
Statistics 291: Lecture 22 (April 11, 2024)

Proof of Spherical Parisi Formula

Instructor: Mark Sellke

Scribe: Kenny Gu

1 Introduction

Last class, we used Guerra’s interpolation method to prove an upper bound for the free energy of spherical
spin glasses. That is, if β= 1 and ξ satisfies ξ′′(t ) ≥ 0 for all t ∈ [−1,1], we have

limsup
N→∞

EFN ≤ inf
b>1

m0<···<mr−1
0≤q1≤···≤qr−1

1

2

(
ξ′(q0)

Dr
+∑

k

log(Dk+1/Dk )

mk
−∑

k
mk (θ(qk )−θ(qk−1))+b −1− logb

)

≡ Par(ξ,β= 1).

where θ(t ) = tξ′(t )−ξ(t ) and Dk = b −∑k
d=1 md (ξ′(qd )−ξ′(qd−1)).

2 Crisanti-Sommers formula

We can make the formula for Par(ξ,β= 1) slightly nicer by replacing (~m,~q) with the step function f where
f (q) = md−1 for q ∈ [qd−1, qd ). Then, we can rewrite

Par(ξ,β= 1) = 1

2

(
ξ′(0)

D(0)
+

∫ 1

0

ξ′′(q)

D(q)
− f (q)qξ′′(q)d q +b −1− logb

)
where D(q) = b −∫ q

0 f (s)ξ′′(s)d s is the continuous analog of the Dk terms.
We can actually make this formula even nicer: the Crisanti-Sommers formula states that

Par(ξ,β= 1) = inf
f increasing

f :[0,1]→[0,1]

1

2

(∫ 1

0
ξ′(q) f (q)d q +

∫ q∗

0

d q

f̂ (q)
+ log(1−q∗)

)

where q∗ < 1 is a point such that f (q∗) = 1 and we define f̂ (q) = ∫ 1
q f (u)du. In this form, we can see

that this bound essentially amounts to minimizing a functional over CDFs on [0,1], which, as discussed
in previous lectures, we can interpret as an overlap distribution. This view is further confirmed by the
following theorem:

Theorem 2.1 (Jagannath-Tobasco). There exists a piecewise analytic function f ∗ that minimizes the
Crisanti-Sommers functional.
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Figure 1: Example of a minimizing function f ∗ : [0,1] → [0,1]

This theorem says that there exists a CDF on [0,1] that achieves this infimum and that can be split up
into finitely many intervals such that the CDF is analytic on each of these intervals. That is, the overlap
distribution decomposes into finitely many “nice" components, as illustrated in Figure 1.

Note that each of these components corresponds to either a topologically trivial phase (when f ∗(q) = 0),
a 1RSB phase (when f ∗(q) is constant and nonzero over some interval), a full RSB phase (when f ∗(q) is
strictly monotonically increasing), or a replica symmetric phase (when f ∗(q) = 1).

To complete the proof of the spherical Parisi formula, we want a lower bound on liminfN→∞ EFN

involving Par(ξ,β = 1). We do so by taking the minimizing function f ∗ in the Crisanti-Sommers lower
bound, connecting it to the geometry of the Gibbs measure, and bounding the individual components.

We predict that, for a Gibbs measure, we should be able to construct a tree (like we did with Subag’s
algorithm) with nodes on the subspheres of radii Qd , where Qd correspond to the breaking points between
different components of f ∗.

To show a lower bound, we can cut f ∗ into simple parts, prove sharp lower bounds for each part, and
then combine these bounds/parts geometrically to conclude the proof.

Between the spheres of radii Qd and Qd−1, we can consider the band with smaller covariance ξd such

that f ξd∗ is approximately the same as f ξ∗ restricted to the interval [Qd ,Qd+1]. For ‖σ‖ =√
Qd N , consider

ρ = σ+√
Qd+1 −Qdτ and ρ̃ = √

Qd+1 −Qd τ̃ where τ, τ̃ ⊥ σ and ‖τ‖ = ‖τ̃‖ = p
N . Then, the overlap is

R(ρ, ρ̃) =Qd +(Qd+1−Qd )R(τ, τ̃). Similar to our discussion of spin glasses at high temperature with external
fields (Lecture 11), we can then write the effective covariance ξd (R) = ξ(Qd + (Qd+1 −Qd )R)− (Qd+1 −
Qd )ξ′(Qd )R.

We’ve already discussed/established the ground state energy for the topologically trivial part (using
the Kac-Rice in Lecture 8) and the ground state energy for the full RSB part (using our analysis of Subag’s
algorithm from Lecture 15). It therefore suffices to solve the 1RSB and RS cases.

3 RS case

Suppose that ξ is replica symmetric. Then, because f∗(q) = 1 for all q ∈ [0,1], we have Par(ξ,β = 1) =
ξ(1)/2 = 1

N logEZN , where the last equality follows from following the computations from Lecture 2.
We could then try to follow the second moment method computations from Lecture 3, which yields

EZ 2
N ≈ exp

(
N

(
ξ(1)+max

q

(
ξ(q)+ log(1−q2)

2

))
+o(N )

)

It follow that E[Z 2
n ] ≤ exp(ξ(1)N +o(N )) if and only if ξ(q)+ log(1−q2)

2 ≤ 0 for all q ∈ [0,1]. Therefore, the
second moment method yields the desired lower bound for RS ξ satisfying this condition.
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To show that this lower bound holds for all RS models, we need to improve upon this second moment
method. We’ll do so by truncation. For a fixed (ε,δ), call σ ∈ SN typical (which we denote σ ∈ T ) if

1

N
log

∫
σ̃∈SN

|R(σ,σ̃)|≥δ
eHN (σ̃)dσ̃≤ ξ(1)

2
+ε.

