
Statistics 291: Lecture 3 (January 30, 2024)

Concentration-Enhanced Second Moment Method

Instructor: Mark Sellke

Scribe: Jarell Cheong Tze Wen

1 A Short Tensor Warm-up

Recall from last class that we defined

HN ,p (x) := N−(p−1)/2
N∑

i1,...,ip=1
gi1···ip xi1 · · ·xip = N−(p−1)/2〈G (p)

N , x⊗p〉.

This second expression might seem a little mysterious if one has not seen tensors, so to begin, we will first
say a few things about tensors and how they will be used in this class. To begin, despite all the definitions
for tensors involving category theory and the universal property, tensors, for this class, simply mean vectors
indexed by tuples of numbers (i1, . . . , ip ) ∈ {1, . . . , N }p . Then, inner product of tensors is simply given by

〈S,T 〉 =
N∑

i1,...,ip=1
si1···ip ti1···ip

if S and T are two p-tensors. For more about tensors, refer to Hillar-Lim (2013), “Most Tensor Problems are
NP-Hard.” There is one fact about tensors that we will use many times, which is given below.

Proposition 1.1. Define x⊗p by (x⊗p )i1···ip = xi1 · · ·xip . Then, 〈x⊗p , y⊗p〉 = 〈x, y〉p . In particular, we have

∥x⊗p∥ = ∥x∥p .

2 More on Second Moment Calculations

Recall, from last lecture, that our goal was to show that for small β,

lim
N→∞

EFN (β) = β2

2
.

We have previously established the upper bound

EFN (β) = 1

N
E log ZN (β)

≤ 1

N
log EZN (β)
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= β2

2
,

where the inequality is Jensen’s inequality, and we defined the last term above to be F ann
N (β). First, we will

explain the final equality above in slightly more detail than last lecture. This equality follows from two
results, which we present below.

Lemma 2.1. If g ∼N (0,1), then Eeλg = eλ
2/2.

Proof. This is easily obtained by completing the square as follows.

Eeλg = 1p
2π

∫ ∞

−∞
e−u2/2+λu du = eλ

2/2 1p
2π

∫ ∞

−∞
e(u−λ)2/2 du = eλ

2/2(1) = eλ
2/2.

Lemma 2.2. EZN (β) = eβ
2N /2.

Proof. Interchanging the expectation and the integral, observe that

EZN (β) =
∫

SN

EeβHN ,p (x) d x.

For fixed x ∈ SN , HN ,p (x) ∼N (0, N ), so plugging λ=βpN into Lemma 2.1, we get

EeβHN ,p (x) = eβ
2N /2

for all x ∈ SN . Thus, averaging over the integral, we get EZN (β) = eβ
2N /2.

With this, recall that we managed to compute the second moment

E[ZN (β)2] = E
∫

SN

∫
SN

exp(βHN ,p (x)+βHN ,p (x̃))d xd x̃

= exp

(
N max

−1≤R≤1

{
β2(1+Rp )+ 1

2
log(1−R2)

}
+o(N )

)
,

where R(x, x̃) = 〈x, x̃〉/N is the overlap. Last lecture, for the sake of time, we used a quick geometric argu-
ment to show why the function

fβ(R) :=β2(1+Rp )+ 1

2
log(1−R2)

was maximized at β= 0. We will prove this more formally now.

Proposition 2.3. If β≤β0(p) is small and p ≥ 2, then

max
−1≤R≤1

fβ(R) = fβ(0) =β2 = 2F ann
N (β).

Proof. By easy computations, fβ(0) = β2 and f ′
β

(0) = 0. Therefore, it suffices to show that f ′′
β

(0) ≤ 0 for all

−1 ≤ R ≤ 1. Indeed, first note that

f ′′
β (0) =β2p(p −1)Rp−2 − 1

2

(
1

(1+R)2 + 1

(1−R)2

)
.

The first term above is bounded above by β2p(p−1) since R is at most 1, while the second term is bounded
below by 1

2 since the larger of 1/(1+R)2 and 1/(1−R)2 is at least 1. So if β≤ 1/p, it follows that

f ′′
β (0) ≤β2p(p −1)− 1

2
≤ 0.
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Remark. We performed all these calculations for the spherical p-spin model, but these results also hold
for the Ising p-spin model after some modifications. Recall that for the Ising p-spin model, the underlying
measure is uniform on the Boolean cube, i.e.

