Statistics 291: Lecture 4 (February 1, 2024)
 Geometric and statistical consequences of annealed free energy

Instructor: Mark Sellke
Scribe: Zad Chin

1 A Recall on Main Formulas

From the last few classes, we defined the following:
(a) $H_{N, p}(x)=N^{-(p-1) / 2} \sum_{i_{1}, \ldots, i_{p}=1}^{N} g_{i_{1} \cdots i_{p}} x_{i_{1}} \cdots x_{i_{p}}=N^{-(p-1) / 2}\left\langle G_{N}^{(p)}, x^{\otimes p}\right\rangle$
(b) $Z_{N}(\beta)=\int_{S_{N}} e^{\beta H_{N, p}(x)} d x$
(c) $F_{N}(\beta)=\frac{1}{N} \log Z_{N}(\beta)$
(d) $d \mu_{\beta}(x)=\frac{e^{\beta H_{N, p}(x)}}{Z_{N}(\beta)}, \mu \sim \operatorname{Unif}\left(S_{N}\right)$

2 Concentration of Measure (Continued)

Recall that in last lecture, we had the following lemma.
Lemma 2.1. If $F: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is L-Lipshitz and $G \sim \mathscr{N}\left(0, \|_{d}\right)$, then

$$
\mathbb{P}[|F(G)-\mathbb{E} F(G)| \geq \lambda] \leq 2 e^{-\lambda^{2} / 8 L^{2}} .
$$

In particular, the above probability is small once $\lambda \gg L$.
Proof. By smoothing, e.g. using convolution, we may assume $F \in C^{1}\left(\mathbb{R}^{d}\right)$. Now, we will use the interpolation method: let

$$
G_{0}, G_{\pi / 2} \sim \mathscr{N}\left(0,0_{d}\right)
$$

be i.i.d. standard gaussians. Consider the "path" from G_{0} to $G_{\pi / 2}$ given by

$$
G_{\theta}=\cos (\theta) G_{0}+\sin (\theta) G_{\pi / 2} .
$$

Let $\tilde{G}_{\theta}:=\frac{d}{d \theta} G_{\theta}=-\sin (\theta) G_{0}+\cos (\theta) G_{\pi / 2}$. By the fundamental theorem of calculus and the chain rule,

$$
\begin{equation*}
F\left(G_{\pi / 2}\right)-F\left(G_{0}\right)=\int_{0}^{\pi / 2} \frac{d}{d \theta} F\left(G_{\theta}\right) d \theta=\int_{0}^{\pi / 2}\left\langle\nabla F\left(G_{\theta}\right), \tilde{G}_{\theta}\right\rangle d \theta \tag{1}
\end{equation*}
$$

Here, we will finish the proof by applying Jensen's inequality on (1) to bound $\mathbb{E}\left[\exp \left(t\left(F\left(G_{\pi / 2}\right)-F\left(G_{0}\right)\right)\right)\right]$. Observe that for $t \geq 0$,

$$
\begin{aligned}
\mathbb{E}\left[\exp \left(t\left(F\left(G_{\pi / 2}\right)-F\left(G_{)}\right)\right)\right]\right. & \leq \frac{2}{\pi} \int_{0}^{\pi / 2} \mathbb{E}\left[\exp \left(\frac{\pi t}{2}\left\langle\nabla F\left(G_{\theta}\right), \tilde{G_{\theta}}\right)\right] d \theta\right. \\
& \leq e^{t^{2} L^{2}\left(\pi^{2} / 8\right)} \\
& \leq e^{2 t^{2} L^{2}}
\end{aligned}
$$

where the first inequality follows from applying Jensen on $u \mapsto e^{t u}$ and the second inequality follows from the fact that for any $\theta, G_{\theta}, \tilde{G_{\theta}} \sim \mathscr{N}\left(0, n_{d}\right)$ are i.i.d., which implies that for all $v, w \in \mathbb{R}^{d}$,

$$
\mathbb{E}\left[\left\langle G_{\theta}, v\right\rangle\left\langle\tilde{G}_{\theta}, w\right\rangle\right]=0
$$

