
Statistics 291: Lecture 4 (February 1, 2024)

Geometric and statistical consequences of annealed free
energy

Instructor: Mark Sellke

Scribe: Zad Chin

1 A Recall on Main Formulas

From the last few classes, we defined the following:

(a) HN ,p (x) = N−(p−1)/2 ∑N
i1,...,ip=1 gi1···ip xi1 · · ·xip = N−(p−1)/2〈G (p)

N , x⊗p〉

(b) ZN (β) = ∫
SN

eβHN ,p (x) d x

(c) FN (β) = 1
N log ZN (β)

(d) dµβ(x) = eβHN ,p (x)

ZN (β) , µ∼ Unif(SN )

2 Concentration of Measure (Continued)

Recall that in last lecture, we had the following lemma.

Lemma 2.1. If F : Rd →R is L-Lipshitz and G ∼N (0, Id ), then

P[|F (G)−EF (G)| ≥λ] ≤ 2e−λ
2/8L2

.

In particular, the above probability is small once λ≫ L.

Proof. By smoothing, e.g. using convolution, we may assume F ∈C 1(Rd ). Now, we will use the interpola-
tion method: let

G0,Gπ/2 ∼N (0, Id )

be i.i.d. standard gaussians. Consider the “path” from G0 to Gπ/2 given by

Gθ = cos(θ)G0 + sin(θ)Gπ/2.

Let G̃θ := d
dθGθ =−sin(θ)G0 +cos(θ)Gπ/2. By the fundamental theorem of calculus and the chain rule,

F (Gπ/2)−F (G0) =
∫ π/2

0

d

dθ
F (Gθ)dθ =

∫ π/2

0
〈∇F (Gθ),G̃θ〉dθ. (1)
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Here, we will finish the proof by applying Jensen’s inequality on (1) to bound E[exp(t (F (Gπ/2)−F (G0)))].
Observe that for t ≥ 0,

E[exp(t (F (Gπ/2)−F (G)))] ≤ 2

π

∫ π/2

0
E

[
exp

(
πt

2
〈∇F (Gθ),G̃θ〉

)]
dθ

≤ e t 2L2(π2/8)

≤ e2t 2L2
,

where the first inequality follows from applying Jensen on u 7→ e tu and the second inequality follows from
the fact that for any θ, Gθ,G̃θ ∼N (0, Id ) are i.i.d., which implies that for all v, w ∈Rd ,

E[〈Gθ , v〉〈G̃θ , w〉] = 0.

By Jensen again, observe that
E[e−tF (G0)] ≥ e−tE[ f (G)]

which implies that

E[exp(t (F (Gπ/2)−F (G)))] ≤ e2t 2L2
.

By Markov’s inequality, we observe that

P[F (G)−EF (G) ≥λ] ≤ min
t≥0

(e2t 2L2−tλ) = e−λ
2/8L2

, with t =λ/4L2.

By symmetry, P[F (G)−EF (G) ≤−λ] ≤ e−λ
2/8L2

. Thus, adding this up we get that

P[|F (G)−EF (G)| ≥λ] ≤ 2e−λ
2/8L2

,

which is what we needed to show

Remark. This inequality holds more generally for (1) Unif(Sp
d ) r.v.s, or (2) r.v.s with log-concave density.

For the gaussian density exp(−∥x∥2 /2), the Hessian of the log-density =−Id . If this Hessian has maximum
eigenvalues ≤−c ≤ 0 for some constant c, uniformly in Rd , we will get a similar result to the one above.

3 Application (Borell-TIS inequality)

The Borell–TIS inequality is a result that bounds the probability of a deviation of the uniform norm of a
centered gaussian stochastic process above its expected value. It is named after Christer Borell and its
independent discovers, Boris Tsirelson, Ildar Ibragimov, and Vladimir Sudakov.

Theorem 3.1 (Borell-TIS inequality). Suppose (g1, · · · , gd ) is a (possibly non-centered) Gaussian vector and

max
1≤k≤d

Var[gk ] ≤ 1.