µ∼ Unif({±1}N ).

Since the Boolean cube is contained in the sphere, the exact same calculation shows that

EZN (β) = eβ
2N /2.

Meanwhile, if we let h be the entropy function

h(q) = q log(1/q)+ (1−q) log

(
1

1−q

)
,

running through the second moment calculations instead shows that

E[ZN (β)2] = exp

(
N max

−1≤R≤1

{
β2(1+Rp )−h

(
1+R

2

)}
+o(N )

)
,

which is again just exp(β2N +o(N )) for small β.

So far, our work with the second moment method is enough for us to conclude that for β≤β0,

rN (β) := E[ZN (β)2]

E[ZN (β)]2 ≤ eNδN

where δN is a deterministic sequence with limN→∞δN = 0. Now, to make further progress on the limiting
expected free energy, we need two further insights: a form of “weak” Chebyshev inequality and the general
technique of concentration of measure. We address the former first, leaving the latter to the next section.

Theorem 2.4 (Paley-Zygmund inequality). Let Z be a nonnegative random variable such that EZ > 0 and
EZ 2 <∞. Then, P[Z ≥ EZ /2] ≥ E[Z ]2/4EZ 2. Approximate equality holds for

Z =
{
EZ 2 with probability 1/EZ 2,

0 otherwise,

if we assume, without loss of generality, that EZ = 1.

Proof. By rescaling if necessary, assume, without loss of generality, that EZ = 1. Therefore,

1 = EZ

= E[Z ·1Z≤1/2]+E[Z ·1Z>1/2]

≤ 1/2+
√
E[Z 2]P[Z > 1/2],

where in the last line we used the fact that Z ·1Z≤1/2 ≤ 1/2 almost surely and the Cauchy-Schwarz inequality.
The desired inequality follows after some rearrangement.

In particular, for β≤β0, the Paley-Zygmund inequality yields

P[ZN (β) ≥ eβ
2N /2/2] ≥ 1

4rN (β)
≥ e−NδN

4
,

and moreover, the leftmost probability is equal to P[FN (β) ≥β2/2− log2/N ]. Thus, we have a lower bound
for the tail probability, and it remains to find an upper bound for the tail probability, which we will do next.
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3 Concentration of Free Energy

Definition 3.1. A function F : Rd →R is L-Lipshitz if for all G ,G̃ ∈Rd ,

|F (G)−F (G̃)| ≤ L∥G −G̃∥.

In this section, we reduce the proof of our main result for this lecture to the following two lemmas.

Lemma 3.2. FN (β) = FN (β;G (β)
N ) is β/

p
N -Lipshitz in G (p)

N .

Lemma 3.3. If F : Rd →R is L-Lipshitz and G ∼N (0, Id ), then

P[|F (G)−EF (G)| ≥λ] ≤ 2e−λ
2/8L2

.

In particular, the above probability is small once λ≫ L.

Corollary 3.4. By Lemma 3.2 and Lemma 3.3, P[|FN (β)−EFN (β)| ≥λ] ≤ 2e−Nλ2/8β2
.

The statement of Lemma 3.3 should be surprising if this is the first time one sees it. After all, it is a statement
about probabilities of random variables of arbitrary dimension that does not depend on the dimension! A
naive proof attempt, just to get some intuition about why this result is so surprising, goes as follows: let

G ,G̃ ∼N (0, Id )

be i.i.d. standard gaussians. Then, G −G̃ ∼N (0,2Id ), so with high probability,

∥G −G̃∥ ≤O(
p

d).

Since F is L-Lipshitz, with high probability, we can reasonably expect that |F (G)−F (G̃)| ≤O(L
p

d). However
Lemma 3.3 instead states that F fluctuates at the much smaller scale O(L).

Remark. The “least concentrated” Lipshitz functions are linear.

Remark. In this class, we shall apply Lemma 3.3 to all kinds of Lipshitz functions F . Besides FN (β), we
can take F to be the eigenvalues of matrices, or even the performance of optimization algorithms, say for
optimizing p-spin models.