By Jensen again, observe that

$$
\mathbb{E}\left[e^{-t F\left(G_{0}\right)}\right] \geq e^{-t \mathbb{E}[f(G)]}
$$

which implies that

$$
\mathbb{E}\left[\exp \left(t\left(F\left(G_{\pi / 2}\right)-F(G)\right)\right)\right] \leq e^{2 t^{2} L^{2}}
$$

By Markov's inequality, we observe that

$$
\mathbb{P}[F(G)-\mathbb{E} F(G) \geq \lambda] \leq \min _{t \geq 0}\left(e^{2 t^{2} L^{2}-t \lambda}\right)=e^{-\lambda^{2} / 8 L^{2}}, \text { with } t=\lambda / 4 L^{2}
$$

By symmetry, $\mathbb{P}[F(G)-\mathbb{E} F(G) \leq-\lambda] \leq e^{-\lambda^{2} / 8 L^{2}}$. Thus, adding this up we get that

$$
\mathbb{P}[|F(G)-\mathbb{E} F(G)| \geq \lambda] \leq 2 e^{-\lambda^{2} / 8 L^{2}}
$$

which is what we needed to show
Remark. This inequality holds more generally for (1) Unif($S_{\sqrt{d}}$) r.v.s, or (2) r.v.s with log-concave density. For the gaussian density $\exp \left(-\|x\|^{2} / 2\right)$, the Hessian of the log-density $=-\rrbracket_{d}$. If this Hessian has maximum eigenvalues $\leq-c \leq 0$ for some constant c, uniformly in \mathbb{R}^{d}, we will get a similar result to the one above.

3 Application (Borell-TIS inequality)

The Borell-TIS inequality is a result that bounds the probability of a deviation of the uniform norm of a centered gaussian stochastic process above its expected value. It is named after Christer Borell and its independent discovers, Boris Tsirelson, Ildar Ibragimov, and Vladimir Sudakov.
Theorem 3.1 (Borell-TIS inequality). Suppose $\left(g_{1}, \cdots, g_{d}\right)$ is a (possibly non-centered) Gaussian vector and

$$
\max _{1 \leq k \leq d} \operatorname{Var}\left[g_{k}\right] \leq 1
$$

Then,

$$
\mathbb{P}\left[\left|\max _{k} g_{k}-\mathbb{E} \max _{k} g_{k}\right| \geq \lambda\right] \leq 2 e^{-\lambda^{2} / 8}
$$

Proof. Let $\tilde{g_{k}}=g_{k}-\mathbb{E} g_{k}$. By general principles (or if we follow Harvard's introductory probability class, by definition!), there is a linear function $\phi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ so that if $\hat{G} \sim \mathscr{N}\left(0, \rrbracket_{d}\right)$, then

$$
\phi(\hat{G}) \stackrel{d}{=}\left(\tilde{g}_{1}, \cdots, \tilde{g}_{s}\right)
$$

Each $\tilde{g}_{i}=\left\langle\hat{G}, v_{i}\right\rangle$ and $\left\|v_{i}\right\|=\sqrt{\operatorname{Var}\left[\tilde{g}_{i}\right]}=\sqrt{\operatorname{Var}\left[g_{i}\right]} \leq 1$. Hence,

$$
\hat{G} \mapsto \max _{k} g_{k}
$$

is 1-Lipshitz. Now we may simply apply concentration of measure and conclude.

In particular, with $d=\infty$, this implies that

$$
\mathbb{P}\left[\left|\max _{x \in S_{N}} H_{N, p}(x)-\mathbb{E} \max _{x \in S_{N}} H_{N, p}(x)\right| \geq \lambda N\right] \leq 2 e^{-\lambda^{2} N / 8}
$$

4 Geometric Information

Theorem 4.1. Let $x, \tilde{x} \sim \mu_{\beta}$ be i.i.d.; then:
(a) If $\beta \leq \beta_{0}$, then

$$
\lim _{N \rightarrow \infty} R(x, \tilde{x}) \rightarrow 0 \text { in probability. }
$$

(b) If $\beta \geq \beta_{1}$, then the above limit is false.