Then,

P

[∣∣∣∣max
k

gk −Emax
k

gk

∣∣∣∣≥λ

]
≤ 2e−λ

2/8

Proof. Let g̃k = gk −Egk . By general principles (or if we follow Harvard’s introductory probability class, by
definition!), there is a linear function φ :Rd →Rd so that if Ĝ ∼N (0, Id ),then

φ(Ĝ)
d= (g̃1, · · · , g̃s ).

Each g̃i = 〈Ĝ , vi 〉 and ∥vi∥ =
√

Var[g̃i ] =√
Var[gi ] ≤ 1. Hence,

Ĝ 7→ max
k

gk

is 1-Lipshitz. Now we may simply apply concentration of measure and conclude.
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In particular, with d =∞, this implies that

P

[∣∣∣∣max
x∈SN

HN ,p (x)−Emax
x∈SN

HN ,p (x)

∣∣∣∣≥λN

]
≤ 2e−λ

2N /8

4 Geometric Information

Theorem 4.1. Let x, x̃ ∼µβ be i.i.d.; then:

(a) If β≤β0, then
lim

N→∞
R(x, x̃) → 0 in probability.

(b) If β≥β1, then the above limit is false.

Remark. We will see later on that this transition corresponds to RSB.

Proof of Theorem 4.1(a). First, we prove (a). Conditioning on HN ,p , we see that

P
[|R(x, x̃)| ≥ ϵ | HN ,p

]= ∫
SN

∫
SN

exp
(
βHN ,p (x)+βHN ,p (x̃)

)
1|R(x,x̃)|≥ϵd xd x̃

ZN (β)2 (2)

Note that for (4), the numerator is small while the denominator is large.

• For the numerator, we observe that

1

N
log E[numerator] = max

−1≤R≤1,|R|≥ϵ

{
β2(1+Rp )+ 1

2
log(1−R2)

}
≤β2 −η, where η= η(β,ϵ) > 0.

• For the denominator, observe that ZN (β)2 = exp(β2N + o(N )), and if we fix ϵ and β, we can, for
instance, get that ZN (β)2 = exp(β2N +η/10), where η is defined above.

By Markov’s inequality on the numerator, with high probability, we conclude that

P
[|R(x, x̃)| ≥ ϵ | HN ,p

]≤ e−ηN /2.

This proof of (a) works for all p, but it lacks motivation and requires the second moment method to work.
As such, we will now work our way towards an alternative proof.

Theorem 4.2. For any N ,β, let x, x̃ ∼µβ be i.i.d.; then,

d

dβ
EFN (β) =β

(
1−ER(x, x̃)p)

Note that this requires G (p)
N to be gaussian and the expectation to be taken over all the randomness.

Proposition 4.3. Note that with Theorem 4.2, and also assuming we can commute N →∞ and d
dβ , we can

informally prove Theorem 4.1 as follows:

(a) To prove (a), note that when N →∞,

β(1−ER(x, x̃)p ) = d

dβ
EFN (β) ≈ d

dβ
(β2/2) =β.

Thus ER(x, x̃)p → 0. This will work if p is even.
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(b) To prove (b), observe that EFN (β) ≤ cβ, so

d

dβ
EFN (β) ≤ c,

so ER(x, x̃)p = 1−O (1/β).

Note that if N ≫β≫ 1, then R(x, x̃) ≈ 1 if p is odd and |R(x, x̃)| ≈ 1 if p is even.

Proof of Theorem 4.2. For fixed HN ,p , observe that

d

dβ
FN (β) = 1

N

d

dβ
log

∫
SN

eβHN ,p (x)d x

=
∫

SN
HN ,p (x)eβHN ,p (x) d x

N ZN (β)

=
N∑

i1,··· ,ip=1
gi1···ip

(∫
SN

xi1 · · ·xip eβHN ,p (x) d x

N (p+1)/2ZN (β)

)
(4)

We use gaussian integration by parts now.

Lemma 4.4. Let G ∼N (0, Id ) and f : Rd →R have 2 bounded derivatives. Then, for 1 ≤ j ≤ d,

E[g j f (G)] = E[δgi f (G)]

Proof. Observe that

E[g j f (G)] =
∫
Rd

f (G)g j e−
∑

k g 2
k /2 dG

=
∫
Rd
δg j f (G)e

∑
k g 2

k /2 dG

= E[δgi f (G)],

where the last line comes from integration by parts.

