where by backwards recursion we define:

Fd (g̃ [1 : d ]) = E[
F md

d+1

(
g̃[1:d+1]

) | g̃[1:d ]
] 1

md .

Doing out one step of this computation, we have

Fr−1(g̃α[1:r−1]) =
r−1∏
d=1

exp
(√

θ(qd )−θ(qd−1)g̃α[d ]

)
·E[exp(mr−1

√
θ(qr )−θ(qr−1) · g̃α)

] 1
mr−1 ,

where the second term becomes

e
mr−1

(
θ(qr )−θ(qr−1)

2

)
.

Doing this computation r times, in each step we similarly act on another term of the product defining Fr .
Thus we find:

1

N
E log

∑
α

vαegΘ(α) =
r∑

d=1

1

md−1

(
Θ(qd )−Θ(qd−1)

)
.

Finally, we also need fN (0) which is a bit more complicated. We consider

1

N
E log

∑
α

vα

∫
RN

e〈Gξ(α),σ〉 dλb(σ)

where one replaces SN by dλb(σ) =N (0, IN /b) for b > 1. The point is that to leading exponential order,

Px∼λb
[∥x∥ ∈ [

p
N ,

p
N + 1

N
]] ≈

√
b

2π

N

e−N b/2 ·Vol(SN ) = exp

(
N

(
1+ logb −b

2

))
.

Therefore modulo some slight technicalities, we can prove an upper bound for any desired λb and transfer
to the sphere up to this additional term. λb reduces this to a scalar problem. The advantage of working
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with λb is that the N coordinate directions behave independently in the backward recursion, so we will
just focus on one of them. Fix 1 coordinate j ∈ [N ]. Then, we have

Fr (g̃[1:r ]) =
√

b

2π

∫
R

exp

(−bz2

2
+ gξ′ (α)z

)
d z = exp

(
gξ′ (α)2

2b

)
,

which (doing one step) implies

Fr−1(g̃ξ(α[1:r ])) = E
[

exp

(
mr−1[gξ′ (α[1:r−1])+

√
ξ′(qr )−ξ′(qr−1) · z]2

2b

)] 1
mr−1

.

In general, for z a standard Gaussian, one easily computes

Ez [e(a1+a2z)2
] = e(1−2a2

2)−1
√

1−2a2
2.

Plugging in the corresponding values of a1 and a2, we obtain

Fr−1(g̃ξ(α[1:r ])) = exp

(
gξ′ (α[1:r−1])2

2(b −mr−1(ξ′(qr )−ξ′(qr−1)))

)
·
(

b −mr−1(ξ′(qr )−ξ′(qr−1))

b

) 1
2mr−1

.

The first term is of a similar form as Fr , while the second is a constant. Recursing, we will continue to pick
up more constant factors of the latter type. The end result is:

limsup
N→∞

EFN ≤ 1

2

(
ξ′(q0)

Dr
+∑

d

log(Dd /Dd−1)

md−1
+b −1− logb

)
,

where

Dk = b −
k∑

d=1
md−1(ξ′(qd )−ξ′(qd−1))

So, we get the Spherical Parisi Upper Bound

limsup
N→∞

EFN (HN ) ≤ inf
b>1;m⃗,q⃗

1

2

(
ξ′(q0)

Dr
+∑

d

log(Dd /Dd−1)

md−1 −
∑

d md (θ(qd )−θ(qd−1))
+b −1− log(b)

)
.

Next time, we’ll make this formula slightly nicer by thinking of things in a less discrete way and also present
some ideas about the lower bound.
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