Remark. We will see later on that this transition corresponds to RSB.
Proof of Theorem 4.1(a). First, we prove (a). Conditioning on $H_{N, p}$, we see that

$$
\begin{equation*}
\mathbb{P}\left[|R(x, \tilde{x})| \geq \epsilon \mid H_{N, p}\right]=\frac{\int_{S_{N}} \int_{S_{N}} \exp \left(\beta H_{N, p}(x)+\beta H_{N, p}(\tilde{x})\right) 1_{|R(x, \tilde{x})| \geq \epsilon} d x d \tilde{x}}{Z_{N}(\beta)^{2}} \tag{2}
\end{equation*}
$$

Note that for (4), the numerator is small while the denominator is large.

- For the numerator, we observe that

$$
\frac{1}{N} \log \mathbb{E}[\text { numerator }]=\max _{-1 \leq R \leq 1,|R| \geq \epsilon}\left\{\beta^{2}\left(1+R^{p}\right)+\frac{1}{2} \log \left(1-R^{2}\right)\right\} \leq \beta^{2}-\eta, \text { where } \eta=\eta(\beta, \epsilon)>0
$$

- For the denominator, observe that $Z_{N}(\beta)^{2}=\exp \left(\beta^{2} N+o(N)\right)$, and if we fix ϵ and β, we can, for instance, get that $Z_{N}(\beta)^{2}=\exp \left(\beta^{2} N+\eta / 10\right)$, where η is defined above.

By Markov's inequality on the numerator, with high probability, we conclude that

$$
\mathbb{P}\left[|R(x, \tilde{x})| \geq \epsilon \mid H_{N, p}\right] \leq e^{-\eta N / 2}
$$

This proof of (a) works for all p, but it lacks motivation and requires the second moment method to work. As such, we will now work our way towards an alternative proof.

Theorem 4.2. For any N, β, let $x, \tilde{x} \sim \mu_{\beta}$ be i.i.d.; then,

$$
\frac{d}{d \beta} \mathbb{E} F_{N}(\beta)=\beta\left(1-\mathbb{E} R(x, \tilde{x})^{p}\right)
$$

Note that this requires $G_{N}^{(p)}$ to be gaussian and the expectation to be taken over all the randomness.
Proposition 4.3. Note that with Theorem 4.2, and also assuming we can commute $N \rightarrow \infty$ and $\frac{d}{d \beta}$, we can informally prove Theorem 4.1 as follows:
(a) To prove (a), note that when $N \rightarrow \infty$,

$$
\frac{d}{d \beta} \mathbb{E} F_{N}(\beta) \approx \frac{d}{d \beta}\left(\beta^{2} / 2\right)=\beta=\beta\left(1-\mathbb{E} R(x, \tilde{x})^{p}\right)
$$

so $\mathbb{E} R(x, \tilde{x})^{p} \rightarrow 0$. This will work if p is even.
(b) To prove (b), observe that $\mathbb{E} F_{N}(\beta) \leq c \beta$, so

$$
\frac{d}{d \beta} \mathbb{E} F_{N}(\beta) \leq c,
$$

so $\mathbb{E} R(x, \tilde{x})^{p}=1-\mathscr{O}(1 / \beta)$.
Note that if $N \gg \beta \gg 1$, then $R(x, \tilde{x}) \approx 1$ if p is odd and $|R(x, \tilde{x})| \approx 1$ if p is even.
Proof of Theorem 4.2. For fixed $H_{N, p}$, observe that

$$
\begin{align*}
\frac{d}{d \beta} F_{N}(\beta) & =\frac{1}{N} \frac{d}{d \beta} \log \int_{S_{N}} e^{\beta H_{N, p}(x)} d x \\
& =\frac{\int_{S_{N}} H_{N, p}(x) e^{\beta H_{N, p}(x)} d x}{N Z_{N}(\beta)} \\
& =\sum_{i_{1}, \cdots, i_{p}=1}^{N} g_{i_{1} \cdots i_{p}}\left(\frac{\int_{S_{N}} x_{i_{1}} \cdots x_{i_{p}} e^{\beta H_{N, p}(x)} d x}{N^{(p+1) / 2} Z_{N}(\beta)}\right) \tag{4}
\end{align*}
$$