If we assume both Lemma 3.2 and Lemma 3.3 for now, we can finish the main proof about the limiting
value of FN (β). Recall that up to this point, we know that EFN (β) ≤β2/2 for all N .

Proposition 3.5. The inequality limsupN→∞EFN (β) ≥β2/2 holds, and thus limN→∞EFN (β) =β2/2.

Proof. Fix ϵ> 0, and suppose, for contradiction, that for N arbitrarily large,

EFN (β) ≤ β2

2
−ϵ.

Then, we obtain the following string of inequalities:

2e−ϵ
2N /32β2 ≥P[|FN (β)−EFN (β)| ≥ ϵ/2]

≥P[FN (β) ≥β2/2− log2/N ]

≥ e−NδN /4.

The first inequality follows from setting λ = ϵ/2 in Corollary 3.4, the second inequality follows from ob-
serving, say by drawing a number line with all the relevant values, that the event in the former probability
contains (as subsets of R) the event in the latter probability, and the third inequality follows from our work
near the end of the previous section. However, for sufficiently large N and δN → 0, we see that

2e−ϵ
2N /32β2 ≤ e−NδN /4,

which contradicts the string of inequalities above.
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Remark. To gain a feeling for the types of arguments used in the proofs above, try out the problem in the
first homework about the replica method, which says that E[ZN (β)ϵ/N ] “recovers the free energy.”

Proof of Lemma 3.2. Fix (i1, . . . , ip ) ∈ {1, . . . , N }p . Then, a direct computation shows that

∂

∂gi1···ip

FN (β) = ∂

∂gi1···ip

1

N
log

∫
SN

eβHN ,p (x) d x

=
(

N
∫

SN

eβHN ,p (x) d x

)−1 ∂

∂gi1···ip

∫
SN

eβHN ,p (x) d x

=
(

N (p−1)/2N
∫

SN

eβHN ,p (x) d x

)−1

β

∫
SN

xi1 · · ·xip eβHN ,p (x) d x

= β

N (p+1)/2
Ex∼µβ [xi1 · · ·xip ].

Therefore, the gradient of FN (β) is given by

∇
G

(p)
N

FN (β) = β

N (p+1)/2
Ex∼µβ [x⊗p ].

Now, for each x ∈ SN , note that we have ∥x⊗p∥ = ∥x∥p = N p/2, so by Jensen’s inequality (norms are convex),

∥Ex∼µβx⊗p∥ ≤ N p/2.

This means that the gradient of FN (β) is bounded above by β/
p

N , as desired:∥∥∥∥∇G
(p)
N

FN (β)

∥∥∥∥=
∥∥∥∥ β

N (p+1)/2
Ex∼µβ [x⊗p ]

∥∥∥∥≤ β

N (p+1)/2
N p/2 ≤ βp

N
.

Proof of Lemma 3.3. By smoothing, e.g. using convolution, we may assume that F ∈C 1(Rd ). Now, we will
use the interpolation method: let

G0,Gπ/2 ∼N (0, Id )

be i.i.d. standard gaussians. Consider the “path” from G0 to Gπ/2 given by

Gθ = cos(θ)G0 + sin(θ)Gπ/2.

Let G̃θ := d
dθGθ =−sin(θ)G0 +cos(θ)Gπ/2. By the fundamental theorem of calculus and the chain rule,

F (Gπ/2)−F (G0) =
∫ π/2

0

d

dθ
F (Gθ)dθ =

∫ π/2

0
〈∇F (Gθ),G̃θ〉dθ. (1)

For each θ, Gθ and G̃θ are independent standard gaussians. It is clear that they are both standard gaussians
since they are linear combinations of such with weights adding to one. Independence holds because

E[〈Gθ,G̃θ〉] = cosθ sinθ(1−1) = 0.

By this independence, we get the bound

E[exp(t〈∇F (Gθ),G̃θ〉)] ≤ sup
Gθ∈Rd

E[exp(t〈∇F (Gθ),G̃θ〉) |Gθ] = sup
Gθ∈Rd

E[exp(t 2 ∥∇F (Gθ)∥2 /2)] ≤ exp(t 2L2/2).

Next lecture, we will finish by applying Jensen’s inequality on (1) to bound E[exp(t (F (Gπ/2)−F (G0)))].
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