Statistics 291: Lecture 21 (April 9, 2024)

Upper Bound: Guerra’s Interpolation Bound

Instructor: Mark Sellke

Scribe: Neil Shah

The goal for today is to prove the interpolation upper bound for the Spherical Parisi Formula. This is work
from [Guerra 03, Talagrand 06].

We will assume today that 6” (R) = 0 on |R| = 1. A lot of earlier proofs of the Parisi Formula have this
restriction and we assume it to avoid some oddities for the sake of lecture.

1 Review of Ruelle Probability Cascades

Recall the Ruelle Cascades from last time. Given mgy < m; < --- < m,_1, look at a depth r rooted tree with
vertices labelled by NZ UN! U---UN" = N=’". There is some room N, with some children including N!, and
then eventually down in the leaves N'. There are weights on the edges that are i.i.d. from the Poisson point
process from last class. For edges on the first layer, we have

Uy =iy = ~PPP(u17M™),
In general, if y =7v1,...,Y4 € N%, then
Uyl = Uyp = -+ ~ PPP(u~'7"4),

These are independent for different y € N="~!. Additionally, let the weights of the leaves be the product of
all the edges going down to that leaf. So, we have

— r
Wa = Ugy Ugyay " Uay-a, ENL
In general, we have
Wq

Vg= o
Yaenr Wy

as our random probability measure on N'.

Given increasing ¢ : [0, 1] — Ry,
8¢ =18p (M)} aenr

is a centered Gaussian process. Then, we have

Elgp(a)gp(@)] = Pp(ganar)-



Explicitly, one can write this Gaussian process as

r
8o(@) =) VP@a) d(8a-1)* Gar-ay
i=1
where the latter terms g are i.i.d. A4(0,1). We specifically will use

0(q) = g () - E(q),

which is increasing since 6’ (g) = qf//(q) =0forg=0.

2 Interpolation Upper Bound

Define the Hamiltonian
Hpy (o, a) = sin(f) [Hy(0) + £8g ()] + cos(1){Gy (a),0).

We also define
ZN'[:Zvaf eHN,t(Uva) do-zfeHN,t(Uya) do-dv(a)
SN

o

and )
n@ = N[E[logZN,t]-

Observe that at t = 7, the o and a parts decouple to give
1
fn(T/2) = E[Fy(Hp)] + N[E[logz Ve @].
a
In this, we want to find the first term and will be able to compute the second one.

Then, observe that at ¢ = 0, we have a mixture of external fields.

Proposition 2.1. For f as defined above,
7
fu® <0 = fn(0)= fN(E)-
Proof. Taking the derivative, we have

sin() & YafVE@Ga) -E(qa)-ge joje™ "D dodv(a)
_ . Z E .
N 5 Zn s

fn =
Applying Gaussian integration by parts, we can cancel out the g term in the numerator and add an expec-

tation up front in the summation. Differentiating the numerator,

S (€ —E(qa-1) o?e™i@Y dg du(a)

—sin(#) cos(?) -

Y &) €' (qa-) =E Q).
d

Then, differentiating the denominator (a bit more annoying), we have

JT(Ea) ~€a-1)) 00" Loy ay=at ot €O INET D 4o do’ dad (@)
(Zn,1)? '

We end up with the overlap function

. I\ ¢!
(U,a)'(a’,a’)l'l*d'lw,r[R(U’U ) (Ganal-



Proceeding similarly for the other terms, we end up with
fu(®)==sin(t) cos(DE(,a),0",a) [§' (1) = §(1) = O(gr =1) =& (PR +(R) +O(q)] .-

The first three terms go to 0 by the definition of ©®. To compute the second line, we fix g. Then, the second
line is convex in R € [—1, 1] (since we made the extra assumption ¢”(R) = 0 for R € [-1,1]). By inspection it
thus has a minimum when g = R. This minimum value is 0 (by definition of 8 again) and so we know that
this second line is nonnegative. O

It will be convenient to use the notations
ald] = (a1, a1a0,...,a102...44), all:d] = (a[l],...,ald]).

Next, we have
1
—Elo vy e8e@
o8 Ve

where

89 =[Texp (\/ O(qga) —0(qa-1)- ga[d]) =Fr (Zan:n)-
d

Using the general property of Ruelle cascades from last time,
1 _ 1
N[Elog; VaFr(Ganin) = ;108 Fo

where by backwards recursion we define:

1

Fy(gll:d)) = [E[Far}ffjl (g'[lzd+1]) | g[l:d]] ",
Doing out one step of this computation, we have

r-1

- 1
Fr—l(ga[lzr—ll) = H eXp(\/ 9(%1) _H(qd—l)ga[d]) . [E[exp(mr—l \/ B(qr) _Q(qr—l) 'ga)] Mr-1,

d=1

where the second term becomes

mr-1

(G(qr)—B(qr_l))
e 2

Doing this computation r times, in each step we similarly act on another term of the product defining F;.
Thus we find: .
1 1
—Elog) vgese@ =
N ; “ dz::1 mg—1

(0(ga) —©(ga-1)).
Finally, we also need fx(0) which is a bit more complicated. We consider

1
N[Elog; Va fRN G @90 g, (o)

where one replaces Sy by dA,(0) = A (0, In/b) for b > 1. The point is that to leading exponential order,

N
Pr-p,llxll € VN, VN + %11 ~1/ % e NP2 \ol(Sy) = exp (N(%gb_b)).

Therefore modulo some slight technicalities, we can prove an upper bound for any desired A, and transfer
to the sphere up to this additional term. A}, reduces this to a scalar problem. The advantage of working



with A, is that the N coordinate directions behave independently in the backward recursion, so we will
just focus on one of them. Fix 1 coordinate j € [N]. Then, we have

Fr(8.1) = ifex (_bzz
r{8n:r)) = 27 Ja P >

which (doing one step) implies

g (@)?
2b |’

+ gfl(a)z) dz= exp(

_1
Mr—1

Fr1(8:(apn:)) =E b

(mH [ger (@i:r-1)) +V/E(qr) — E(gr-1) - z]z)
exp

In general, for z a standard Gaussian, one easily computes

[Ez[e(u1+ugz)2] _ e(1—2a§)‘1 /1 _2a§'

Plugging in the corresponding values of a; and a,, we obtain

8¢ (@pir-1)* ).(b— mr1E'(qr) —é’(q,_l)))zmil

Fr_1(8e(ai:r))) = exp (Z(b— 1 @) - @) b

The first term is of a similar form as F,, while the second is a constant. Recursing, we will continue to pick
up more constant factors of the latter type. The end result is:

1(¢ log(D4/Dy-
limsupEFy < = ¢ (q0) +y 08(Da/Dg-1)
N—oo 2 D, Pl my_1

+b—1—logb),

where

k
Dr=b-)Y mg_1E'(qa) - &' (Ga-1))
d=1

So, we get the Spherical Parisi Upper Bound

limsupEFy(Hy) < inf

N—oo b>1;m,

1[0 | log(Dy/Dg-1)
q2

+b-1-log(b)|.
D, 7 Mg_1—2ama(0(qq) —0(g4-1)) & )

Next time, we'll make this formula slightly nicer by thinking of things in a less discrete way and also present
some ideas about the lower bound.
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