That is, σ ∈ T if the points that are nearly orthgonal to σ account for an exponentially small amount of the
free energy.

Now, if we define Z̃N = ∫
σ∈T eHN (σ)dσ such that Z̃N ≤ ZN , a nice bound on the second moment follows

directly from the definition of T :

Proposition 3.1. E[Z̃ 2
N ] ≤ exp(Nξ(1)+O(ε+δ)N ).

Proof. We can write

E[Z̃ 2
N ] = E

∫
T×T

eHN (σ)+HN (σ̃)dσdσ̃

= E
∫

σ,σ̃∈T
|R(σ,σ̃)|≤δ

eHN (σ)+HN (σ̃)dσdσ̃+E
∫

σ,σ̃∈T
|R(σ,σ̃)|≥δ

eHN (σ)+HN (σ̃)dσdσ̃

We pick up the O(δ) term from the first integral and the O(ε) term from the second integral. Combining
these two terms yields exp(Nξ(1)+O(ε+δ)N ) as desired.

Even though this truncation yields a nice second moment bound, we might be concerned that it
kills the first moment. If, however, we can show that E[Z̃N ] ≥ E[ZN ]/2, then by Paley-Zygmund, P[Z̃N ≥
eNξ(1)/2−o(N )] ≥ e−o(N ) and concentration of FN allows us to establish the desired lower bound.

For a fixed σ0 ∈ SN , we can write

E[Z̃N ]

E[ZN ]
= E[eHN (σ0) · 1[σ0 ∈ T ]]

E[eHN (σ0)]
= P̃[σ0 ∈ T ]

where P̃ is the tilted measure with d P̃
dP = eHN (σ0) and P= Law(HN ) Therefore, we can write

LawP̃P (HN )
d= LawP(HN )+ ∑

p≥1
γ2

p〈σ0, ·〉p

which implies that under P, HN = H̃N = ∑
p≥1γ

2
pσ

⊗p
0 and HN (σ) = H̃N (σ) + ξ(R(σ,σ0)). To show that

P̃[σ0 ∈ T ] ≥ 1/2, it suffices to show that the restricted free energy of HN is at most ξ(1)
2 +o(1).

Let ρ = qσ0 +
√

1−q2τ and ρ̃ = qσ0 +
√

1−q2τ̃ for τ, τ̃ ∈ SN and τ, τ̃⊥σ0. Then, we have

E[H̃N (ρ)H̃N (ρ̃)] = Nξ(q2 + (1−q2)R(τ, τ̃)) ≡ Nξq (R(τ, τ̃))

from which we can express EF (HN ;Bandq (σ0)) = ξ(q)+ log(1−q2)
2 + EFN (ξq ).

If we let f (q) = 1q≥t , then the interpolation upper bound yields

limsup
N→∞

EFN ≤ 1

2

(
ξ(1)−ξ(t )+ t

1− t
+ log(1− t )

)
.

Consider taking t = q
q+1 . We do this partially because the formulas are nice, but there’s also a nice geometric

interpretation: if R(τ, τ̃) = q
q+1 , then R(ρ, ρ̃) = q . Using this in the upper bound, we get

EFN (ξq ) ≤ 1

2
(ξq (1)−ξq (t )+q − log(1−q))

where ξq (1) = ξ(1) and ξq (t ) = ξ(q). Therefore,

EF (HN ;Bandq (σ0)) = 1

2
(ξ(1)+ξ(q)+q + log(1−q))

Replica symmetric implies that ξ(q)+q + log(1−q) ≤ 0, so EF (HN ;Bandq (σ0)) ≤ ξ(1)
2 .
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4 1RSB case

Proving a lower bound in the 1RSB follows by a similar process. The following table summarizes the
differences between the lower bounds in the RS and the 1RSB cases.

RS 1RSB
bound needed free energy FN ground state energy GSN

2nd moment method on ZN # of critical points w/ ≈ extremal energy
truncation typical points ground state typical points

Here, ground state typical points are points σ0 such that HN (σ0) ≈ E0N +εn, ∇sphHN (σ0) = 0, and no other
σ̃ has HN (σ̃) ≥ (E0 +ε)N .

5 Combining

Finally, to justify combining our lower bounds for each of the individual components of f ∗, we need a form
of uniform concentration, similar to the one from the analysis of Subag’s algorithm. For ‖σ‖ =√

Qd N , if
we let

fQd ,Qd+1,k (σ) = 1

kN
max

σ1,...,σk

σ⊥σ1−σ···⊥σk−σ

k∑
i=1

HN (σi )−HN (σ)

then f concentrates uniformly for large k, which justifies the idea that the free energy of a pure state can
be bounded by bounding the free energy along these paths.
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