We use gaussian integration by parts now.
Lemma 4.4. Let $G \sim \mathscr{N}\left(0, \|_{d}\right)$ and $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ have 2 bounded derivatives. Then, for $1 \leq j \leq d$,

$$
\mathbb{E}\left[g_{j} f(G)\right]=\mathbb{E}\left[\delta_{g_{i}} f(G)\right]
$$

Proof. Observe that

$$
\begin{aligned}
\mathbb{E}\left[g_{j} f(G)\right] & =\int_{\mathbb{R}^{d}} f(G) g_{j} e^{-\sum_{k} g_{k}^{2} / 2} d G \\
& =\int_{\mathbb{R}^{d}} \delta g_{j} f(G) e^{\sum_{k} g_{k}^{2} / 2} d G \\
& =\mathbb{E}\left[\delta_{g_{i}} f(G)\right]
\end{aligned}
$$

where the last line comes from integration by parts.
Substituting Lemma 4.4 and adding expectations to (4) above, we have that

$$
\begin{aligned}
\mathbb{E} \frac{d}{d \beta} F_{N}(\beta) & =\mathbb{E} N^{-(p+1) / 2} \sum_{i_{1}, \cdots, i_{p}=1}^{N} \frac{d}{d g_{i_{1} \cdots i_{p}}}\left(\frac{\int_{S_{N}} x_{i_{1}} \cdots x_{i_{p}} e^{\beta H_{N, p}(x)} d x}{\int_{S_{N}} e^{\beta H_{N, p}(x)} d x}\right) \\
& =\frac{\beta}{N^{p}} \mathbb{E}\left[\sum_{i_{1}, \cdots, i_{p}=1}^{N} \frac{\int_{S_{N}} x_{i_{1}}^{2} \cdots x_{i_{p}}^{2} e^{\beta H_{N, p}(x)} d x}{Z_{N}(\beta)}-\left(\frac{\int_{S_{N}} x_{i_{1}} \cdots x_{i_{p}} e^{\beta H_{N, p}(x)} d x}{\int_{S_{N}} e^{\beta H_{N, p}(x)} d x}\right)^{2}\right] \\
& =\beta\left(1-\mathbb{E} R(x, \tilde{x})^{p}\right),
\end{aligned}
$$

where the last line is from the fact that in the second inequality, the first team evaluates to

$$
\sum_{i_{1}, \cdots, i_{p}=1}^{N} \frac{\int_{S_{N}} x_{i_{1}}^{2} \cdots x_{i_{p}}^{2} e^{\beta H_{N, p}(x)} d x}{Z_{N}(\beta)}=\sum_{i_{1}, \cdots i_{p}=1}^{N} x_{i_{1}}^{2} \cdots x_{i_{p}}^{2}=\|x\|^{2 p}=N^{p}
$$

and the second term evaluates to

$$
\left(\frac{\int_{S_{N}} x_{i_{1}} \cdots x_{i_{p}} e^{\beta H_{N, p}(x)} d x}{\int_{S_{N}} e^{\beta H_{N, p}(x)} d x}\right)^{2}=\frac{\int_{S_{N}} \int_{S_{N}} x_{i_{1}} \tilde{x_{i_{1}}} \cdots x_{i_{p}} \tilde{x_{i_{p}}} e^{\beta H_{N, p}(x)+H_{N, p}(\tilde{x})} d x d \tilde{x}}{Z_{N}(\beta)^{2}}=\mathbb{E}\left[\langle x, \tilde{x}\rangle^{p} \mid H_{N, p}\right]
$$

Combining both terms yields $\mathbb{E} \frac{d}{d \beta} F_{N}(\beta)=\beta\left(1-\mathbb{E} R(x, \tilde{x})^{p}\right)$.