Substituting Lemma 4.4 and adding expectations to (4) above, we have that

E
d

dβ
FN (β) = EN−(p+1)/2

N∑
i1,··· ,ip=1

d

d gi1···ip

(∫
SN

xi1 · · ·xip eβHN ,p (x) d x∫
SN

eβHN ,p (x) d x

)

= β

N p E

 N∑
i1,··· ,ip=1

∫
SN

x2
i1
· · ·x2

ip
eβHN ,p (x) d x

ZN (β)
−

(∫
SN

xi1 · · ·xip eβHN ,p (x) d x∫
SN

eβHN ,p (x) d x

)2


=β(1−ER(x, x̃)p ),

where the last line is from the fact that in the second inequality, the first team evaluates to

N∑
i1,··· ,ip=1

∫
SN

x2
i1
· · ·x2

ip
eβHN ,p (x) d x

ZN (β)
=

N∑
i1,···ip=1

x2
i1
· · ·x2

ip
= ∥x∥2p = N p

and the second term evaluates to(∫
SN

xi1 · · ·xip eβHN ,p (x) d x∫
SN

eβHN ,p (x) d x

)2

=
∫

SN

∫
SN

xi1 x̃i1 · · ·xip ˜xip eβHN ,p (x)+HN ,p (x̃) d xd x̃

ZN (β)2 = E[〈x, x̃〉p | HN ,p ].

Combining both terms yields E d
dβFN (β) =β(1−ER(x, x̃)p ).
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To make Proposition 4.3 more formal, we will need to use the two following results.

Proposition 4.5. FN (β) is convex in β (for any HN ,p ).

Proof. This is a homework problem. A hint is to use Holder’s inequality.

Proposition 4.6. Suppose fN (β) → f (β) is a pointwise convergence of convex functions, and that fN (β) is
smooth for all N . If f ′(β̂) exists (and it is continuous in β̂), then

lim
N→∞

f ′
N (β̂) = f ′(β̂)

For our earlier proof, we can thus take fN = EFN .

Proof. This is just a sketch of the proof. For fixed ϵ, take N large enough so that∣∣ fN (β)− f (β)
∣∣≤ ϵ2 for β ∈ {

β̂−ϵ, β̂, β̂+ϵ
}

.

By convexity,

f (β̂)− f (β̂−ϵ)

ϵ
−ϵ≤ fN (β̂)− fN (β̂−ϵ)

ϵ
≤ f ′

N (β̂) ≤ fN (β̂+ϵ)− fN (β̂)

ϵ
≤ f (β̂+ϵ)− f (β̂)

ϵ
+ϵ.

For ϵ→ 0 (and for correspondingly large N ≥ N0(ϵ)), these upper and lower bounds converge to f ′(β̂).

In the small β case (β≤β0),
f (β) =β2/2.

For large β, by convexity,

d

dβ
EFN (β) ≤

(
EFN (2β)−EFN (β)

β

)
= 3c ≤O(1), where c is a constant.

5 On Tensor PCA with Weak Signal

For tensor PCA, the hyperparameter is the signal strength λ instead of β, and we will consider

ĤN (x) = HN (x)+λN R(x,σ)p

and the posterior µ̂λ for ĤN (x). Here, the free energy is still λ2/2 for small λ. For the lower bound, we can
restrict to the nearly “orthogonal band” {

x | |R(x,σ| ≤ 1

N 10

}
and re-run the second moment method. For the upper bound, integrating with respect to the overlap with
the signal gives a first moment

lim
N→∞

1

N
logEẐN (λ) = max

−1≤R≤1

(
λ2

2
+λ2Rp + 1

2
log(1−R2)

)
,

maximized at R = 0 for small λ. The conclusion is that µ̂λ concentrates near σ⊥, since by Markov the free
energy on {x | |R(x,σ)| ≥ ϵ} is at most

max
|R|≥ϵ

(
λ2

2
+λ2Rp + 1

2
log(1−R2)

)
which is strictly smaller than the free energy on the entire sphere.
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