To make Proposition 4.3 more formal, we will need to use the two following results.
Proposition 4.5. $F_{N}(\beta)$ is convex in β (for any $H_{N, p}$).
Proof. This is a homework problem. A hint is to use Holder's inequality.
Proposition 4.6. Suppose $f_{N}(\beta) \rightarrow f(\beta)$ is a pointwise convergence of convex functions, and that $f_{N}(\beta)$ is smooth for all N. If $f^{\prime}(\hat{\beta})$ exists (and it is continuous in $\hat{\beta}$), then

$$
\lim _{N \rightarrow \infty} f_{N}^{\prime}(\hat{\beta})=f^{\prime}(\hat{\beta})
$$

For our earlier proof, we can thus take $f_{N}=\mathbb{E} F_{N}$.
Proof. This is just a sketch of the proof. For fixed ϵ, take N large enough so that

$$
\left|f_{N}(\beta)-f(\beta)\right| \leq \epsilon^{2} \text { for } \beta \in\{\hat{\beta}-\epsilon, \hat{\beta}, \hat{\beta}+\epsilon\}
$$

By convexity,

$$
\frac{f(\hat{\beta})-f(\hat{\beta}-\epsilon)}{\epsilon}-\epsilon \leq \frac{f_{N}(\hat{\beta})-f_{N}(\hat{\beta}-\epsilon)}{\epsilon} \leq f_{N}^{\prime}(\hat{\beta}) \leq \frac{f_{N}(\hat{\beta}+\epsilon)-f_{N}(\hat{\beta})}{\epsilon} \leq \frac{f(\hat{\beta}+\epsilon)-f(\hat{\beta})}{\epsilon}+\epsilon .
$$

For $\epsilon \rightarrow 0$ (and for correspondingly large $N \geq N_{0}(\epsilon)$), these upper and lower bounds converge to $f^{\prime}(\hat{\beta})$.
In the small β case ($\beta \leq \beta_{0}$),

$$
f(\beta)=\beta^{2} / 2
$$

For large β, by convexity,

$$
\frac{d}{d \beta} \mathbb{E} F_{N}(\beta) \leq\left(\frac{\mathbb{E} F_{N}(2 \beta)-\mathbb{E} F_{N}(\beta)}{\beta}\right)=3 c \leq O(1), \text { where } c \text { is a constant. }
$$

5 On Tensor PCA with Weak Signal

For tensor PCA, the hyperparameter is the signal strength λ instead of β, and we will consider

$$
\hat{H}_{N}(x)=H_{N}(x)+\lambda N R(x, \sigma)^{p}
$$

and the posterior $\hat{\mu}_{\lambda}$ for $\hat{H}_{N}(x)$. Here, the free energy is still $\lambda^{2} / 2$ for small λ. For the lower bound, we can restrict to the nearly "orthogonal band"

$$
\left\{x \left|\left\lvert\, R\left(x, \sigma \left\lvert\, \leq \frac{1}{N^{10}}\right.\right\}\right.\right.\right.
$$

and re-run the second moment method. For the upper bound, integrating with respect to the overlap with the sigmal gives a first moment

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \log \mathbb{E} \hat{Z}_{N}(\lambda)=\max _{-1 \leq R \leq 1}\left(\frac{\lambda^{2}}{2}+\lambda^{2} R^{p}+\frac{1}{2} \log \left(1-R^{2}\right)\right)
$$

maximized at $R=0$ for small λ. The conclusion is that $\hat{\mu}_{\lambda}$ concentrates near σ^{\perp}, since by Markov the free energy on $\{x|\mid R(x, \sigma) \geq \epsilon\}$ is at most

$$
\max _{|R| \geq \epsilon}\left(\frac{\lambda^{2}}{2}+\lambda^{2} R^{p}+\frac{1}{2} \log \left(1-R^{2}\right)\right)
$$

which is strictly smaller than the free energy on the entire sphere.

